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Abstract: Background: The Beta distribution is useful for fitting variables that measure a probability
or a relative frequency. Methods: We propose a Sarmanov distribution with Beta marginals
specified as generalised linear models. We analyse its theoretical properties and its dependence
limits. Results: We use a real motor insurance sample of drivers and analyse the percentage of
kilometres driven above the posted speed limit and the percentage of kilometres driven at night,
together with some additional covariates. We fit a Beta model for the marginals of the bivariate
Sarmanov distribution. Conclusions: We find negative dependence in the high quantiles indicating
that excess speed and night-time driving are not uniformly correlated.

Keywords: beta regression; dependence; bivariate Sarmanov distribution; estimation; telematics;
insurance

1. Introduction

We analyse a bivariate model based on the Sarmanov distribution with marginal Beta distributions.
These marginals are specified based on a generalized linear model (Beta-GLM) or Beta regression as
defined by Ferrari and Cribari-Neto [1]. The objective is to fit data defined in the (0, 1) interval.

Many authors have analysed bivariate Beta distributions (see, for example, [2–5]). However,
these distributions pose several difficult challenges: their generalization to higher dimensions and
their specification as a generalized linear model are not straightforward. The Sarmanov distribution
provides a way to address these challenges.

Originally, the Sarmanov distribution in its bivariate form was introduced by Sarmanov [6],
its multivariate version was suggested by Lee [7] and was generalized by Bairamov et al. [8]. Its use
to model the bivariate behaviour of random variables with a marginal Beta(α, β) distribution was
proposed by Gupta and Wong [3]. These authors defined the five parameter bivariate Beta distribution
from what is known as Morgenstern’s distribution [9] with marginal Beta, which is a particular case of
the Sarmanov distribution.

The bivariate Sarmanov distribution is characterized by its flexibility in the marginal distributions
and, furthermore, given that its functional form establishes that the marginals are clearly separated
from the dependency model, the specification in terms of a bivariate generalized linear model turns
out to be natural. Generalizing from two dimensions to higher dimensions is simple—(see [10] for an
example of a trivariate Sarmanov distribution specified as a generalized linear model with Negative
Binomial marginals).

In this work, we show an application of the bivariate Sarmanov distribution with Beta marginals
generalised linear model to predict two of the most relevant telematics variables in motor insurance [11].
Telematics variables are obtained from GPS/inertial devices installed in vehicles and they provide an
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abundant source of information to motor insurers. In our case study, a bivariate model is specified, for
the proportion of kilometres driven above the posted speed limit and the proportion of kilometres
driven at night. These two variables seem to be related, but researchers have not yet been able to
find a good way to understand their association. The explanatory variables are the characteristics
of the insured policyholder and the vehicle. The database used in our application has already been
analysed in various works published in statistical, transport and risk analysis journals (see [11–17]).
In all previous studies, the two telematics variables that we analyse here were used as predictors of the
accident rate, and they were assumed to be uncorrelated.

In Section 2, the new bivariate Sarmanov model is specified and the particular case with marginal
Beta-GLM with a domain in the (0, 1) interval is analysed; the estimation method is also discussed.
The results of our case study are shown in Section 3. Finally, Section 4 contains the conclusions.

2. The Models

Let (Y1, Y2) be a bivariate random vector that, for convenience, is defined in (0, 1)2. Its distribution
depends on a set of k quantitative or binary covariates, whose values are represented by the vector

xj =
(

x1j, ..., xkj

)′
, j = 1, 2, where x1j = 1 is a constant term. The relationship between Yj and

the covariates is given by the linear predictor x′jβ
j, where βj =

(
β

j
1, ..., β

j
k

)′
, j = 1, 2, are vectors of

parameters to be estimated. To simplify the notation, the covariates are assumed to be the same for
j = 1 and j = 2, and so the vector of explanatory variables is denoted as x. The bivariate probability
density function (pdf) associated with the Sarmanov distribution is:

fY1,Y2(y1, y2|x′β1, x′β2) = f1(y1|x′β1) f2(y2|x′β2)

×
[
1 + ωφ1(y1|x′β1)φ2(y2|x′β2)

]
, y1, y2 ∈ (0, 1) (1)

where ω is the dependence parameter and φj, j = 1, 2, are bounded kernel functions. For the function
defined in (1) to be a pdf, the following conditions must hold:

