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Abstract

:

Due to the applications in many fields, there is great interest in studying partial difference equations involving functions with two or more discrete variables. In this paper, we deal with the existence of infinitely many solutions for a partial discrete Dirichlet boundary value problem with the p-Laplacian by using critical point theory. Moreover, under appropriate assumptions on the nonlinear term, we determine open intervals of the parameter such that at least two positive solutions and an unbounded sequence of positive solutions are obtained by using the maximum principle. We also show two examples to illustrate our results.
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1. Introduction


Let  Z ,  R ,  N  denote all integers, real numbers and positive integers, respectively. Define   Z ( a , b ) = { a , a + 1 , ⋯ , b }   for any   a , b ∈ Z   with   a ≤ b  .



In this paper, we consider the following problem, namely (  S λ f  )


   Δ 1   (  ϕ p   (  Δ 1  x  ( i − 1 , j )  )  )  +  Δ 2   (  ϕ p   (  Δ 2  x  ( i , j − 1 )  )  )  + λ f  (  ( i , j )  , x  ( i , j )  )  = 0 ,   ( i , j )  ∈ Z  ( 1 , m )  × Z  ( 1 , n )  ,  








with boundary conditions


  x ( i , 0 ) = x ( i , n + 1 ) = 0 ,   i ∈ Z ( 0 , m + 1 ) ,  










  x ( 0 , j ) = x ( m + 1 , j ) = 0 ,   j ∈ Z ( 0 , n + 1 ) ,  








where m and n are given positive integers,  λ  is a positive real parameter,   Δ 1   and   Δ 2   are forward difference operators, respectively defined by    Δ 1  x  ( i , j )  = x  ( i + 1 , j )  − x  ( i , j )    and    Δ 2  x  ( i , j )   =  x  ( i , j  +  1 )   −  x  ( i , j )   ,    Δ  1  2  x  ( i , j )  =  Δ 1   (  Δ 1  x  ( i , j )  )    and    Δ  2  2  x  ( i , j )  =  Δ 2   (  Δ 2  x  ( i , j )  )   ,   ϕ p   is the p-Laplacian operator given by    ϕ p   ( s )  =   | s |   p − 2   s , 1 < p < + ∞   and   f ( ( i , j ) , · ) ∈ C ( R , R )   for all   ( i , j ) ∈ Z ( 1 , m ) × Z ( 1 , n ) .  



The study of difference equations has captured special attention, which is due to the fact that difference equations are widely used as mathematical models in discrete optimization, physics, population genetics, etc. [1,2,3,4]. Many researchers have done in-depth study on the difference equation and use critical point theory to acquire some wonderful conclusions. For example, some results on homoclinic solutions [5,6,7,8,9,10,11,12,13], periodic solutions [14,15,16], ground state solutions [17,18] and solutions for boundary value problems [19,20,21,22,23,24,25,26,27,28,29] have been achieved. Especially, in recent years, owing to more and more applications of partial difference equation mathematical models in many fields, such as economy, computer science and control systems, there has aroused a great deal of interest in studying partial difference equations involving functions with two or more discrete variables. With the increase of research, many results have been obtained [30,31,32].



In [30], Shapour Heidarkhani and Maurizio Imbesi considered the following partial discrete Dirichlet problem (  E λ f  )


   Δ  1  2  u  ( i − 1 , j )  +  Δ  2  2  u  ( i , j − 1 )  + λ f  (  ( i , j )  , u  ( i , j )  )  = 0 ,    ( i , j )  ∈ Z  ( 1 , m )  × Z  ( 1 , n )  ,  








with boundary conditions


  u ( i , 0 ) = u ( i , n + 1 ) = 0 ,   i ∈ Z ( 1 , m ) ,  










  u ( 0 , j ) = u ( m + 1 , j ) = 0 ,   j ∈ Z ( 1 , n ) .  











The authors transformed the matrix form into the one-dimensional vector form, and obtained the existence of at least three solutions for problem   (  E  λ  f  )   by utilizing two critical point theorems.



In [31], Marek Galewski and Aleksandra Orpel obtained some existence results of   (  E λ f  )   in light of variational methods and some monotonicity results.



Maurizio Imbesi and Giovanni Molica Bisci [32] determined unbounded intervals of parameters such that   (  E λ f  )   admitted either an unbounded sequence of solutions or a pairwise distinct sequence of solutions by the critical point theory.



However, until now, there is very little research on the partial difference equations with the p-Laplacian. For this reason, this paper is to study the existence of multiple solutions for partial discrete Dirichlet problems involving the p-Laplacian. In this paper, in the framework of variational methods, we consider the two-dimensional discrete problem   (  S  λ  f  )   by using critical point theory and we come up with more specific sets of parameters such that the existence of infinitely many solutions for problem   (  S  λ  f  )   can be obtained. Under some proper assumptions, we deal with the existence of multiple solutions of problem   (  S λ f  )   by applying Theorem 3.3 of [33] in Theorem 2. Furthermore, we show that problem   (  S λ f  )   admits at least two positive solutions in Theorem 3. In addition, we obtain that problem   (  S λ f  )   admits an unbounded sequence of solutions by utilizing Theorem 2.1 of [34] in Theorem 4.



