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Abstract: In this paper, the classical dual mixed volume of star bodies Ṽ(K1, · · · , Kn) and
dual Aleksandrov–Fenchel inequality are extended to the Orlicz space. Under the framework
of dual Orlicz-Brunn-Minkowski theory, we put forward a new affine geometric quantity by
calculating first order Orlicz variation of the dual mixed volume, and call it Orlicz multiple
dual mixed volume. We generalize the fundamental notions and conclusions of the dual mixed
volume and dual Aleksandrov-Fenchel inequality to an Orlicz setting. The classical dual
Aleksandrov-Fenchel inequality and dual Orlicz-Minkowski inequality are all special cases of the
new dual Orlicz-Aleksandrov-Fenchel inequality. The related concepts of Lp-dual multiple mixed
volumes and Lp-dual Aleksandrov-Fenchel inequality are first derived here. As an application,
the dual Orlicz–Brunn–Minkowski inequality for the Orlicz harmonic addition is also established.

Keywords: dual mixed volume; dual Aleksandrov–Fenchel inequality; Orlicz harmonic radial addition;
Orlicz dual mixed volume; Orlicz dual Minkowski inequality; dual Orlicz–Brunn–Minkowski theory

1. Introduction

It is well known that vector addition is one of the important operators in convex geometry. As an
operation between sets K and L, defined by

K + L = {x + y : x ∈ K, y ∈ L},

it is called Minkowski addition and plays an important role in the convex geometry. During the last
few decades, the theory has been extended to Lp–Brunn–Minkowski theory. Lp addition of K and L
was introduced by Firey in [1,2], denoted by +p, and defined by

h(K +p L, x)p = h(K, x)p + h(L, x)p,

for p ≥ 1, x ∈ Rn and compact convex sets K and L in Rn containing the origin. Here, function h(K, ·)
denotes the support function of K. If K is a nonempty closed (not necessarily bounded) convex set in
Rn, then

h(K, x) = max{x · y : y ∈ K},

for x ∈ Rn. A nonempty closed convex set is uniquely determined by its support function. Lp-addition
is the fundamental and core content in the Lp–Brunn–Minkowski theory. For recent important results
and more information from this theory, we refer to [3–23] and the references therein.

In recent years, the study turned to an Orlicz–Brunn–Minkowski theory, initiated by Lutwak,
Yang, and Zhang [24,25]. Gardner, Hug, and Weil [26] introduced a corresponding Orlicz addition and
established first the Orlicz–Minkowski, and Orlicz–Brunn–Minkowski inequalities. The same concepts
and inequalities are derived by Xi, Jin and Leng [27] using a new geometric symmetry technique.
Other articles on this theory can be found in the literature [28–35].
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The radial addition K+̃L of star sets (compact sets that are star-shaped at o and contain o) K and
L can be defined by

ρ(K+̃L, ·) = ρ(K, ·) + ρ(L, ·),

where ρ(K, ·) denotes the radial function of star set K. The radial function of star set K is defined by

ρ(K, u) = max{c ≥ 0 : cu ∈ K},

for u ∈ Sn−1. The origin and history of the radial addition can be referred to [36], p. 235. When ρ(K, ·)
is positive and continuous, K will be called a star body. Let Sn denote the set of star bodies about
the origin in Rn. The radial addition and volume are the core and essence of the classical dual
Brunn–Minkowski theory and played an important role in the theory (see, e.g., [20,37–42] for recent
important contributions). Lutwak [43] introduced the concept of dual mixed volumes that laid the
foundation of the dual Brunn–Minkowski theory. What is particularly important is that this theory
plays a very important and key role in solving the Busemann–Petty problem in [38,44–46].

For any p 6= 0, the Lp-radial addition K+̃pL defined by (see [47] and [48])

ρ(K+̃pL, x)p = ρ(K, x)p + ρ(L, x)p,

for x ∈ Rn and K, L ∈ Sn. Obviously, when p = 1, the Lp-radial addition +̃p becomes the radial
addition +̃. The Lp-harmonic radial addition was defined by Lutwak [9]: If K, L are star bodies,
the Lp-harmonic radial addition, defined by

ρ(K+̂pL, x)−p = ρ(K, x)−p + ρ(L, x)−p, (1)

for p ≥ 1 and x ∈ Rn. The Lp-harmonic radial addition of convex bodies was first studied by
Firey [1]. The operation of the Lp-harmonic radial addition and Lp-dual Minkowski, Brunn–Minkwski
inequalities are the basic concept and inequalities in the Lp-dual Brunn–Minkowski theory. The latest
information and important results of this theory can be referred to [32,37,39,40,47–51] and the references
therein. For a systematic investigation on the concepts of the addition for convex body and star
body, we refer the reader to [26,48,50]. Lp-dual Brunn–Minkowski theory has been extended to
dual Orlicz–Brunn–Minkowski theory. The dual Orlicz–Brunn–Minkowski theory has also attracted
attention, see [52–57]. The Orlicz harmonic radial addition K+̂φL of two star bodies K and L, defined by
(see [57])

ρ(K+̂φL, u)) = sup
{

λ > 0 : φ

(
ρ(K, u)

λ

)
+ φ

(
ρ(L, u)

λ

)
≤ φ(1)

}
, (2)

where u ∈ Sn−1, and φ : (0, ∞) → (0, ∞) is a convex and decreasing function such that φ(0) = ∞,
limt→∞ φ(t) = 0 and limt→0 φ(t) = ∞. Let C denote the class of the convex and decreasing functions φ

with φ(0) = ∞, limt→∞ φ(t) = 0, and limt→0 φ(t) = ∞. Obviously, if φ(t) = t−p and p ≥ 1, then the
Orlicz harmonic radial addition becomes the Lp-harmonic radial addition. The dual Orlicz mixed
volume, denoted by Ṽφ(K, L), defined by

Ṽφ(K, L) :=
φ′r(1)

n
lim

ε→0+

V(K+̂φε · L)−V(K)
ε

=
1
n

∫
Sn−1

φ

(
ρ(L, u)
ρ(K, u)

)
ρ(K, u)ndS(u), (3)
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where K+̂φε · L is the Orlicz harmonic linear combination of K and L (see Section 3), and the right
derivative of a real-valued function φ is denoted by φ′r. When φ(t) = t−p and p ≥ 1, the dual Orlicz
mixed volume Ṽφ(K, L) becomes the Lp-dual mixed volume Ṽ−p(K, L), defined by (see [9])

Ṽ−p(K, L) =
1
n

∫
Sn−1

ρ(K, u)n+pρ(L, u)−pdS(u). (4)

If K1, . . . , Kn ∈ Sn, the dual mixed volume of star bodies K1, . . . , Kn, denoted by Ṽ(K1, . . . , Kn),
defined by Lutwak (see [43])

Ṽ(K1, . . . , Kn) =
1
n

∫
Sn−1

ρ(K1, u) · · · ρ(Kn, u)dS(u). (5)

Lutwak’s dual Aleksandrov–Fenchel inequality is the following: If K1, . . . , Kn ∈ Sn and 1 ≤ r ≤ n, then

Ṽ(K1, · · · , Kn) ≤
r

∏
i=1

Ṽ(Ki . . . , Ki, Kr+1, . . . , Kn)
1/r,

with equality if and only if K1, . . . , Kr are all dilations of each other.
As we all know, the dual mixed volume Ṽ−1(K, L) of star bodies K and L has been extended to

the Lp-space. Following this, the Lp-dual mixed volume Ṽ−p(K, L) has been extended to the Orlicz
space and becomes dual Orlicz mixed volume Ṽφ(K, L). However, the classical dual mixed volume
Ṽ(K1, . . . , Kn) has not been extended to the Orlicz space, and this question becomes a difficult research
in convex geometry. Why? We all know that the history of geometric research has always followed
the order from general convex geometric space to Lp-space, and then from Lp-space to Orlicz space.
The dual mixed volume Ṽ(K1, . . . , Kn) has not been extended to Lp-space. In other words, there is
nothing in the Lp-space about the dual mixed volume Ṽ(K1, . . . , Kn), which can be used as the basis for
our further study. As a result, directly extend it to the Orlicz space. Its difficulty can be imagined. In this
paper, our main aim is to generalize direct the classical dual mixed volumes Ṽ(K1, . . . , Kn) and dual
Aleksandrov–Fenchel inequality to the Orlicz space without passing through Lp-space. Amazingly,
all the corresponding concepts and inequalities of the Lp-space of the dual mixed volume Ṽ(K1, . . . , Kn)

are all derived, which subverts the order of historical research on the issue, directly deriving the results
of Orlicz space, saving a lot of time and resources. This is also unimaginable.