∫ 1

0
φj(yj|x′βj) f j(yj|x′βj) dyj = 0, j = 1, 2 (2)

and
1 + ωφ1(y1|xβ1)φ2(y2|xβ2) ≥ 0, ∀ (y1, y2) ∈ (0, 1)2. (3)

For given values of x′βj, j = 1, 2, we define:

mj

(
x′βj

)
= inf

0<yj<1
φj

(
yj|x′βj

)
and Mj

(
x′βj

)
= sup

0<yj<1
φj

(
yj|x′βj

)
, j = 1, 2.

Taking into account the condition defined in (3), bounds can be defined for the dependency
parameter ω. However, as this parameter does not depend on the linear predictor, new extreme values
are defined as: m?

j = max
∀x′βj

mj(x′βj) and M?
j = min

∀x′βj
Mj(x′βj), so that the bounds of the dependency

parameter are:

max
{
− 1

m?
1m?

2
,− 1

M?
1 M?

2

}
≤ ω ≤ min

{
− 1

m?
1 M?

2
,− 1

M?
1 m?

2

}
. (4)

The previous condition holds for every vector of covariates x, which implies that the dependency
parameter must be located within the narrowest bounds. In practice, we will assume that the vectors
observed in the sample dataset lead to the entire domain of values of linear predictors x′βj, j = 1, 2.
In the insurance context, where we will discuss our illustration, we assume that all possible risk profiles
that can be insured by the company are already present in the portfolio.
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For each vector of covariate observations x, we can also obtain the covariance between the
dependent variables as:

cov(Y1, Y2) = ωv1(x)v2(x), (5)

where vj(x) =
∫ 1

0 yjφj(yj|xβj) f j(yj|x′βj) dyj, j = 1, 2. The correlation is obtained by dividing by the
product of standard deviations.

There exist many possible specifications for the kernel functions φj, j = 1, 2 (see [18] [for a
description of kernel functions proposed in the literature). When fitting the bivariate Beta distribution
without covariates, Gupta and Wong [3] propose a kernel function such as φj = 2Fj − 1, where Fj is
the cumulative distribution function (cdf). This specification has the advantage that the bounds for
the dependency parameter are given by −1 ≤ ω ≤ 1 for any vector x. However, the previous model
does not allow obtaining closed expressions for some magnitudes of interest, such as the conditioned
moments. In this work, we propose to use kernels φj = yr

j − E(Yr
j ), where r is a value to be determined

by the analyst. Next, some results obtained for the particular case of the Sarmanov distribution with
marginal Beta(α, β) distribution with r = 1 are analyzed. These cases intuitively correspond to a
situation of linear dependency, controlled by the dependence parameter ω.

2.1. The Bivariate Beta GLM Model

The pdf of a random variable Y with Beta(α, β) distribution, with parameters α, β > 0, is:

fY(y; α, β) =
Γ(α + β)

Γ(α)Γ(β)
yα−1(1− y)β−1 =

1
B(α, β)

yα−1(1− y)β−1

and its cdf is:

FY(y; α, β) =
B(y, α, β)

B(α, β)
,

where Γ(·) and B(·, ·) are the Gamma and Beta functions, respectively, and B(y, ·, ·) is the incomplete
Beta function.

The Beta regression was proposed by Ferrari and Cribari-Neto [1], with the reparametrization
µ = α

α+β and ψ = α + β, so that:

f (y; µ, ψ) =
1

B (µψ, (1− µ)ψ)
yµψ−1(1− y)(1−µ)ψ−1,

where E(Y) = µ, with 0 < µ < 1, and V(Y) = µ(1−µ)
(1+ψ)

, with ψ > 0, where ψ−1 is the scale parameter.
We note that, given the values of µ and ψ, it holds that V(Y) < 0.25. The specification as GLM is
defined as (note that we use µ(x) to emphasize that µ depends on the linear predictor):

g [µ(x)] = x′β,

where g[·] is a link function that can be defined in different ways, in this work, we use the logit link,
g [µ(x)] = log

[
µ(x)

1−µ(x)

]
.