The structure of the rest of this paper is as follows. In Section 2, some basic lemmas and propositions are showed. In Section 3, we give our main results. In Section 4, two examples are presented to explicate our results. We conclude our results in the last section.




2. Preliminaries


Let E denote a finite dimensional real Banach space and let    I λ  : E → R   be a function satisfying the following structure hypothesis:



  ( A )     I λ   ( x )  : = Φ  ( x )  − λ Ψ  ( x )    for all   x ∈ E  , where   Φ , Ψ : E → R   are two functions of class   C 1   on E with  Φ  coercive, i.e.,    lim  ∥ x ∥ → ∞   Φ  ( x )  = + ∞  , and  λ  is a real positive parameter.



The following lemma comes from Theorem 2.2 of [30].



Lemma 1.

Assume that the condition   ( A )   holds. We have



  ( B )   Φ   is convex and    inf E  Φ = Φ  ( 0 )  = Ψ  ( 0 )  = 0  ;



  ( C )   for each   λ > 0   and for every    x 1  ,  x 2  ∈ E   which are local minima for the functional    I λ  : = Φ − λ Ψ   and such that   Ψ (  x 1  ) ≥ 0   and   Ψ (  x 2  ) ≥ 0  , one has    inf  0 ≤ t ≤ 1   Ψ  ( t  x 1  +  ( 1 − t )   x 2  )  ≥ 0  .



Further, assume that there are two positive constants    ρ 1  ,  ρ 2    and   u ∈ E  , with   2  ρ 1  < Φ  ( u )  <   ρ 2  2   , such that



   (  a 1  )   


      sup  x ∈  Φ  − 1    ( − ∞ ,  ρ 1  )    Ψ  ( x )    ρ 1   <  2 3  ·   Ψ ( u )   Φ ( u )   ;   











   (  a 2  )   


      sup  x ∈  Φ  − 1    ( − ∞ ,  ρ 2  )    Ψ  ( x )    ρ 2   <  1 3  ·   Ψ ( u )   Φ ( u )   .   











Then, for each   λ ∈   3 2  ·   Φ ( u )   Ψ ( u )   , min    ρ 1    sup  x ∈  Φ  − 1    ( − ∞ ,  ρ 1  )    Ψ  ( x )    ,    ρ 2  / 2    sup  x ∈  Φ  − 1    ( − ∞ ,  ρ 2  )    Ψ  ( x )      ,   the functional   I λ   has at least three distinct critical points which lie in    Φ  − 1    ( − ∞ ,  ρ 2  )   .





The following lemma comes from Corollary 3.1 of [33].



Lemma 2.

Assume that the condition   ( A )   holds. We have



  ( D )   Φ   is convex and    inf E  Φ = Φ  ( 0 )  = Ψ  ( 0 )  = 0  ;



  ( E )   for each   λ > 0   and for every    x 1  ,  x 2  ∈ E   which are local minima for the functional    I λ  : = Φ − λ Ψ   and such that   Ψ (  x 1  ) ≥ 0   and   Ψ (  x 2  ) ≥ 0  , one has    inf  0 ≤ t ≤ 1   Ψ  ( t  x 1  +  ( 1 − t )   x 2  )  ≥ 0  .



Further, assume that there are two positive constants    ρ 1  ,  ρ 2    and   u ∈ E  , with    ρ 1  < Φ  ( u )  <   ρ 2  2   , such that



   (  a 3  )   


      sup  x ∈  Φ  − 1    ( − ∞ ,  ρ 1  )    Ψ  ( x )    ρ 1   <  1 2  ·   Ψ ( u )   Φ ( u )   ;   











   (  a 4  )   


      sup  x ∈  Φ  − 1    ( − ∞ ,  ρ 2  )    Ψ  ( x )    ρ 2   <  1 4  ·   Ψ ( u )   Φ ( u )   .   











Then, for each   λ ∈    2 Φ ( u )   Ψ ( u )   , min    ρ 1    sup  x ∈  Φ  − 1    ( − ∞ ,  ρ 1  )    Ψ  ( x )    ,    ρ 2  / 2    sup  x ∈  Φ  − 1    ( − ∞ ,  ρ 2  )    Ψ  ( x )      ,   the functional   I λ   has at least three distinct critical points which lie in    Φ  − 1    ( − ∞ ,  ρ 2  )   .