Under the framework of dual Orlicz–Brunn–Minkowski theory, we introduce the affine geometric
quantity by calculating the first order Orlicz variation of the dual mixed volumes, and call it Orlicz
multiple dual mixed volumes, denoted by Ṽφ(K1, . . . , Kn, Ln), which involves (n + 1) star bodies in
Rn. The fundamental notions and conclusions of the dual mixed volume Ṽ(K1, . . . , Kn) and the dual
Minkowski, and Aleksandrov–Fenchel inequalities are extended to an Orlicz setting. The related
concepts and conclusions of Lp-multiple dual mixed volume Ṽ−p(K1, . . . , Kn, Ln) and Lp-dual
Aleksandrov–Fenchel inequality are first derived here. The new dual Orlicz–Aleksandrov–Fenchel
inequality in special cases yields the dual Aleksandrov–Fenchel inequality and the Orlicz dual
Minkowski inequality for the dual quermassintegrals, respectively. As an application, a new
dual Orlicz–Brunn–Minkowski inequality for the Orlicz harmonic radial addition is established,
which implies the dual Orlicz–Brunn–Minkowski inequality for the dual quermassintegrals.

Complying with the spirit of introduction of Aleksandrov, Fenchel and Jessen’s mixed
quermassintegrals, and introduction of Lutwak’s Lp-mixed quermassintegrals, we calculate the first
order Orlicz variational of dual mixed volumes. If convex bodies K2, . . . , Kn are given, we often use the
abbreviations= := K2, . . . , Kn;= ∈ Sn := K2, . . . , Kn ∈ Sn and ρ= := ρ(K2, u) · · · ρ(Kn, u). In Section 4,
we prove that the first order Orlicz variation of the dual mixed volumes can be expressed as:

d
dε

∣∣∣∣
ε=0+

Ṽ(L1+̂φε · K1,=) = 1
φ′r(1)

· Ṽφ(L1, K1,=),
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where L1, K1,= ∈ Sn, φ ∈ C and ε > 0. In the above first order variational equation, we find a new
geometric quantity. Based on this, we extract the required geometric quantity, denoted by Ṽφ(L1, K1,=)
and call it Orlicz multiple dual mixed volume of (n + 1) star bodies L1, K1,=, defined by

Ṽφ(L1, K1,=) := φ′r(1) ·
d
dε

∣∣∣∣
ε=0+

Ṽ(L1+̂φε · K1,=).

We also prove the new affine geometric quantity Ṽφ(L1, K1,=) has an integral representation.

Ṽφ(L1, K1,=) = 1
n

∫
Sn−1

φ

(
ρ(K1, u)
ρ(L1, u)

)
ρ(L1, u)ρ=dS(u), (6)

Obviously, the dual mixed volume Ṽ(K1, . . . , Kn) and dual Orlicz mixed volume Ṽφ(K, L) are
all special cases of Ṽφ(L1, K1,=). When φ(t) = t−p, p ≥ 1, Orlicz multiple dual mixed volume
Ṽφ(L1, K1,=) becomes a new dual mixed volume in Lp-place, denoted by Ṽ−p(K1, . . . , Kn, Ln), call it
Lp multiple dual mixed volume. From (6), we have

Ṽ−p(L1, K1,=) = 1
n

∫
Sn−1

(
ρ(L1, u)
ρ(K1, u)

)p
ρ(L1, u)ρ=dS(u). (7)

The following harmonic mixed p-quermassintegral W̃−p,i(K, L) is a special case of Ṽ−p(L1, K1,=),
defined by (see Section 2)

W̃−p,i(K, L) =
1
n

∫
Sn−1

ρ(K, u)n−i+pρ(L, u)−pdS(u). (8)

In Section 5, we establish the following dual Orlicz–Aleksandrov–Fenchel inequality for the Orlicz
multiple dual mixed volumes.

The dual Orlicz–Aleksandrov–Fenchel inequality If L1, K1,= ∈ Sn, φ ∈ C and 1 ≤ r ≤ n, then

Ṽφ(L1, K1,=) ≥ Ṽ(L1,=) · φ
(

∏r
i=1 Ṽ(Ki . . . , Ki, Kr+1, . . . , Kn)1/r

Ṽ(L1,=)

)
. (9)

If φ is strictly convex, equality holds if and only if L1, K1, . . . , Kr are all dilations of each other.
Obviously, Lutwak’s dual Aleksandrov–Fenchel inequality is a special case of (9). If K1,= ∈ Sn

and 1 ≤ r ≤ n, then

Ṽ(K1, · · · , Kn) ≤
r

∏
i=1

Ṽ(Ki . . . , Ki, Kr+1, . . . , Kn)
1/r, (10)

with equality if and only if K1, . . . , Kr are all dilations of each other. When φ(t) = t−p, p ≥ 1, the dual
Orlicz–Aleksandrov–Fenchel inequality (9) becomes the following Lp-dual Aleksandrov–Fenchel
inequality.

The Lp-dual Aleksandrov–Fenchel inequality If L1, K1,= ∈ Sn, p ≥ 1 and 1 ≤ r ≤ n, then

Ṽ−p(L1, K1,=) ≥ Ṽ(L1,=)p+1 ·
r

∏
i=1

Ṽ(Ki . . . , Ki, Kr+1, . . . , Kn)
−p/r. (11)

If φ is strictly convex, equality holds if and only if L1, K1, . . . , Kr are all dilations of each other.
The following dual Orlicz–Minkowski inequality (see [57]) is a special case of the dual

Orlicz–Aleksandrov–Fenchel inequality (9). If K, L ∈ Sn and φ ∈ C, then

Ṽφ(K, L) ≥ V(K) · φ
((

V(L)
V(K)

)1/n
)

. (12)
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If φ is strictly convex, equality holds if and only if K and L are dilates. In Section 5, we show also the
Orlicz–Aleksandrov–Fenchel inequality (9) in special case yields also the following result. If K, L ∈ Sn,
0 ≤ i < n and φ ∈ C, then

W̃φ,i(K, L) ≥ W̃i(K)φ

( W̃i(L)
W̃i(K)

)1/(n−i)
 . (13)

If φ is strictly convex, equality holds if and only if K and L are dilates. Here, W̃i(K) is the usually dual
quermassintegral of K, and W̃φ,i(K, L) is the Orlicz dual mixed quermassintegral of K and L, defined by
(see Section 4)

W̃φ,i(K, L) =
1
n

∫
Sn−1

φ

(
ρ(L, u)
ρ(K, u)

)
ρ(K, u)n−idS(u). (14)

In Section 6, we establish the following dual Orlicz Brunn–Minkowski type inequality.
If L1, K1,= ∈ Sn and φ ∈ C, then

φ(1) ≥ φ

(
Ṽ(K1,=)

Ṽ(K1+̂φL1,=)

)
+ φ

(
Ṽ(L1,=)

Ṽ(K1+̂φL1,=)

)
. (15)

If φ is strictly convex, equality holds if and only if L1, K1,= are all dilations of each other. A special
case of (15) is the following inequality.