To simplify the notation from now on, we eliminate the linear predictors in the conditioned part.
The pdf associated with the bivariate random vector (Y1, Y2) with a Sarmanov distribution and Beta
GLM marginals that will be called the Sarmanov-Beta-GLM is ():

fY1,Y2(y1, y2) =
1

B (µ1(x)ψ1, (1− µ1(x))ψ1)
yµ1(x)ψ1−1

1 (1− y1)
(1−µ1(x))ψ1−1

× 1
B (µ2(x)ψ2, (1− µ2(x))ψ2)

yµ2(x)ψ2−1
2 (1− y2)

(1−µ2(x))ψ2−1

× [1 + ω(y1 − µ1(x))(y2 − µ2(x))] , y1, y2 ∈ (0, 1). (6)
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For the previous expression to be a pdf, the dependency parameter must be located within the bounds
defined in (4), which, for the kernel functions that we propose, are:

max

− 1
max
∀x′β1

(−µ1(x))max
∀x′β2

(−µ2(x))
,− 1

min
∀x′β1

(1− µ1(x)) min
∀x′β2

(1− µ2(x))


≤ ω ≤

min

− 1
min
∀x′β1

(1− µ1(x))max
∀x′β2

(−µ2(x))
,− 1

max
∀x′β1

(−µ1(x)) min
∀x′β2

(1− µ2(x))

 . (7)

The bivariate cdf associated with a Sarmanov-Beta-GLM is obtained directly from the double
integral of the bivariate pdf defined in (6):

FY1,Y2(y1, y2) =
B (y1, ψ1µ1(x), (1− µ1(x))ψ1)

B (ψ1µ1(x), (1− µ1(x))ψ1)
× B (y2, ψ2µ2(x), (1− µ2(x))ψ2)

B (ψ2µ2(x), (1− µ2(x))ψ2)

×
[

1 + ω

(
B (y1, ψ1µ1(x) + 1, (1− µ1(x))ψ1)

B (ψ1µ1(x), (1− µ1(x))ψ1)
− µ1(x)

B (y1, ψ1µ1(x), (1− µ1(x))ψ1)

B (ψ1µ1(x), (1− µ1(x))ψ1)

)
(8)

×
(

B (y2, ψ2µ2(x) + 1, (1− µ2(x))ψ2)

B (ψ2µ2(x), (1− µ2(x))ψ2)
− µ2(x)

B (y2, ψ2µ2(x), (1− µ2(x))ψ2)

B (ψ2µ2(x), (1− µ2(x))ψ2)

)]
,

where y1, y2 ∈ (0, 1).

Proposition 1. The conditioned pdf is:

fY1|Y2
(y1|Y2 = y2) =

1
B (µ1(x)ψ1, (1− µ1(x))ψ1))

yµ1(x)ψ1−1
1 (1− y1)

(1−µ1(x))ψ1−1

× [1 + ω(y1 − µ1(x))(y2 − µ2(x))] , y1, y2 ∈ (0, 1) (9)

and similarly for fY2|Y1
(y2|Y1 = y1). Integrating the previous expression, the conditional cdf is obtained as

FY1|Y2
(y1|Y2 = y2) = F1(y1) × [1 + ω (y2 − µ2(x)) (1− µ1(x))]

− ω (y2 − µ2(x))
y1(1− y1)

ψ1µ1(x)
f1(y1), y1, y2 ∈ (0, 1). (10)

Proof. The conditioned pdf is obtained directly as

fY1|Y2
(y1|Y2 = y2) =

fY1,Y2(y1, y2)

fY2(y2)
.

Integrating the result of fY1|Y2
(y1|Y2 = y2) in (9), we obtain:

FY1|Y2
(y1|Y2 = y2) =

∫ y1

0
f1(t)dt + ω (y2 − µ2(x))

∫ y1

0
f1(t) (t− µ1(x)) dt

= F1(y1) + ω (y2 − µ2(x))
[

B (y1, ψ1µ1(x) + 1, (1− µ1(x))ψ1)

B (ψ1µ1(x), (1− µ1(x))ψ1)
− µ1(x)F1(y1)

]
. (11)
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In addition, since

B (y1, ψ1µ1(x) + 1, (1− µ1(x))ψ1)

B (ψ1µ1(x), (1− µ1(x))ψ1)

=
B (y1, ψ1µ1(x), (1− µ1(x))ψ1)

B (ψ1µ1(x), (1− µ1(x))ψ1)
−

yµ1(x)ψ1
1 (1− y1)

(1−µ1(x))ψ1

ψ1µ1(x)B (ψ1µ1(x), (1− µ1(x))ψ1)

= F1(y1)−
y1(1− y1)

ψ1µ1(x)
f1(y1),

then, by substituting the previous expression in (11), then (10) follows directly.