Let   t ,  t 1  ,  t 2  >  inf E  Φ   with    t 2  >  t 1    and    t 3  > 0   such that


           φ  ( t )  =  inf  x ∈  Φ  − 1    ( − ∞ , t )        sup  x ∈  Φ  − 1    ( − ∞ , t )    Ψ  ( x )   − Ψ  ( x )    t − Φ ( x )   ,                β  (  t 1  ,  t 2  )  =  inf  x ∈  Φ  − 1    ( − ∞ ,  t 1  )     sup  y ∈  Φ  − 1    [  t 1  ,  t 2  )      Ψ ( y ) − Ψ ( x )   Φ ( y ) − Φ ( x )   ,                γ  (  t 2  ,  t 3  )  =    sup  x ∈  Φ  − 1    ( − ∞ ,  t 2  +  t 3  )    Ψ  ( x )    t 3   ,                α  (  t 1  ,  t 2  ,  t 3  )  = max  φ  (  t 1  )  , φ  (  t 2  )  , γ  (  t 2  ,  t 3  )   .     











The following lemma comes from Theorem 3.3 of [33].



Lemma 3.

Assume that the condition   ( A )   holds. We have



  ( F )   Φ   is convex and    inf E  Φ = Φ  ( 0 )  = Ψ  ( 0 )  = 0  ;



  ( G )   for each   λ > 0   and for every    x 1  ,  x 2  ∈ E   which are local minima for the functional    I λ  : = Φ − λ Ψ   and such that   Ψ (  x 1  ) ≥ 0   and   Ψ (  x 2  ) ≥ 0  , one has    inf  0 ≤ s ≤ 1   Ψ  ( s  x 1  +  ( 1 − s )   x 2  )  ≥ 0  .



Further, assume that there are three positive constants    ρ 1  ,  ρ 2  ,  ρ 3    with    ρ 1  <  ρ 2   , such that




	
  (  a 5  )    φ  (  ρ 1  )  < β  (  ρ 1  ,  ρ 2  )   ;



	
  (  a 6  )    φ  (  ρ 2  )  < β  (  ρ 1  ,  ρ 2  )   ;



	
  (  a 7  )    γ  (  ρ 2  ,  ρ 3  )  < β  (  ρ 1  ,  ρ 2  )   .








Then, for each   λ ∈   1  β (  ρ 1  ,  ρ 2  )   ,  1  α (  ρ 1  ,  ρ 2  ,  ρ 3  )     , the functional   I λ   has three distinct critical points.





Let


  γ =  lim inf  t → + ∞   φ  ( t )  ,    δ =  lim inf  t →    inf E  Φ  +    φ  ( t )  .  











Clearly,   γ ≥ 0   and   δ ≥ 0  . When   γ = 0   (or   δ = 0  ), in the sequel, we agree to read   1 γ   (or   1 δ  ) as   + ∞  .



The following lemma comes from Theorem 2.1 of [34].



Lemma 4.

Assume that the condition (A) holds, one has



  ( i )   If   γ < + ∞   then, for each   λ ∈ ( 0 ,  1 γ  )  , the following alternative holds: either



  (  i 1  )    I λ   possesses a global minimum, or



  (  i 2  )   there is a sequence   {  x k  }   of critical points (local minima) of   I λ   such that    lim  k → + ∞   Φ  (  x k  )  = + ∞  .



  ( j )   If   δ < + ∞   then, for each   λ ∈ ( 0 ,  1 δ  )  , the following alternative holds: either



  (  j 1  )   there is a global minimum of Φ which is a local minimum of   I λ  , or



  (  j 2  )   there is a sequence   {  x k  }   of pairwise distinct critical points (local minima) of   I λ  , with    lim  k → + ∞   Φ  (  x k  )  =  inf E  Φ  , which weakly converges to a global minimum of  Φ  .





Now we consider the   m n  -dimensional Banach space


     S = { x :     Z ( 0 , m + 1 ) × Z ( 0 , n + 1 ) → R   such  that   x ( i , 0 ) = x ( i , n + 1 ) = 0 ,           i ∈ Z ( 0 , m + 1 )  and  x ( 0 , j ) = x ( m + 1 , j ) = 0 ,  j ∈ Z ( 0 , n + 1 ) } ,     








endowed with the norm


   ∥ x ∥  =     ∑  j = 1  n     ∑  i = 1   m + 1     |   Δ 1    x  ( i − 1 , j )  |  p  +   ∑  i = 1  m     ∑  j = 1   n + 1      |  Δ 2  x  ( i , j − 1 )  |  p    1 p   ,    x ∈ S .  











For each   x ∈ S  , let


  Φ  ( x )  =   ∑  j = 1  n     ∑  i = 1   m + 1     1 p   |   Δ 1    x  ( i − 1 , j )  |  p  +   ∑  i = 1  m     ∑  j = 1   n + 1     1 p    |  Δ 2  x  ( i , j − 1 )  |  p  ,  










  Ψ  ( x )  =   ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  , x  ( i , j )  )  ,  








where    F  (  ( i , j )  , x )  =   ∫ 0 x  f  (  ( i , j )  , ξ )  d ξ     for every   ( ( i , j ) , x ) ∈ Z ( 1 , m ) × Z ( 1 , n ) × R  .