φ(1) ≥ φ

(V(K1) · · ·V(Kn)

Ṽ(K1+̂φL1,=)n

)1/n
+ φ

(V(L1)V(K2) · · ·V(Kn)

Ṽ(K1+̂φL1,=)n

)1/n
 . (16)

If φ is strictly convex, equality holds if and only if L1, K1, . . . , Kn are all dilations of each other.
Putting K1 = K, L1 = L and K2 = · · · = Kn = K1+̂φL1 in (16), it follows the Orlicz
dual Brunn–Minkowski inequality established in [57]. In Section 6, we show also the dual
Orlicz–Brunn–Minkowski inequality (16) in a special case yields the following result. If K, L ∈ Sn,
φ ∈ C and 0 ≤ i < n− 1, then

φ(1) ≥ φ

( W̃i(K)
W̃i(K+̂φL)

)1/(n−i)
+ φ

( W̃i(L)
W̃i(K+̂φL)

)1/(n−i)
 . (17)

If φ is strictly convex, equality holds if and only if K and L are dilates.

2. Preliminaries

The setting for this paper is n-dimensional Euclidean space Rn. A body in Rn is a compact set
equal to the closure of its interior. For a compact set K ⊂ Rn, we write V(K) for the (n-dimensional)
Lebesgue measure of K and call this the volume of K. The unit ball in Rn and its surface are denoted
by B and Sn−1, respectively. Let Kn denote the class of nonempty compact convex subsets containing
the origin in their interiors in Rn. Associated with a compact subset K of Rn, which is star-shaped with
respect to the origin and contains the origin, its radial function is ρ(K, ·) : Sn−1 → [0, ∞), defined by

ρ(K, u) = max{λ ≥ 0 : λu ∈ K}.

Two star bodies K and L are dilates if ρ(K, u)/ρ(L, u) is independent of u ∈ Sn−1. If λ > 0, then

ρ(λK, u) = λρ(K, u).
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From the definition of the radial function, it follows immediately that for A ∈ GL(n) the radial
function of the image AK = {Ay : y ∈ K} of K is given by (see e.g., [36])

ρ(AK, u) = ρ(K, A−1u),

for all u ∈ Sn−1. Namely, the radial function is homogeneous of degree −1. Let δ̃ denote the radial
Hausdorff metric, as follows, if K, L ∈ Sn, then (see e.g., [58])

δ̃(K, L) = |ρ(K, u)− ρ(L, u)|∞.

2.1. Dual Mixed Volumes

The polar coordinate formula for volume of a compact set K is

V(K) =
1
n

∫
Sn−1

ρ(K, u)ndS(u). (18)

The first dual mixed volume, Ṽ1(K, L), defined by

Ṽ1(K, L) =
1
n

lim
ε→0+

V(K+̃ε · L)−V(K)
ε

,

where K, L ∈ Sn. The integral representation for first dual mixed volume is proved: For K, L ∈ Sn,

Ṽ1(K, L) =
1
n

∫
Sn−1

ρ(K, u)n−1ρ(L, u)dS(u). (19)

The Minkowski inequality for first dual mixed volume is the following: If K, L ∈ Sn, then

Ṽ1(K, L)n ≤ V(K)n−1V(L),

with equality if and only if K and L are dilates. (see [45]) If K1, . . . , Kn ∈ Sn, the dual mixed volume
Ṽ(K1, . . . , Kn) is defined by (see [43])

Ṽ(K1, . . . , Kn) =
1
n

∫
Sn−1

ρ(K1, u) · · · ρ(Kn, u)dS(u). (20)

If K1 = · · · = Kn−i = K, Kn−i+1 = · · · = Kn = L, the dual mixed volume Ṽ(K1, . . . , Kn) is written
as Ṽi(K, L). If L = B, the dual mixed volume Ṽi(K, L) = Ṽi(K, B) is written as W̃i(K) and called dual
quermassintegral of K. For K ∈ Sn and 0 ≤ i < n,

W̃i(K) =
1
n

∫
Sn−1

ρ(K, u)n−idS(u). (21)

If K1 = · · · = Kn−i−1 = K, Kn−i = · · · = Kn−1 = B and Kn = L, the dual mixed volume
Ṽ(K, . . . , K︸ ︷︷ ︸

n−i−1

, B, . . . , B︸ ︷︷ ︸
i

, L) is written as W̃i(K, L) and called dual mixed quermassintegral of K and L.

For K, L ∈ Sn and 0 ≤ i < n, it is easy that ([33])

W̃i(K, L) = lim
ε→0+

W̃i(K+̃ε · L)− W̃i(K)
ε

=
1
n

∫
Sn−1

ρ(K, u)n−i−1ρ(L, u)dS(u). (22)

The fundamental inequality for dual mixed quermassintegral stated that: If K, L ∈ Sn and
0 ≤ i < n, then

W̃i(K, L)n−i ≤ W̃i(K)n−1−iW̃i(L), (23)
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with equality if and only if K and L are dilates. The Brunn–Minkowski inequality for dual
quermassintegral is the following: If K, L ∈ Sn and 0 ≤ i < n, then

W̃i(K+̃L)1/(n−i) ≤ W̃i(K)1/(n−i) + W̃i(L)1/(n−i), (24)

with equality if and only if K and L are dilates.

2.2. Lp-dual Mixed Volume

The dual mixed volume Ṽ−1(K, L) of star bodies K and L is defined by ([9])

Ṽ−1(K, L) = lim
ε→0+

V(K)−V(K+̂ε · L)
ε

, (25)

where +̂ is the harmonic addition. The following is a integral representation for the dual mixed volume
Ṽ−1(K, L):

Ṽ−1(K, L) =
1
n

∫
Sn−1

ρ(K, u)n+1ρ(L, u)−1dS(u). (26)

The dual Minkowski inequality for the dual mixed volume states that

Ṽ−1(K, L)n ≥ V(K)n+1V(L)−1, (27)

with equality if and only if K and L are dilates. (see ([42]))
The dual Brunn–Minkowski inequality for the harmonic addition states that

V(K+̂L)−1/n ≥ V(K)−1/n + V(L)−1/n, (28)

with equality if and only if K and L are dilates (This inequality is due to Firey [1]).
The Lp-dual mixed volume Ṽ−p(K, L) of K and L is defined by ([9])

Ṽ−p(K, L) = − p
n

lim
ε→0+

V(K+̂pε · L)−V(K)
ε

, (29)

where K, L ∈ Sn and p ≥ 1.
The following is an integral representation for the Lp-dual mixed volume: For K, L ∈ Sn

and p ≥ 1,

Ṽ−p(K, L) =
1
n

∫
Sn−1

ρ(K, u)n+pρ(L, u)−pdS(u). (30)

Lp-dual Minkowski and Brunn-Minkowski inequalities were established by Lutwak [9]: If K, L ∈ Sn

and p ≥ 1, then
Ṽ−p(K, L)n ≥ V(K)n+pV(L)−p, (31)

with equality if and only if K and L are dilates, and

V(K+̂pL)−p/n ≥ V(K)−p/n + V(L)−p/n, (32)

with equality if and only if K and L are dilates.