The conditioned quantile is obtained from the inverse of expression (10), for which a numerical
method (such as Newton’s method) can be used.

Proposition 2. The conditional expectation is:

E (Y1|Y2 = y2) = µ1(x) + ω(y2 − µ2(x))V (Y1|x) , (12)

where V (Y1|x) = µ1(x)(1−µ1(x))
(ψ1+1) is the variance, which also depends on the vector of covariates. Similarly,

E (Y2|Y1 = y1) can be found.

Proof. The conditional expectation is obtained directly by solving the integral:

E (Y1|Y2 = y2) =
∫ 1

0
y1 fY1|Y2

(y1|Y2 = y2) dy1

=
∫ 1

0
y1 fY1(y1) dy1 × (1 + ω(y1 − µ1(x))(y2 − µ2(x)))

=
∫ 1

0
y1 fY1(y1) dy1

+ω(y2 − µ2(x))
(∫ 1

0
y2

1 fY1(y1) dy1 − µ1(x)
∫ 1

0
y1 fY1(y1) dy1

)
= µ1(x) + ω (y2 − µ2(x))

(
E(Y2

1 |x)− µ1(x)2
)

= µ1(x) + ω (y2 − µ2(x))V (Y1|x) .

Likewise, the corresponding result is obtained for E (Y2|Y1 = y1).

Proposition 3. From (5), the conditional covariance which depends on the vector of covariates x is:

cov(Y1, Y2) = ωV(Y1)V(Y2) = ω
µ1(x)(1− µ1(x))

(ψ1 + 1)
µ2(x)(1− µ2(x))

(ψ2 + 1)
(13)

and the correlation is:

corr(Y1, Y2) = ω

√
µ1(x)(1− µ1(x))

(ψ1 + 1)

√
µ2(x)(1− µ2(x))

(ψ2 + 1)
. (14)

Proof. Note that the covariance and the correlation are calculated directly if, in expression (5),
we see that:

vj(x) =
∫ 1

0
yjφj(yj|xβj) f j(yj|x′βj) dyj

=
∫ 1

0
yj(yj − µj(x)) f j(yj|x′βj) dyj = E(Y2

j |x)− µj(x)2, j = 1, 2
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The dependence parameter of the model proposed in Gupta and Wong [3], which uses kernel
functions φj = 2Fj − 1, j = 1, 2, is located in the interval −1 ≤ ω ≤ 1 and is the same for all x.
Our proposal bounds the dependence parameter to the narrowest interval among those obtained
from all x. However, the advantage of our proposal is that our model allows for obtaining closed
expressions for some magnitudes of interest such as bivariate moments (covariance) and conditional
moments. In the numerical analysis section, we also compare the correlations estimated from our
model and that of Gupta and Wong [3].

2.2. Estimation

In practice, we start from a bivariate sample of n observations. Let us denote the sample
information as (Yi1, Yi2), i = 1, ..., n, where for each i we know the values of the covariates
Xi = (Xi1, ..., Xik)

′. Our objective is to estimate the parameter vectors βj, the scale parameters, ψj and
j = 1, 2, and the dependency parameter ω, from the maximization of the logarithm of the likelihood
function associated with the Sarmanov distribution:

l
(

β1, β2, ψ1, ψ2, ω
)

=
n

∑
i=1

log f1(Yi1|X′i β1) +
n

∑
i=1

log f2(Yi2|X′i β2)

+
n

∑
i=1

log
(

1 + ωφ1(Yi1|X′i β1)φ2(Yi2|X′i β2)
)

= l1(β1, ψ1) + l2(β2, ψ2) + l12(ω, β1, β2, ψ1, ψ2), (15)

The maximization of (15) cannot be carried out directly without considering that the parametric
space is restricted and, in addition, as it was shown in expression (4), the bounds of the dependence
parameter are closely related to the parameters of the marginals. Thus, in the maximization process,
infeasible solutions will often be reached unless a careful numerical procedure is specifically designed.
One way to address these difficulties is to rely on the IFM (Inference from Margin) method that
has been widely used in the estimation of copulas see [19] [for a review]. For the estimation of the
Sarmanov distribution, the IFM was already used by Bolancé and Vernic [10] for the case of GLM
marginals with Negative Binomial distributions.