Define


   I λ   ( x )  = Φ  ( x )  − λ Ψ  ( x )  ,  








for any   x ∈ S  . It is clear that    I λ  ∈  C 1   ( S , R )    with


       Φ ′   ( x )   ( z )     =     lim  t → 0     Φ ( x + t z ) − Φ ( x )  t        =      ∑  j = 1  n     ∑  i = 1   m + 1     ϕ p    Δ 1  x  ( i − 1 , j )    Δ 1  z  ( i − 1 , j )  +   ∑  i = 1  m     ∑  j = 1   n + 1     ϕ p    Δ 2  x  ( i , j − 1 )    Δ 2  z  ( i , j − 1 )        =      ∑  j = 1  n     ∑  i = 1  m    ϕ p    Δ 1  x  ( i − 1 , j )    Δ 1  z  ( i − 1 , j )  −   ∑  j = 1  n    ϕ p    Δ 1  x  ( m , j )   z  ( m , j )            +   ∑  i = 1  m     ∑  j = 1  n    ϕ p    Δ 2  x  ( i , j − 1 )    Δ 2  z  ( i , j − 1 )  −   ∑  i = 1  m    ϕ p    Δ 2  x  ( i , n )   z  ( i , n )        =    −   ∑  j = 1  n     ∑  i = 1  m    Δ 1   ϕ p    Δ 1  x  ( i − 1 , j )   z  ( i , j )  −   ∑  i = 1  m     ∑  j = 1  n    Δ 2   ϕ p    Δ 2  x  ( i , j − 1 )   z  ( i , j )  ,     








and


       Ψ ′   ( x )   ( z )  =  lim  t → 0     Ψ ( x + t z ) − Ψ ( x )  t  =   ∑  j = 1  n     ∑  i = 1  m   f  ( i , j ) , x ( i , j )  z  ( i , j )  ,     








for all   x , z ∈ S  .



Now


     [  Φ ′   ( x )  − λ  Ψ ′   ( x )  ]  ( z )  =    −      ∑  j = 1  n     ∑  i = 1  m    [   Δ 1   ϕ p    Δ 1  x  ( i − 1 , j )   +  Δ 2   ϕ p    Δ 2  x  ( i , j − 1 )         +    λ f  ( i , j ) , x ( i , j )   ] z  ( i , j )  .      











Consequently, the critical points of   I λ   in S are exactly the solutions of problem   (  S  λ  f  )  .



Proposition 1.

For every   x ∈ S  , the relation


    max     i ∈ Z ( 1 , m )       j ∈ Z ( 1 , n )       | x ( i , j ) |  ≤    ( m + n + 2 )    p − 1  p   4   ∥ x ∥    



(1)




holds.





Proof. 

For any given   x ∈ S  , there exist   s ∈ Z ( 1 , m )   and   τ ∈ Z ( 1 , n )   such that


   | x  ( s , τ )  |  =  max     i ∈ Z ( 1 , m )       j ∈ Z ( 1 , n )       | x ( i , j ) |  .  











Since   x ( i , 0 ) = x ( i , n + 1 ) = 0  ,   i ∈ Z ( 0 , m + 1 )   and   x ( 0 , j ) = x ( m + 1 , j ) = 0  ,   j ∈ Z ( 0 , n + 1 )  , we can obtain


     x ( s , τ )    =     1 2  |   ∑  i = 1  s    Δ 1  x  ( i − 1 , τ )  +   ∑  j = 1  τ    Δ 2  x  ( s , j − 1 )  |         ≤     1 2    ∑  i = 1  s   |  Δ 1  x  ( i − 1 , τ )  | +  1 2    ∑  j = 1  τ   |  Δ 2  x  ( s , j − 1 )  |         ≤     1 2  ·   ( s + τ )   1 q       ∑  i = 1  s   |  Δ 1  x  ( i − 1 , τ )   | p  +   ∑  j = 1  τ   |  Δ 2  x  ( s , j − 1 )   | p    1 p       








and


     x ( s , τ )    =     1 2  |   ∑  i = s + 1   m + 1     Δ 1  x  ( i − 1 , τ )  +   ∑  j = τ + 1   n + 1     Δ 2  x  ( s , j − 1 )  |         ≤     1 2    ∑  i = s + 1   m + 1    |  Δ 1  x  ( i − 1 , τ )  | +  1 2    ∑  j = τ + 1   n + 1    |  Δ 2  x  ( s , j − 1 )  |         ≤     1 2  ·   ( m + n − s − τ + 2 )   1 q   ·     ∑  i = s + 1   m + 1    |  Δ 1  x  ( i − 1 , τ )   | p  +   ∑  j = τ + 1   n + 1    |  Δ 2  x  ( s , j − 1 )   | p    1 p   ,     








where q is the conjugative number of p, that is,    1 p  +  1 q  = 1  . If


             ∑  i = 1  s    |   Δ 1    x  ( i − 1 , τ )  |  p  +   ∑  j = 1  τ     |  Δ 2  x  ( s , j − 1 )  |  p          ≤       ( m + n + 2 )   p − 1     2 p  ·   ( s + τ )   p − 1     ·    ∑  i = 1   m + 1      |  Δ 1  x  ( i − 1 , τ )  |  p               +    ( m + n + 2 )   p − 1     2 p  ·   ( s + τ )   p − 1     ·    ∑  j = 1   n + 1      |  Δ 2  x  ( s , j − 1 )  |  p   ,     








then we can get


   max     i ∈ Z ( 1 , m )       j ∈ Z ( 1 , n )       | x ( i , j ) |  ≤    ( m + n + 2 )    p − 1  p   4      ∑  i = 1   m + 1     |   Δ 1    x  ( i − 1 , τ )  |  p  +   ∑  j = 1   n + 1      |  Δ 2  x  ( s , j − 1 )  |  p    1 p   .  