2.3. Mixed p-harmonic Quermassintegral

From (1), it is easy to see that if K, L ∈ Sn, 0 ≤ i < n and p ≥ 1, then

− p
n− i

lim
ε→0+

W̃i(K+̂pε · L)− W̃i(L)
ε

=
1
n

∫
Sn−1

ρ(K.u)n−i+pρ(L.u)−pdS(u). (33)
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Let K, L ∈ Sn, 0 ≤ i < n and p ≥ 1, the mixed p-harmonic quermassintegral of star K and L,
denoted by W̃−p,i(K, L), defined by (see [59])

W̃−p,i(K, L) =
1
n

∫
Sn−1

ρ(K, u)n−i+pρ(L, u)−pdS(u). (34)

Obviously, when K = L, the p-harmonic quermassintegral W̃−p,i(K, L) becomes the dual
quermassintegral W̃i(K). The Minkowski and Brunn–Minkowski inequalities for the mixed p-harmonic
quermassintegral are following (see [59]): If K, L ∈ Sn, 0 ≤ i < n, and p ≥ 1, then

W̃−p,i(K, L)n−i ≥ W̃i(K)n−i+pW̃i(L)−p, (35)

with equality if and only if K and L are dilates. If K, L ∈ Sn, 0 ≤ i < n, and p ≥ 1, then

W̃i(K+̂pL)−p/(n−i) ≥ W̃i(K)−p/(n−i) + W̃i(L)−p/(n−i), (36)

with equality if and only if K and L are dilates.
Inequality (36) is a Brunn–Minkowski type inequality for the p-harmonic addition. For different

variants of dual Brunn–Minkowski inequalities, we refer to [16,46,60–65] and the references therein.

3. Orlicz Harmonic Linear Combination

Throughout the paper, the standard orthonormal basis for Rn will be {e1, . . . , en}. Let Cm, m ∈ N,
denote the set of convex function φ : [0, ∞)m → (0, ∞) that are strictly decreasing in each variable
and satisfy φ(0) = ∞. When m = 1, we shall write C instead of C1. Orlicz harmonic radial addition is
defined below.

Definition 1. Let m ≥ 2, φ ∈ Cm, Kj ∈ Sn, and j = 1, . . . , m, define the Orlicz harmonic addition of
K1, . . . , Km, denoted by +̂φ(K1, . . . , Km), defined by

ρ(+̂φ(K1, . . . , Km), x) = sup
{

λ > 0 : φ

(
ρ(K1, x)

λ
, . . . ,

ρ(Km, x)
λ

)
≤ φ(1)

}
, (37)

for x ∈ Rn.

Equivalently, the Orlicz multiple harmonic addition +̂φ(K1, . . . , Km) can be defined implicitly by

φ

(
ρ(K1, x)

ρ(+̂φ(K1, . . . , Km), x)
, . . . ,

ρ(Km, x)
ρ(+̂φ(K1, . . . , Km), x)

)
= φ(1), (38)

for all x ∈ Rn. An important special case is obtained when

φ(x1, . . . , xm) =
m

∑
j=1

φ(xj),

for φ(t) ∈ Cm. We then write +̂φ(K1, . . . , Km) = K1+̂φ · · · +̂φKm. This means that K1+̂φ · · · +̂φKm is
defined either by

ρ(K1+̂φ · · · +̂φKm, x) = sup

{
λ > 0 :

m

∑
j=1

φ

(
ρ(Kj, x)

λ

)
≤ φ(1)

}
, (39)
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for all x ∈ Rn, or by the corresponding special case of (37). From (39), it follows easy that

m

∑
j=1

φ

(
ρ(Kj, x)

λ

)
= φ(1),

if and only if
λ = ρ(K1+̂φ · · · +̂φKm, x). (40)

Next, define a new Orlicz dual harmonic linear combination on the case m = 2.

Definition 2. The Orlicz dual harmonic linear combination is denoted +̂φ(K, L, α, β), defined by

αφ

(
ρ(K, x)

ρ(+̂φ(K, L, α, β), x)

)
+ βφ

(
ρ(L, x)

ρ(+̂φ(K, L, α, β), x)

)
= φ(1), (41)

for K, L ∈ Sn, x ∈ Rn, and α, β ≥ 0 (not both zero).

When φ(t) = t−p and p ≥ 1, then Orlicz harmonic linear combination +̂φ(K, L, α, β) changes
to the Lp-harmonic linear combination α · K+̂pβ · L. We shall write K+̂φε · L instead of +̂φ(K, L, 1, ε),
for ε ≥ 0 and assume throughout that this is defined by (41), where α = 1, β = ε, and φ ∈ C. It is easy
that +̂φ(K, L, 1, 1) = K+̂φL.

4. Orlicz Multiple Dual Mixed Volumes

Let us introduce the Orlicz multiple dual mixed volumes.

Definition 3. For L1, K1,= ∈ Sn and φ ∈ C, the Orlicz multiple dual mixed volume of L1, K1,=, denoted by
Ṽφ(L1, K1,=), defined by

Ṽφ(L1, K1,=) =:
1
n

∫
Sn−1

φ

(
ρ(K1, u)
ρ(L1, u)

)
ρ(L1, u) · ρ=dS(u).

Lemma 1 ([57]). If K1, L1 ∈ Sn and φ ∈ C, then

L1+̂φε · K1 → L1 (42)

as ε→ 0+.

Lemma 2. If L1, K1,= ∈ Sn and φ ∈ C, then

d
dε

∣∣∣∣
ε=0+

Ṽ(L1+̂φε · K1,=) = 1
nφ′r(1)

∫
Sn−1

φ

(
ρ(K1, u)
ρ(L1, u)

)
ρ(L1, u)ρ=dS(u). (43)

Proof. Suppose ε > 0, K1, L1 ∈ Sn, and u ∈ Sn−1, let

ρε = ρ(L1+̂φε · K1, u).
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From Lemma 1, and noting that φ is a continuous function, we obtain

lim
ε→0+

(ρε − ρ(L1, u))ρ=
ε

= ρ= lim
ε→0+

ρε

ε
· ρε − ρ(L1, u)

ρε

= ρ= lim
ε→0+

ρε · φ
(

ρ(K1, u)
ρε

)

×
1− φ−1

(
φ(1)− εφ

(
ρ(K1, u)

ρε

))
φ(1)−

(
φ(1)− εφ

(
ρ(K1, u)

ρε

)) .

Noting that y→ 1+ as ε→ 0+, we have

lim
ε→0+

(ρε − ρ(L1, u))ρ=
ε

= ρ(L1, u)ρ=φ

(
ρ(K1, u)
ρ(L1, u)

)
lim

y→1+

1− y
φ(1)− φ(y)

=
1

φ′r(1)
φ

(
ρ(K1, u)
ρ(L1, u)

)
ρ(L1, u)ρ=, (44)

where

y = φ−1
(

φ(1)− εφ

(
ρ(K1, u)

ρε

))
.

The Equation (43) follows immediately from (20) with (44).

Second proof Since

dρε

dε
=

ρ(L1, u)dφ−1(y)
dy φ

(
ρ(K1, u)

ρε

)
(

φ−1
(

φ(1)− εφ

(
ρ(K1, u)

ρε

)))2

+ ε · ρ(K1, u)ρ(L1, u)
ρ2

ε

dφ−1(y)
dy

dφ(z)
dz

, (45)

where

y = φ(1)− εφ

(
ρ(K1, u)

ρε

)
,

and

z =
ρ(K1, u)

ρε
.