The IFM method is implemented as follows:
Inicialization. The parameters for the marginals are estimated as:(

β̂1(0), ψ̂
(0)
1

)
= max

β1,ψ1

l1(β1, ψ1) (16)(
β̂2(0), ψ̂

(0)
2

)
= max

β2,ψ2

l2(β2, ψ2). (17)

For the initial estimation, function betareg() of betareg R package is used. With these
parameters of the marginals, we start the iterative process in the two steps described below.

Step 1. Given the estimated marginal parameters in iteration m− 1 and taking into account the
limits of the dependence parameter ω defined in (4), with function optim() and the L-BFGS-B method
using R, we estimate ω from the maximization of the likelihood function given fixed values of the
marginal parameters, which is:

ω̂(m) = max
ω

lω|12

(
ω|β̂1(m−1), β̂2(m−1), ψ̂

(m−1)
1 , ψ̂

(m−1)
2

)
, (18)

where lω|12 is the likelihood as a function of ω given the estimated parameters for the marginals in
iteration m− 1.
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Step 2. Given the estimated dependency parameter ω̂(m) in step 1, the marginal parameters are
re-estimated in iteration m as:(

β̂1(m), ψ̂
(m)
1 , β̂2(m), ψ̂

(m)
2

)
= max

β1,ψ1,β2,ψ2

l12|ω(β1, ψ1, β2, ψ2|ω̂(m)), (19)

where l12|ω is the likelihood as a function of the marginal parameters given the dependence parameter
estimated in step 1. The above maximization is also performed with function optim() and the
L-BFGS-B method of R.

Steps 1 and 2 described above are repeated until reaching the convergence criterion based on the
differences between parameter estimates obtained in two consecutive iterations.

Remark 1. In the initialization process, if the dependent variables contain zeros or ones, the following correction
Ỹj = (Yj ∗ (n− 1) + 0.5)/n, j = 1, 2 was proposed by Smithson and Verkuilen [20].

In practice, the algorithm described above is based on the optimization of conditional likelihood
functions and not on the likelihood function defined in (15). However, in the last stage, the parameters
estimated with the IFM method can be used as initial parameters in the process of maximizing the full
likelihood function defined in (15). For this purpose, function optim() and method L-BFGS-B of R are
used again.

Remark 2. To estimate the Sarmanov model proposed by Gupta and Wong [3], it is not necessary to use
the two-step process, since the bounds of the dependence parameter do not depend on the parameters of the
marginal distributions.

3. Numerical Analysis

We analyse a database corresponding to a car insurance portfolio, in which part of the variables
have been measured via a telematic system. The objective of our analysis is to model the joint behaviour
of the percentage of kilometres driven above the posted speed limits (Y1) and percentage of kilometres
driven at night (Y2). It is well known that both variables are related to the risk of having an accident.
In Table 1, we show the main descriptive statistics of the dependent variables and the covariates used
in the modelling process. For the estimation of the Sarmanov-Beta-GLM, the dependent variables have
been transformed as indicated in Remark 1 in Section 2.2. Furthermore, to avoid very low coefficient
values due to the scale of some covariates, variables age (X1), age of driving license (X2) and age of
the vehicle (X5) have been divided by 10; the vehicle power variable (X6) is divided by 100 and the
total annual distance driven in kilometres (X7) is divided by 1000. In addition, note that, in this study,
we have included a variable denoting the driver’s gender (X3) and an indicator of private garage (X4)
as covariates.