So, we obtain the required relation (1). If, on the contrary,


       ∑  i = 1  s    |   Δ 1    x  ( i − 1 , τ )  |  p  +   ∑  j = 1  τ     |  Δ 2  x  ( s , j − 1 )  |  p     >       ( m + n + 2 )   p − 1     2 p  ·   ( s + τ )   p − 1     ·    ∑  i = 1   m + 1      |  Δ 1  x  ( i − 1 , τ )  |  p               +    ( m + n + 2 )   p − 1     2 p  ·   ( s + τ )   p − 1     ·    ∑  j = 1   n + 1      |  Δ 2  x  ( s , j − 1 )  |  p   ,     








then we have


             ∑  i = s + 1   m + 1     |   Δ 1    x  ( i − 1 , τ )  |  p  +   ∑  j = τ + 1   n + 1      |  Δ 2  x  ( s , j − 1 )  |  p          =      ∑  i = 1   m + 1     |   Δ 1    x  ( i − 1 , τ )  |  p  +   ∑  j = 1   n + 1      |  Δ 2  x  ( s , j − 1 )  |  p              −    ∑  i = 1  s      Δ 1  x  ( i − 1 , τ )   p  +   ∑  j = 1  τ      Δ 2  x  ( s , j − 1 )   p           <     1 −    ( m + n + 2 )   p − 1     2 p  ·   ( s + τ )   p − 1      ·    ∑  i = 1   m + 1      |  Δ 1  x  ( i − 1 , τ )  |  p               +  1 −    ( m + n + 2 )   p − 1     2 p  ·   ( s + τ )   p − 1      ·    ∑  j = 1   n + 1      |  Δ 2  x  ( s , j − 1 )  |  p   .     











Moreover, we have


           | x ( s , τ ) |         <     1 2  ·   ( m + n − s − τ + 2 )   1 q   ·   1 −    ( m + n + 2 )   p − 1     2 p  ·   ( s + τ )   p − 1       1 p   ·     ∑  i = 1   m + 1     |   Δ 1    x  ( i − 1 , τ )  |  p  +   ∑  j = 1   n + 1      |  Δ 2  x  ( s , j − 1 )  |  p    1 p   .     











We claim that inequality


   1 2  ·   ( m + n − s − τ + 2 )   1 q   ·   1 −    ( m + n + 2 )   p − 1     2 p  ·   ( s + τ )   p − 1       1 p   ≤    ( m + n + 2 )   1 q   4   



(2)




holds. In fact, we define a function   g : ( 0 , m + n + 2 ) → R   by


  g  ( t )  =  1   ( m + n − t + 2 )   p − 1    +  1  t  p − 1    .  











The function g can attain its minimum    2 p    ( m + n + 2 )   p − 1     at   t =   m + n + 2  2   . Since   s ∈ Z ( 1 , m ) , τ ∈ Z ( 1 , n )  , we can get   g  ( s + τ )  ≥   2 p    ( m + n + 2 )   p − 1     , that is,


   1   ( m + n − s − τ + 2 )   p − 1    +  1   ( s + τ )   p − 1    ≥   2 p    ( m + n + 2 )   p − 1    .  











This implies assertion (2) and we can obtain the required inequality (1). The proof is complete.  □





Remark 1.

Obviously, when   m = 1   and   n = 1  , then    ∥ x ∥  =  4  1 p    | x  ( 1 , 1 )  |    and the inequality in (1) holds.





Now we establish the strong maximum principle for problem   (  S λ f  )  .



Proposition 2.

Assume that there exists    x ¯  : Z  ( 0 , m + 1 )  × Z  ( 0 , n + 1 )  → R   such that


    Δ 1    ϕ p   (  Δ 1   x ¯   ( i − 1 , j )  )   +  Δ 2    ϕ p   (  Δ 2   x ¯   ( i , j − 1 )  )   ≤ 0 ,   



(3)




for every   ( i , j ) ∈ Z ( 1 , m ) × Z ( 1 , n )   and


    x ¯   ( i , 0 )  =  x ¯   ( i , n + 1 )  = 0 ,   i ∈ Z  ( 0 , m + 1 )  ,    x ¯   ( 0 , j )  =  x ¯   ( m + 1 , j )  = 0 ,   j ∈ Z  ( 0 , n + 1 )  ,   








then, either   x ¯   is the identically zero function or    x ¯   ( i , j )  > 0   for every   ( i , j ) ∈ Z ( 1 , m ) × Z ( 1 , n )  .