Hence,

lim
ε→0+

(ρε − ρ(L1, u))ρ=
ε

= ρ= lim
ε→0+

ρε − ρ(L1, u)
ε

= ρ= lim
ε→0+

dρε

dε
. (46)

On the other hand,

lim
ε→0+

dφ−1(y)
dy

= lim
4y→0+

φ−1(φ(1) +4y)− 1
4y

= lim
ω→1+

ω− 1
φ(ω)− φ(1)

=
1

φ
′
r(1)

, (47)

where ω = φ−1(φ(1) +4y).
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From (45), (46), (47), and Lemma 1, we obtain

lim
ε→0+

(ρε − ρ(L1, u))ρ=
ε

=
1

φ′r(1)
· φ
(

ρ(K1, u)
ρ(L1, u)

)
ρ(L1, u)ρ=. (48)

From (20) and (48), the Equation (43) follows easy. �
For any L1, K1,= ∈ Sn, and φ ∈ C, the integral on the right-hand side of (43) denoting by

Ṽφ(L1, K1,=), and hence this new Orlicz multiple dual mixed volume Ṽφ(L1, K1,=) has been born.

Lemma 3. If L1, K1,= ∈ Sn and φ ∈ C, then

Ṽφ(L1, K1,=) = φ′r(1) ·
d
dε

∣∣∣∣
ε=0+

Ṽ(L1+̂φε · K1,=). (49)

Proof. This yields immediately from the Definition 3 and the variational formula of volume (43).

Lemma 4. Let K, L ∈ Sn and φ ∈ C, then

lim
ε→0+

Ṽ1(K, K+̂φε · L)−V(K)
ε

=
1
n

lim
ε→0+

V(K+̂φε · L)−V(K)
ε

. (50)

Proof. Suppose ε > 0, K, L ∈ Sn, and u ∈ Sn−1, let

ρ̄ε = ρ(K+̂φε · L, u).

From (3), (18), (19), and (45), we obtain

lim
ε→0+

Ṽ1(K, K+̂φε · L)−V(K)
ε

=
1
n

∫
Sn−1

lim
ε→0+

ρ(K+̂φε · L), u)ρ(K, u)n−1 − ρ(L, u)n

ε
dS(u)

=
1
n

∫
Sn−1

ρ(K, u)n−1 lim
ε→0+

dρ̄ε

dε
dS(u)

=
1

nφ′r(1)

∫
Sn−1

φ

(
ρ(L, u)
ρ(K, u)

)
ρ(K, u)ndS(u)

=
1
n

lim
ε→0+

V(K+̂φε · L)−V(K)
ε

.

Lemma 5. Let L1, K1,= ∈ Sn, and φ ∈ C, then

Ṽφ(L1, K1,=) = Ṽφ(K, L), (51)

if K2 = · · · = Kn = K, L1 = K and K1 = L.

Proof. On the one hand, putting K2 = · · · = Kn = K, L1 = K and K1 = L in (49), and noting Lemma 4
and (3), it follows that

Ṽφ(L1, K1,=) = φ′r(1)
d
dε

∣∣∣∣
ε=0+

Ṽ(L1+̂φε · K1,=)

= φ′r(1) lim
ε→0+

Ṽ1(K, K+̂φε · L)−V(K)
ε

=
φ′r(1)

n
lim

ε→0+

V(K+̂φε · L)−V(K)
ε
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= Ṽφ(K, L). (52)

On the other hand, let K2 = · · · = Kn = K, L1 = K, and K1 = L, from Definition 3 and (3), then

Ṽφ(L1, K1, λ=) =
1
n

∫
Sn−1

φ

(
ρ(K1, u)
ρ(L1, u)

)
ρ(L1, u)ρ=dS(u)

=
1
n

∫
Sn−1

φ

(
ρ(L, u)
ρ(K, u)

)
ρ(K, u)ndS(u)

= Ṽφ(K, L). (53)

Combining (52) and (53), this shows that

Ṽφ(L1, K1,=) = Ṽφ(K, L),

if K2 = · · · = Kn = K, L1 = K and K1 = L.

Lemma 6 ([57]). If Ki, Li ∈ Sn, and Ki → K, Li → L as i→ ∞, then

a · Ki+̂φb · Li → a · K+̂φb · L, as i→ ∞, (54)

for all a and b.

Lemma 7. If L1, K1,=, K, L ∈ Sn, λ1, · · · , λn ≥ 0, and φ ∈ C, then
(1) Ṽφ(L1, K1,=) ≥ 0.
(2) Ṽφ(K1, K1,=) = φ(1)Ṽ(K1,=).
(3) Ṽφ(K, K, · · · , K) = φ(1)V(K).
(4)

Ṽφ(L1, K1, λi=) = λ2 · · · λnṼφ(L1, K1,=),

where λi= denotes λ2K2, · · · , λnKn.
(5)

Ṽφ(L1, K1, λ1K+̂λ2L, K3 · · · , Kn)

= λ1Vφ(L1, K1, K, K3, · · · , Kn) + λ2Vφ(L1, K1, L, K3, · · · , Kn).

This shows the Orlicz multiple mixed volume Vφ(L1, K1,=) is linear in its back (n− 1) variables.
(6) Ṽφ(L1, K1,=) is continuous.

Proof. From Definition 3, it immediately gives (1), (2), (3), and (4).
From Definition 3, combining the following fact

ρ(λ1K+̃λ2L, ·) = λ1ρ(K, ·) + λ2ρ(L, ·),

it yields (5) directly.
Suppose Li1 → L1, Kij → Kj as i→ ∞ where j = 1, . . . , n, combining Definition 3 and Lemma 6

with the following facts
Ṽ(Li1+̂φε · Ki1,=i)→ Ṽ(L1+̂φε · K1,=)

and
Ṽ(Li1,=i)→ Ṽ(L1,=)

as i→ ∞, where =i denotes Ki2, · · · , Kin. It yields (6) directly.



Mathematics 2020, 8, 2005 13 of 23

Lemma 8. ([57]) Suppose K, L ∈ Sn and ε > 0. If φ ∈ C, then for A ∈ GL(n)

A(K+̂φε · L) = AK+̂φε · AL. (55)

We easily find that Orlicz multiple dual mixed volume Ṽφ(L1, K1,=) is invariant under
simultaneous unimodular centro-affine transformation.

Lemma 9. If L1, K1,= ∈ Sn and φ ∈ C, then for A ∈ SL(n),

Ṽφ(AL1, AK1, A=) = Ṽφ(L1, K1,=), (56)

where A= denotes AK2, . . . , AKn.

Proof. From (49) and Lemma 8, we have, for A ∈ SL(n),

Ṽφ(AL1, AK1, A=) = φ′r(1) lim
ε→0+

Ṽ(AL1+̂φε · AK1, A=)− Ṽ(AL1, A=)
ε

= φ′r(1) lim
ε→0+

Ṽ(A(L1+̂φε · K1), A=)− Ṽ(L1,=)
ε

= φ′r(1) lim
ε→0+

Ṽ(L1+̂φε · K1,=)− Ṽ(L1,=)
ε

= Ṽφ(L1, K1,=).

This completes the proof.

For the convenience of writing, when K1 = · · · = Ki = K, Ki+1 = · · · = Kn = L, Ln = M,
the Orlicz multiple dual mixed volume Ṽφ(K, · · · , K, L, · · · , L, M), with i copies of K, n− i copies of L,
and 1 copy of M, will be denoted by Ṽφ(K [i], L [n− i], M).