The last row of Table 1 shows the Pearson correlation between the two dependent variables.
This correlation is compared with the corresponding parameter estimate obtained from the Sarmanov
model with marginal Beta proposed here and with the one proposed by Gupta and Wong [3], from now
on the GW model. With this objective, Table 2 shows the dependence parameters estimated with
both models, and the AIC and BIC statistics without including the covariates and including them.
Using expression (14) and without covariates, from the dependence parameters ω̂ = 14.883, it can be
deduced that the estimated correlation is 0.0601, which is within the confidence interval of the Pearson
correlation as shown in the last row of Table 1. On the contrary, if we use the five parameter Beta
distribution, the (residual) correlation that is obtained from the numerical calculation of expression (5)
is practically zero. This means that the association is captured by the bivariate model. Comparing both
models, with and without covariates, using the AIC and BIC statistics, the results of Table 2 show that
the fit is better for the model proposed here than it is for the GW model.
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Table 1. Definition of variables and descriptive statistics: mean, standard deviation (STD),
minimum (Min) and Maximum (Max). The last row shows the linear correlation between dependent
variables and a confidence interval at the 95% level.

Variable Description Mean STD Min Max

Y1 Percentage of kilometres driven above the speed limit 0.063 0.068 0.000 0.704
Y2 Percentage of kilometres driven at night 0.069 0.064 0.000 1.000
X1 Age of the driver 27.565 3.094 19.849 36.904
X2 Age if driver License 7.174 3.053 1.810 15.910
X3 Gender (=1 Men, =0 Women) 0.489 0.500 0.000 1.000
X4 Night parking (=1 yes, 0=no) 0.774 0.418 0.000 1.000
X5 Age of the vehicle 8.749 4.174 1.938 20.468
X6 Power of the vehicle in Horse Power (HP) 97.226 27.772 12.000 500.000
X7 Total Km 7159.510 4191.753 1.590 50,035.560

ρ Pearson correlation between dependent variables (CI) 0.070 (0.057,0.082)

Table 2. Estimated dependence from Sarmanov-Beta models and goodness of fit criteria.

ω̂ (p-Value) AIC BIC

Proposed Model No covariates 14.883 (<0.001) −171,282.2 −171,241.5
With all covariates 2.388 (0.055) −177,508.8 −177,354.4

GW Model No Covariates 0.002 (0.346) −171,165.4 −171,124.8
With all covariates 0.002 (0.356) −177,497.2 −177,342.8

Table 3 shows the results of our Sarmanov-Beta-GLM using different vectors of covariates. Model I
includes all the explanatory variables, among which we have the age (X1), the age of the driving
license (X2) and the total distance driven annually (X7), these three variables are associated with
driving experience. To analyze the robustness of the results, in Model II, age (X1) is eliminated, and,
in addition, in Model III, the age of a driver’s license (X2) is also eliminated. The results of Model I
show that the effect of age is negative on both Y1 and Y2 that the effect of the driver’s license age is
positive on Y1 and negative on Y2 and the effect of total distance, X7, is positive on both dependent
variables. By eliminating age (X1) in Model II, the signs of the parameters associated with X2 and X7

are maintained, although the value is smaller in the case of X2 and remains practically the same for X7.
After eliminating variables X1 and X2, we see that the effect of the total annual distance driven remains
practically the same. If we observe the effects of the rest of covariates, these are practically the same in
models I, II, and III. A man driver (X3) with a powerful vehicle (X6) would have larger Y1 and Y2 than
the rest, all other characteristics being the same. However, using parking at night (X4) has a positive
effect on the percentage of speeding distance (Y1) and a negative effect on the percentage of night-time
driving (Y2); the opposite happens with the age of the vehicle (X5). The effect of X5 indicates that,
when the vehicle is older, drivers tends to diminish the percent of speed driving, while night-time
driving is larger.

To visualize the dependence between Y1 and Y2 in different quantiles, the following three examples
of insured drivers are graphically analysed:

• Profile 1 corresponds to a 27-year-old man, who drives about 7000 kilometres per year, with a
7-year-old driving license, with parking, with a vehicle of about 8 years and 100 HP.

• Profile 2 corresponds to a 20-year-old man, who drives about 4000 kilometres per year, with a
2-year-old driving license, with parking, with a vehicle of about 2 years and 75 HP.

• Profile 3 corresponds to a 36-year-old man, who drives about 10,000 kilometres per year, with a
15-year-old driving license, without parking, with a vehicle of about 15 years and 200 HP.
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Table 3. Parameter estimates (p-values) for the Sarmanov-Beta models and goodness of fit statistics.