Note that when   f : Z ( 1 , m ) × Z ( 1 , n ) × R → R   is a non-negative function, the above proposition ensures that every solution of problem   (  S  λ  f  )   is either zero or positive.



Proof. 

Let   θ ∈ Z ( 1 , m )  ,   ω ∈ Z ( 1 , n )   and


   x ¯   ( θ , ω )  = min   x ¯   ( i , j )  : i ∈ Z  ( 1 , m )  , j ∈ Z  ( 1 , n )   .  











If    x ¯   ( θ , ω )  > 0  , then it is clear that    x ¯   ( i , j )  > 0   for all   i ∈ Z ( 1 , m ) , j ∈ Z ( 1 , n )   and the proof is complete.



If    x ¯   ( θ , ω )  ≤ 0  , then    x ¯   ( θ , ω )  = min   x ¯   ( i , j )  : i ∈ Z  ( 0 , m + 1 )  , j ∈ Z  ( 0 , n + 1 )    , since    Δ 1   x ¯   ( θ − 1 , ω )  =  x ¯   ( θ , ω )  −  x ¯   ( θ − 1 , ω )  ≤ 0  ,    Δ 2   x ¯   ( θ , ω − 1 )  =  x ¯   ( θ , ω )  −  x ¯   ( θ , ω − 1 )  ≤ 0  , and    Δ 1   x ¯   ( θ , ω )  =  x ¯   ( θ + 1 , ω )  −  x ¯   ( θ , ω )  ≥ 0  ,    Δ 2   x ¯   ( θ , ω )  =  x ¯   ( θ , ω + 1 )  −  x ¯   ( θ , ω )  ≥ 0  ,    ϕ p   ( η )    is increasing in  η , and    ϕ p   ( 0 )  = 0  , we obtain


   ϕ p    Δ 1   x ¯   ( θ , ω )   ≥ 0 ≥  ϕ p    Δ 1   x ¯   ( θ − 1 , ω )   .  











Similarly,


   ϕ p    Δ 2   x ¯   ( θ , ω )   ≥ 0 ≥  ϕ p    Δ 2   x ¯   ( θ , ω − 1 )   .  











We get


   Δ 1    ϕ p   (  Δ 1   x ¯   ( θ − 1 , ω )  )   +  Δ 2    ϕ p   (  Δ 2   x ¯   ( θ , ω − 1 )  )   ≥ 0 .  











Thus, we have


   ϕ p    Δ 1   x ¯   ( θ , ω )   =  ϕ p    Δ 1   x ¯   ( θ − 1 , ω )   = 0 .  











That is    x ¯   ( θ + 1 , ω )  =  x ¯   ( θ , ω )  =  x ¯   ( θ − 1 , ω )   . If   θ + 1 = m + 1  , we get    x ¯   ( θ , ω )  = 0  . Otherwise,   ( θ + 1 ) ∈ Z ( 1 , m )  . Replacing  θ  by   θ + 1  , we obtain    x ¯   ( θ + 2 , ω )  =  x ¯   ( θ + 1 , ω )   . Continuing this process   ( m + 1 − θ )   times, we have    x ¯   ( θ , ω )  =  x ¯   ( θ + 1 , ω )  =  x ¯   ( θ + 2 , ω )  = ⋯ =  x ¯   ( m + 1 , ω )  = 0  . Similarly, we get    x ¯   ( θ , ω )  =  x ¯   ( θ − 1 , ω )  =  x ¯   ( θ − 2 , ω )  = ⋯ =  x ¯   ( 0 , ω )  = 0  . Therefore,    x ¯   ( i , ω )  = 0   for   i ∈ Z ( 1 , m )  . In the same way, we can show that    x ¯  ≡ 0   and the proof is complete.  □






3. Main Results


For each positive constant h, put


  τ  ( h )  =     ∑  j = 1  n     ∑  i = 1  m   F  ( i , j ) , h    h p   .  











Theorem 1.

For every   ( i , j ) ∈ Z ( 1 , m ) × Z ( 1 , n )  , let   f  ( i , j ) , ·  : R → R   be a non-negative continuous function. Assume that there exist three positive constants   b 1  ,   b 2   and l with


     4  b 1      ( n + m )   1 p   ·   ( m + n + 2 )    p − 1  p     < l <    4  n + m + 2      p − 1  p   ·   b 2    ( n + m )   1 p      








such that




	  (  g 1  )   

	
  max  τ  (  b 1  )  , 2 τ  (  b 2  )   <   4 p   3 n + 3 m   ·   τ ( l )    ( m + n + 2 )   p − 1     .









Then, for each   λ ∈    3 n + 3 m   p τ ( l )   ,   4 p   p   ( m + n + 2 )   p − 1   · max  τ  (  b 1  )  , 2 τ  (  b 2  )       , problem   (  S λ f  )   admits at least two positive solutions   x k  ,   k = 1 , 2  .





Proof. 