Lemma 10. If K, L ∈ Sn and φ ∈ C, and 0 ≤ i < n then

Ṽφ(K, L, K [n− i− 1], B [i]) =
1
n

∫
Sn−1

φ

(
ρ(L, u)
ρ(K, u)

)
ρ(K, u)n−idS(u). (57)

Proof. On the one hand, putting L1 = K, K1 = L,K2 = · · · = Kn−i = K, and Kn−i+1 = · · · = Kn = B
in (49), from (21), (22), (45), and (47), we obtain for ϕ1, ϕ2 ∈ Φ

Ṽφ(K, L, K [n− i− 1], B [i]) = φ
′
r(1) lim

ε→0+

W̃i(K, K+̂φε · L)− W̃i(K)
ε

=
1
n

φ
′
r(1)

∫
Sn−1

lim
ε→0+

ρ(K+̂φε · L)ρ(K, u)n−i−1 − ρ(K, u)n−i

ε
dS(u)

=
1
n

φ
′
l(1)

∫
Sn−1

ρ(K, u)n−i−1 lim
ε→0+

dρε

ε
dS(u)

=
1
n

∫
Sn−1

φ

(
ρ(L, u)
ρ(K, u)

)
ρ(K, u)n−idS(u). (58)

On the other hand, putting L1 = K, K1 = L,K2 = · · · = Kn−i = K, and Kn−i+1 = · · · = Kn = B in
Definition 3, we have

Ṽφ(K, L, K [n− i− 1], B [i]) =
1
n

∫
Sn−1

φ

(
ρ(L, u)
ρ(K, u)

)
ρ(K, u)n−idS(u). (59)

Combining (58) and (59), (57) yields easy.
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Here, we denote the Orlicz multiple dual mixed volume Ṽφ(K, L, K [n− i− 1], B [i]) by W̃φ,i(K, L),
and call W̃φ,i(K, L) as Orlicz dual quermassintegral of star bodies K and L. When i = 0, Orlicz dual
quermassintegral W̃φ,i(K, L) becomes Orlicz dual mixed volume Ṽφ(K, L).

Remark 1. When φ(t) = t−p, p = 1, and L1 = K1, from (49) and noting that φ′r(1) = −1, hence

Ṽ(K1,=) = lim
ε→0+

Ṽ(K1,=)− Ṽ(K1+̂ε · K1,=)
ε

. (60)

This is very interesting for the usually dual mixed volume of this form.

Remark 2. When φ(t) = t−p, p ≥ 1, write the Orlicz multiple dual mixed volume Ṽφ(L1, K1,=) as
Ṽ−p(L1, K1,=) and call it the Lp-multiple dual mixed volume, from Definition 3, it easily yields

Ṽ−p(L1, K1,=) = 1
n

∫
Sn−1

ρ(K1, u)−pρ(L1, u)1+pρ=dS(u). (61)

When ϕ(t) = t−p and p ≥ 1, from (49), we get the following expression of Lp-multiple dual
mixed volume.

1
−p

Ṽ−p(L1, K1,=) = lim
ε→0+

Ṽ(L1+̂pε · K1,=)− Ṽ(L1,=)
ε

.

When K1 = L and L1 = K2 = · · · = Kn = K, the Orlicz multiple dual mixed volume Ṽφ(L1, K1,=)
becomes the usual dual Orlicz mixed volume Ṽφ(K, L). Putting L1 = K1 in (61), the Lp multiple dual
mixed volume Ṽ−p(L1, K1,=) becomes the usual dual mixed volume Ṽ(K1,=). Putting K1 = L and
L1 = K2 = · · · = Kn = K in (61), Ṽ−p(L1, K1,=) becomes the Lp dual mixed volume Ṽ−p(K, L).
Putting K1 = L, L1 = K2 = · · · = Kn−i = K, and Kn−i+1 = · · · = Kn = B in (61), Ṽ−p(L1, K1,=)
becomes the harmonic mixed p-quermassintegral W̃−p,i(K, L),

Lemma 11. (Jensen’s inequality) Let µ be a probability measure on a space X and g : X → I ⊂ R is a
µ-integrable function, where I is a possibly infinite interval. If ψ : I → R is a convex function, then

∫
X

ψ(g(x))dµ(x) ≥ ψ

(∫
X

g(x)dµ(x)
)

. (62)

If ψ is strictly convex, equality holds if and only if g(x) is constant for µ-almost all x ∈ X (see [63]).

5. The Dual Orlicz–Aleksandrov–Fenchel Inequality

Theorem 1. If L1, K1, . . . , Kn ∈ Sn and φ ∈ C, then

Ṽφ(L1, K1, . . . , Kn) ≥ Ṽ(L1, K2 . . . , Kn)φ

(
Ṽ(K1, . . . , Kn)

Ṽ(L1, K2 . . . , Kn)

)
. (63)

If φ is strictly convex, equality holds if and only if K1 and L1 are dilates.

Proof. For K1,= ∈ Sn and any u ∈ Sn−1, it is not difficult to see that ρ(K1, u)ρ=
nṼ(K1,=)

S(u) is a probability

measure on Sn−1.
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From Definition 3 and Jensen’s inequality (43) and (20), it follows that

Ṽφ(L1, K1,=)
Ṽ(L1,=)

=
1

nṼ(L1,=)

∫
Sn−1

φ

(
ρ(K1, u)
ρ(L1, u)

)
ρ(L1, u)ρ=dS(u)

≥ φ

(
1

nṼ(L1,=)

∫
Sn−1

ρ(K1, u)ρ=dS(u)

)

= φ

(
Ṽ(K1,=)
Ṽ(L1,=)

)
. (64)

If φ is strictly convex, from the equality condition of Jensen’s inequality, it follows that the equality
in (64) holds if and only if K1 and L1 are dilates.

Theorem 2. (The dual Orlicz–Aleksandrov–Fenchel inequality) If L1, K1, . . . , Kn ∈ Sn, 1 ≤ r ≤ n,
and φ ∈ C, then

Ṽφ(L1, K1, . . . , Kn) ≥ Ṽ(L1, K2 . . . , Kn) · φ
(

∏r
i=1 Ṽ(Ki . . . , Ki, Kr+1, . . . , Kn)1/r

Ṽ(L1, K2 . . . , Kn)

)
. (65)

If φ is strictly convex, equality holds if and only if L1, K1, . . . , Kr are all dilations of each other.

Proof. This follows immediately from Theorem 1 with the dual Aleksandrov–Fenchel inequality.

Obviously, putting L1 = K1 in (65), (65) becomes the Lutwak’s dual Aleksandrov–Fenchel
inequality (11) stated in the introduction.

Corollary 1. If L1, K1,= ∈ Sn and φ ∈ C, then

Ṽφ(L1, K1,=) ≥ Ṽ(L1,=)φ

(V(K1) · · ·V(Kn)

Ṽ(L1,=)n

)1/n
 . (66)

If φ is strictly convex, equality holds if and only if L1, K1, . . . , Kn are all dilations of each other.

Proof. This follows immediately from Theorem 2 with r = n.

Corollary 2. If K, L ∈ Sn, 0 ≤ i < n and φ ∈ C, then

W̃φ,i(K, L) ≥ W̃i(K)φ

( W̃i(L)
W̃i(K)

)1/(n−i)
 . (67)

If φ is strictly convex, equality holds if and only if K and L are dilates.

Proof. This follows immediately from Theorem 2 with r = n − i, L1 = K, K1 = L,
K2 = · · · = Kn−i = K, and Kn−i+1 = · · · = Kn = B.