Model I Model II Model III
Y1 Y2 Y1 Y2 Y1 Y2

Cons. −3.055 (<0.001) −2.556 (<0.001) −3.819 (<0.001) −2.975 (<0.001) −3.796 (<0.001) −3.061 (<0.001)
X1 −0.339 (<0.001) −0.185 (<0.001) - -
X2 0.294 (<0.001) −0.052 (0.018) 0.048 (0.002) −0.187 (<0.001) -
X3 0.097 (<0.001) 0.274 (<0.001) 0.107 (<0.001) 0.281 (<0.001) 0.109 (<0.001) 0.274 (<0.001)
X4 0.108 (<0.001) −0.031 (0.007) 0.107 (<0.001) −0.031 (0.007) 0.107 (<0.001) −0.031 (0.007)
X5 −0.043 (0.001) 0.055 (<0.001) −0.043 (0.001) 0.055 (<0.001) −0.043 (0.001) 0.055 (<0.001)
X6 0.653 (<0.001) 0.077 (<0.001) 0.654 (<0.001) 0.079 (<0.001) 0.664 (<0.001) 0.038 (0.027)
X7 0.045 (<0.001) 0.035 (<0.001) 0.046 (<0.001) 0.035 (<0.001) 0.046 (<0.001) 0.035 (<0.001)

φ1 18.480 (<0.001) 18.300 (<0.001) 18.294 (<0.001)
φ2 14.823 (<0.001) 14.782 (<0.001) 14.703 (<0.001)
ω 2.388 (0.055) 2.325 (0.059) 2.214 (0.060)

AIC −177,508.8 −177,238.5 −177,113.5
BIC −177,354.4 −177,100.3 −176,991.6

Profile 1 represents the average insured individual of the portfolio; Profile 2 is a younger man
driver, less experienced than Profile 1 and with a newer and less powerful vehicle; finally, Profile 3
is an older man driver, more experienced than Profile 1 and an older and more powerful vehicle.
Figure 1 represents different quantiles of the variable kilometres driven above the speed limit (Y1)
in the y-axis given the values of the percentage of kilometres driven at night (Y2) for Profile 1 in
the x-axis. Quantiles have been obtained from the expression (10). Note that, if the dependence
parameter was zero, all the curves would remain constant. The adjusted dependence structure results
in the represented conditional quantiles having a negative nonlinear relationship and, furthermore,
the curves for the different quantile levels are non-parallel. Figure 1 indicates that, for Profile 1,
the higher the percentage of kilometres driven at night (Y2), the greater the caution in driving and,
therefore, the lower the percentage of distance driven above the speed limits (Y1). The same quantiles
at 75% (plot on the left) and 95% (plot on the right) confidence levels are represented in Figure 2.
These plots show that the curves are non-parallel and that Profile 3 is the most risky, followed by
Profiles 1 and 2.
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Figure 1. Quantiles of percentage of kilometres driven over the speed limit (Y1) in the y-axis for Profile
1 given the values of percentage of kilometres driven at night (Y2) in the x-axis.
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Figure 2. Quantiles of percentage of kilometres driven over the speed limit (Y1) for each driver profile
given the values of percentage of kilometres driven at night (Y2), (left) 75% level and (right) 95% level.

4. Conclusions

We have developed a bivariate model based on the Sarmanov distribution with marginal Beta
GLM which has allowed us to model two important variables in modern motor insurance telematics
databases. Our model is an alternative to a proposal previously made by Gupta and Wong [3] based on
what is known as Morgenstern’s distribution, which is a particular case of the Sarmanov distribution.
Our proposal allows for obtaining closed expressions for some magnitudes of interest, such as the
bivariate cdf and conditioned moments, covariance and correlation, which are fundamental in risk
analysis. We have shown that our Sarmanov-Beta-GLM model presents better fits than previous
proposals also based on the Sarmanov distribution.

The results of our case study have shown that, for a specific example, although the dependence
parameter is positive, which directly implies that, in the mean, the relationship between the conditioned
mean and the values of the variable that conditions is positive, the conditional quantiles show that
the relationship between the conditioned quantile, and the value of the conditioning variable may be
negative for high quantile levels, a result that is consistent with the expected behaviour of drivers.
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