Fix  λ  as in the conclusion, and put   Φ , Ψ ,  I λ    as defined in Section 2 for all   x ∈ S  . Let us employ Lemma 1 to our problem. Clearly,  Φ  and  Ψ  satisfy assumptions   ( A )   and   ( B )   of Lemma 1. Now, let   x 1   and   x 2   be two local minima for   I λ  . Then   x 1   and   x 2   are critical points for   I λ  , so,   x 1   and   x 2   are solutions of problem   (  S  λ  f  )  . Owing to Proposition 2, one has    x 1   ( i , j )  ≥ 0   and    x 2   ( i , j )  ≥ 0   for all   ( i , j ) ∈ Z ( 1 , m ) × Z ( 1 , n )  . It follows that   t  x 1   ( i , j )  +  ( 1 − t )   x 2   ( i , j )  ≥ 0   for every   ( i , j ) ∈ Z ( 1 , m ) × Z ( 1 , n )   and for every   0 ≤ t ≤ 1  . Hence,   Ψ ( t  x 1  +  ( 1 − t )   x 2  ) ≥ 0   for all   0 ≤ t ≤ 1   and   ( C )   is verified. Moreover, put


   ρ 1  =    ( 4  b 1  )  p   p   ( m + n + 2 )   p − 1             and           ρ 2  =    ( 4  b 2  )  p   p   ( m + n + 2 )   p − 1     .  











For all   x ∈ S  , we have


   max     i ∈ Z ( 1 , m )       j ∈ Z ( 1 , n )       | x ( i , j ) |  ≤    ( m + n + 2 )    p − 1  p   4  ·  ∥ x ∥  .  











We obtain


   max     i ∈ Z ( 1 , m )       j ∈ Z ( 1 , n )       | x ( i , j ) |  ≤    ( m + n + 2 )    p − 1  p   4  ·   ( p  ρ 1  )   1 p   =  b 1  ,  








for every   x ∈ S   such that    ∥ x ∥  ≤   ( p  ρ 1  )   1 p    , and


   max     i ∈ Z ( 1 , m )       j ∈ Z ( 1 , n )       | x ( i , j ) |  ≤    ( m + n + 2 )    p − 1  p   4  ·   ( p  ρ 2  )   1 p   =  b 2  ,  








for all   x ∈ S   such that    ∥ x ∥  ≤   ( p  ρ 2  )   1 p    . It follows that


        sup  x ∈  Φ  − 1    ( − ∞ ,  ρ 1  )    Ψ  ( x )    ρ 1       =      sup   ∥ x ∥ <    ( p  ρ 1  )   1 p       ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  , x  ( i , j )  )    ρ 1          ≤       ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  ,  b 1  )    ρ 1          =      p   ( m + n + 2 )   p − 1     4 p   τ  (  b 1  )  ,     








and


        sup  x ∈  Φ  − 1    ( − ∞ ,  ρ 2  )    Ψ  ( x )    ρ 2       =      sup   ∥ x ∥ <    ( p  ρ 2  )   1 p       ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  , x  ( i , j )  )    ρ 2          ≤       ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  ,  b 2  )    ρ 2          =      p   ( m + n + 2 )   p − 1     4 p   τ  (  b 2  )  .     











Let   v ∈ S   be defined by


  v  ( i , j )  =         l ,      i f  ( i , j ) ∈ Z ( 1 , m ) × Z ( 1 , n ) ,       0 ,      i f  i = 0 , j ∈ Z ( 0 , n + 1 )   o r   i = m + 1 , j ∈ Z ( 0 , n + 1 ) ,       0 ,      i f  j = 0 , i ∈ Z ( 0 , m + 1 )   o r   j = n + 1 , i ∈ Z ( 0 , m + 1 ) .          











Clearly, we have   Φ  ( v )  =   ( 2 n + 2 m )  p  ·  l p   . Hence, from     4  b 1      ( n + m )   1 p     ( m + n + 2 )    p − 1  p     < l  , we get   2  ρ 1  < Φ  ( v )    and from   l <    4  n + m + 2      p − 1  p   ·   b 2    ( m + n )   1 p     , we obtain   Φ  ( v )  <   ρ 2  2   . Moreover,


    Ψ ( v )   Φ ( v )   =   p ·   ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  , l )     ( 2 n + 2 m )  ·  l p    =   p τ ( l )   2 n + 2 m   .  











Therefore, owing to   (  g 1  )  , we can get assumptions   (  a 1  )   and   (  a 2  )   of Lemma 1. Further, one has that


  λ ∈    3 n + 3 m   p τ ( l )   ,   4 p   p   ( m + n + 2 )   p − 1   · max  τ  (  b 1  )  , 2 τ  (  b 2  )      .  











Thus, we see from Lemma 1 that problem   (  S λ f  )   admits at least two positive solutions   x k  ,   k = 1 , 2  .  □





Remark 2.