The following inequality follows immediately from (67) with φ(t) = t−p and p ≥ 1. If K, L ∈ Sn,
0 ≤ i < n, and p ≥ 1, then

W̃−p,i(K, L)n−i ≥ W̃i(K)n−i+pW̃i(L)−p, (68)



Mathematics 2020, 8, 2005 16 of 23

with equality if and only if K and L are dilates. Taking i = 0 in (68), this yields Lutwak’s Lp-dual
Minkowski inequality: If K, L ∈ Sn and p ≥ 1, then

Ṽ−p(K, L)n ≥ V(K)n+pV(L)−p, (69)

with equality if and only if K and L are dilates.

Theorem 3. (Orlicz dual isoperimetric inequality) If K ∈ Sn and φ ∈ C, and 0 ≤ i < n then

Ṽφ(K, B, K [n− i− 1], B [i])

W̃i(K)
≥ φ

( V(B)
W̃i(K)

)1/(n−i)
 . (70)

If φ is strictly convex, equality holds if and only if K is a ball.

Proof. This follows immediately from (65) with r = n − i, L1 = K, K1 = B, K2 · · · = Kn−i = K,
and Kn−i+1 = · · · = Kn = B.

When φ(t) = t−p, p ≥ 1, the Orlicz isoperimetric inequality (70) becomes the following Lp-dual
isoperimetric inequality. If K is a star body, p ≥ 1 and 0 ≤ i < n, then(

nṼ−p(K, B)
ωn

)n−i

≥
(

W̃i(K)
κn

)n−i+p

, (71)

with equality if and only if K is a ball, and where κn denotes volume of the unit ball B, and its surface
area by ωn.

Putting p = 1 and i = 0 in (71), (71) becomes the following dual isoperimetric inequality. If K is a
star body, then (

nṼ−1(K, B)
ωn

)n

≥
(

V(K)
κn

)n+1

,

with equality if and only if K is a ball.

Theorem 4. If L1, K1,= ∈ M ⊂ Sn, and φ ∈ C be strictly convex, and if either

Ṽφ(Q, K1,=) = Ṽφ(Q, L1,=), f or all Q ∈ M, (72)

or
Ṽφ(K1, Q,=)

Ṽ(K1,=)
=

Ṽφ(L1, Q,=)
Ṽ(L1,=)

, f or all Q ∈ M, (73)

then K1 = L1.

Proof. Suppose (72) holds. Taking K1 for Q, then from Definition 3 and Theorem 1, we obtain

φ(1)Ṽ(K1,=) = Ṽφ(K1, L1,=) ≥ Ṽ(K1,=)φ
(

Ṽ(L1,=)
Ṽ(K1,=)

)
,

with equality if and only if K1 and L1 are dilates. Hence,

φ(1) ≥ φ

(
Ṽ(L1,=)
Ṽ(K1,=)

)
,
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with equality if and only if K1 and L1 are dilates. Since ϕ is a decreasing function on (0, ∞),
it follows that

Ṽ(K1,=) ≤ Ṽ(L1,=),

with equality if and only if K1 and L1 are dilates. On the other hand, if taking L1 for Q, we similarly get
Ṽ(K1,=) ≥ Ṽ(L1,=), with equality if and only if K1 and L1 are dilates. Hence, Ṽ(K1,=) = Ṽ(L1,=),
and K1 and L1 are dilates, it follows that K1 and L1 must be equal.

Suppose (73) holds. Taking K1 for Q, then from Definition 3 and Theorem 1, we obtain

φ(1) =
Ṽφ(L1, K1,=)

Ṽ(L1,=)
≥ φ

(
Ṽ(K1,=)
Ṽ(L1,=)

)
,

with equality if and only if K1 and L1 are dilates. Since ϕ is an increasing function on (0, ∞),
this follows that

Ṽ(L1,=) ≤ Ṽ(K1,=),

with equality if and only if K1 and L1 are dilates. On the other hand, if taking L1 for Q, we similar get
Ṽ(L1,=) ≥ Ṽ(K1,=), with equality if and only if K1 and L1 are dilates. Hence, Ṽ(L1,=) = Ṽ(K1,=),
and K1 and L1 are dilates, it follows that K1 and L1 must be equal.

Corollary 3. Let K, L ∈ M ⊂ Sn, 0 ≤ i < n, and φ ∈ C be strictly convex, and if either

W̃φ,i(Q, K) = W̃φ,i(Q, L), for all Q ∈ M,

or
W̃φ,i(K, Q)

W̃i(K)
=

W̃φ,i(L, Q)

W̃i(L)
, for all Q ∈ M,

then K = L.

Proof. This yields immediately from Theorem 4 and Lemma 10.

Remark 3. When φ(t) = t−p and p = 1, the dual Orlicz Aleksandrov–Fenchel inequality (65) becomes the
following inequality. If L1, K1,= ∈ Sn and 1 ≤ r ≤ n, then

Ṽ−1(L1, K1,=) ≥ Ṽ(L1,=)2

r

∏
i=1

Ṽ(Ki . . . , Ki, Kr+1, . . . , Kn)
1/r

, (74)

with equality if and only if L1, K1, . . . , Kr are all dilations of each other.

Putting L1 = K1 in (74) and noting that Ṽ−1(K1, K1,=) = Ṽ(K1,=), (74) becomes the dual
Aleksandrov–Fenchel inequality (11). Putting r = n in (74), (74) becomes the following inequality.

Ṽ−1(L1, K1,=)n ≥ Ṽ(L1,=)2n(V(K1) · · ·V(Kn))
−1, (75)

with equality if and only if L1, K1,= are all dilations of each other. Putting L1 = K, K1 = L and
K2 = · · · = Kn = K in (75), (75) becomes the well-known Minkowski inequality. If K, L ∈ Sn, then

Ṽ−1(K, L)n ≥ V(K)n+1V(L)−1, (76)
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with equality if and only if K and L are dilates. Obviously, inequality (74) in a special case yields also
the following result. If K1,= ∈ Sn and 0 ≤ i < n, then

W̃−1,i(K, L)n−i ≥ W̃i(K)n−i+1Wi(L)−1, (77)

with equality if and only if K and L are dilates. When i = 0, (77) becomes (76). On the other hand,
putting L1 = K1 in (75), (75) becomes the well-known inequality. If K1,= ∈ Sn, then

Ṽ(K1, . . . , Kn)
n ≤ V(K1) · · ·V(Kn),

with equality if and only if K1,= are all dilations of each other.

6. The Dual Orlicz–Brunn–Minkowski Inequality

Lemma 12. If L1, K1,= ∈ Sn and φ ∈ C, then

φ(1)Ṽ(K1+̂φL1,=) = Ṽφ(K1+̂φL1, K1,=) + Ṽφ(K1+̂φL1, L1,=). (78)

Proof. Suppose ε > 0, K1, L1 ∈ Sn, let

Q = K1+̂φε · L1.

From Definition 3, (20), and (40), we have

φ(1)Ṽ(Q,=) =
1
n

∫
Sn−1

(
φ

(
ρ(K1, u)
ρ(Q, u)

)
+ φ

(
ρ(L1, u)
ρ(Q, u)

))
ρ(Q, u)ρ=dS(u)

= Ṽφ(Q, K1,=) + Ṽφ(Q, L1,=). (79)

This completes the proof.

Lemma 13. ([53]) Let K, L ∈ Sn, ε > 0 and φ ∈ C.
(1) If K and L are dilates, then K and K+̂φε · L are dilates.
(2) If K and K+̂φε · L are dilates, then K and L are dilates.

Theorem 5. (The dual Orlicz–Brunn–Minkowski inequality) If L1, K1, . . . , Kn ∈ Sn and φ ∈ C, then for
ε > 0

φ(1) ≥ φ

(
Ṽ(K1, . . . , Kn)

Ṽ(K1+̂φε · L1, K2 . . . , Kn)

)
+ ε · φ

(
Ṽ(L1, K2 . . . , Kn)

Ṽ(K1+̂φε · L1, K2 . . . , Kn)

)
, (80)

If φ is strictly convex, equality holds if and only if K1 and L1 are dilates.

Proof. From Theorem 1 and Lemma 12, we have

φ(1)Ṽ(K1+̂φε · L1,=) = Ṽφ(K1+̂φε · L1, K1,=)
+ ε · Ṽφ(K1+̂φε · L1, L1,=)

≥ Ṽ(K1+̂φε · L1,=)
{

φ

(
Ṽ(K1,=)

Ṽ(K1+̂φε · L1,=)

)

+ φ

(
Ṽ(L1,=)

Ṽ(K1+̂φε · L1,=)

)}
.
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If φ is strictly convex, from the equality condition of Theorem 1, the equality in (80) holds if and
only if K1 and K1+̂φL1, and L1 and K1+̂φL1 are dilates. Further, from Lemma 13, it follows that if φ is
strictly convex, the equality in (80) holds if and only if K1 and L1 are dilates.

Theorem 6. (The dual Orlicz–Brunn–Minkowski type inequality) If L1, K1,= ∈ Sn, 0 ≤ i, j < n, 1 < r ≤ n,
and φ ∈ C, then

φ(1) ≥ φ

(
∏r

i=1 Ṽ(Ki, . . . , Ki, Kr+1, . . . , Kn)1/r

Ṽ(K1+̂φL1,=)

)
+ φ

(
M(r)∏r

j=2 ·Ṽ(Kj, . . . , Kj, Kr+1, . . . , Kn)1/r

Ṽ(K1+̂φL1,=)

)
, (81)

where M(r) = Ṽ(L1, . . . , L1, Kr+1, . . . , Kn)1/r. If φ is strictly convex, equality holds if and only if
L1, K1, . . . , Kr are all dilations of each other.

Proof. This follows immediately from Theorem 5 and the dual Aleksandrov–Fenchel inequality.

Corollary 4. (Lp-dual Brunn-Minkowski inequality) If L1, K1,= ∈ Sn, 0 ≤ i, j < n, 1 < r ≤ n,
and p ≥ 1, then

Ṽ(K1+̂pL1,=)−p ≥
r

∏
i=1

Ṽ(Ki, . . . , Ki, Kr+1, . . . , Kn)
−p
r

+
r

∏
j=1

M(r)−p · Ṽ(Kj, . . . , Kj, Kr+1, . . . , Kn)
−p
r , (82)

with equality if and only if L1, K1, . . . , Kr are all dilations of each other, and M(r) is as in Theorem 6.

Proof. This follows immediately from (81) with φ(t) = t−p and p ≥ 1.

Corollary 5. If K, L ∈ Sn, φ ∈ C and 0 ≤ i < n− 1, then

φ(1) ≥ φ

( W̃i(K)
W̃i(K+̂φL)

)1/(n−i)
+ φ

( W̃i(L)
W̃i(K+̂φL)

)1/(n−i)
 . (83)

If φ is strictly convex, equality holds if and only if K and L are dilates.

Proof. This follows immediately from Theorem 6 with r = n − i, K2 = · · · = Kn−i = K+̂φL,
Kn−i+1 = · · · = Kn = B.

The following inequality follows immediately from (83) with φ(t) = t−p and p ≥ 1. If K, L ∈ Sn,
0 ≤ i < n, and p ≥ 1, then

W̃i(K+̂pL)−p/(n−i) ≥ W̃i(K)−p/(n−i) + W̃i(L)−p/(n−i),

with equality if and only if K and L are dilates.

Corollary 6. If L1, K1,= ∈ Sn and φ ∈ C, then

φ(1) ≥ φ

(V(K1) · · ·V(Kn)

Ṽ(K1+̂φL1,=)n

)1/n
+ φ

(V(L1)V(K2) · · ·V(Kn)

Ṽ(K1+̂φL1,=)n

)1/n
 . (84)

If φ is strictly convex, equality holds if and only if L1, K1,= are all dilations of each other.
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Proof. This follows immediately from Theorem 6 with r = n.

Corollary 7. If L1, K1,= ∈ Sn and p ≥ 1, then

Ṽ(K1+̂pL1,=)−p ≥ (V(K1) · · ·V(Kn))
−p/n + (V(L1)V(K2) · · ·V(Kn))

−p/n, (85)

with equality if and only if L1, K1,= are all dilations of each other.

Proof. This follows immediately from (84) with φ(t) = t−p and p ≥ 1.

Putting K2 = · · · = Kn = K1+̂pL1 in (85), (85) becomes Lutwak’s Lp-dual Brunn–Minkowski
inequality

V(K+̂pL)−p/n ≥ V(K)−p/n + V(L)−p/n,

with equality if and only if K and L are dilates.

Corollary 8. If L1, K1,= ∈ Sn, 1 ≤ r ≤ n, and φ ∈ C, then

Ṽφ(L1, K1,=) ≥ Ṽ(L1,=)φ
(

∏r
i=1 Ṽ(Ki . . . , Ki, Kr+1, . . . , Kn)1/r

Ṽ(L1,=)

)
. (86)

If φ is strictly convex, equality holds if and only if L1, K1, . . . , Kr are all dilations of each other.

Proof. Let
Kε = L1+̂φε · K1.

From (49), dual Orlicz–Brunn–Minkowski inequality (80), and dual Aleksandrov–Fenchel
inequality, we obtain

1
φ′+(1)

· Ṽφ(L1, K1,=) =
d
dε

∣∣∣∣
ε=0+

Ṽ(Kε,=)

= lim
ε→0+

Ṽ(Kε,=)− Ṽ(L1,=)
ε

= lim
ε→0+

1− Ṽ(L1,=)
Ṽ(Kε,=)

φ(1)− φ

(
Ṽ(L1,=)
Ṽ(Kε,=)

) · φ(1)− φ

(
Ṽ(L1,=)
Ṽ(Kε,=)

)
ε

· Ṽ(Kε,=)

= lim
t→0+

1− t
φ(1)− (t)

· lim
ε→0+

φ(1)− φ

(
Ṽ(L1,=)
Ṽ(Kε,=)

)
ε

· lim
ε→0+

Ṽ(Kε,=)

≥ 1
φ′+(1)

· lim
ε→0+

φ

(
Ṽ(K1,=)
Ṽ(Kε,=)

)
· Ṽ(L1,=)

=
1

φ′+(1)
· φ
(

Ṽ(K1,=)
Ṽ(L1,=)

)
· Ṽ(L1,=)

≥ 1
φ′+(1)

· φ
(

∏r
i=1 Ṽ(Ki . . . , Ki, Kr+1, . . . , Kn)1/r

Ṽ(L1,=)

)
· Ṽ(L1,=). (87)

From (87), inequality (86) easily follows. From the equality conditions of the dual
Orlicz–Brunn–Minkowski inequality (80) and dual Aleksandrov–Fenchel inequality, it follows that if φ

is strictly convex, the equality in (87) holds if and only if L1, K1,= are all dilations of each other.
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This proof is complete.

From the proof of (87) and (80), it is not difficult to see that inequalities (63) and (80) are equivalent.
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