Clearly, problem   (  E  λ  f  )   in [30] can be regarded as the special case   p = 2   of problem   (  S  λ  f  )  . In such a case, we get the set of λ in Theorem 1 which is similar to ([30] Theorem 3.2) such that problem   (  S  λ  f  )   admits at least two positive solutions. In Theorem 1, we get the set of λ that is more specific than the set of λ in ([30] Theorem 3.2), where   λ 1   in the set of λ is just known to be an eigenvalue but not given a definite expression. Compared with that, in this paper, the set of λ we put forward can be calculated to any given number, so it is possible to get the full set of λ. Moreover, we obtain the existence of infinitely many solutions for problem   (  S  λ  f  )   when   1 < p < + ∞  , which extends the case of   p = 2  , discussed in [30].





Now, we mark the discrete problem   (  S λ f  )   as   (  S λ  y , β   )   when   f ( ( i , j ) , x ( i , j ) ) = β ( i , j ) y ( x ( i , j ) )  , that is


   Δ 1   (  ϕ p   (  Δ 1  x  ( i − 1 , j )  )  )  +  Δ 2   (  ϕ p   (  Δ 2  x  ( i , j − 1 )  )  )  + λ β  ( i , j )  y  ( x  ( i , j )  )  = 0 ,    ( i , j )  ∈ Z  ( 1 , m )  × Z  ( 1 , n )  ,  








with boundary conditions


  x ( i , 0 ) = x ( i , n + 1 ) = 0 ,   i ∈ Z ( 0 , m + 1 ) ,  










  x ( 0 , j ) = x ( m + 1 , j ) = 0 ,   j ∈ Z ( 0 , n + 1 ) ,  








where   β : Z ( 1 , m ) × Z ( 1 , n ) → R   is a non-negative and non-zero function and   y : [ 0 , + ∞ ) → R   is a continuous function such that   y ( 0 ) = 0  .



Corollary 1.

Assume that there exist three positive constants   b 1  ,   b 2   and l with


     4  b 1      ( n + m )   1 p   ·   ( m + n + 2 )    p − 1  p     < l <    4  n + m + 2      p − 1  p   ·   b 2    ( n + m )   1 p      








such that




	  (  g 2  )   

	
  max      ∫  0   b 1   y  ( ξ )  d ξ    b  1  p   ,    2   ∫  0   b 2   y  ( ξ )  d ξ     b  2  p    <     4 p    ∫  0  l  y  ( ξ )  d ξ      ( 3 n + 3 m )   l p  ·   ( m + n + 2 )   p − 1      .









Then, for every


      λ ∈     ( 3 n + 3 m )  ·  l p     p ·   ∑  j = 1  n     ∑  i = 1  m    ∫  0  l  β  ( i , j )  y  ( ξ )  d ξ    ,                                                                              =       4 p   p   ( m + n + 2 )   p − 1   · max       ∑  j = 1  n     ∑  i = 1  m     ∫  0   b 1   β  ( i , j )  y  ( ξ )  d ξ     b  1  p   ,    2   ∑  j = 1  n     ∑  i = 1  m     ∫  0   b 2   β  ( i , j )  y  ( ξ )  d ξ     b  2  p       ,      








problem   (  S  λ   y , β   )   admits at least two positive solutions.





Proof. 

Put


  f  (  ( i , j )  , r )  =         β ( i , j ) y ( r ) ,      i f   r ≥ 0 ,       0 ,      i f  r < 0 ,          








for all   ( i , j ) ∈ Z ( 1 , m ) × Z ( 1 , n )   and   r ∈ R  . By Theorem 1 and   (  g 2  )  , we obtain the conclusion.  □





Theorem 2.

For every   ( i , j ) ∈ Z ( 1 , m ) × Z ( 1 , n )  , let   f  ( i , j ) , ·  : R → R   be a non-negative continuous function. Assume that there exist three positive constants   b 1  ,   b 2  , and l with


     4  b 1     ( m + n + 2 )    p − 1  p    ·    1  2 n + 2 m     1 p   < l <   b 2    ( n + m )   1 p    ·    4  m + n + 2      p − 1  p     








such that




	  (  g 3  )   

	
  max  τ  (  b 1  )  , 2 τ  (  b 2  )   <    4  n + m + 2     p − 1   ·   τ ( l )   ( n + m )    .









Then, for all   λ ∈    4 n + 4 m   p τ ( l )   ,   4 p   p   ( m + n + 2 )   p − 1   · max  τ  (  b 1  )  , 2 τ  (  b 2  )       , problem   (  S λ f  )   admits at least two positive solutions.





Proof. 

Let


   ρ 1  =    ( 4  b 1  )  p   p   ( m + n + 2 )   p − 1           and        ρ 2  =    ( 4  b 2  )  p   p   ( m + n + 2 )   p − 1     .  











We have


     sup  x ∈  Φ  − 1    ( − ∞ ,  ρ 1  )    Ψ  ( x )    ρ 1   ≤   p   ( m + n + 2 )   p − 1     4 p   · τ  (  b 1  )   








and


     sup  x ∈  Φ  − 1    ( − ∞ ,  ρ 2  )    Ψ  ( x )    ρ 2   ≤   p   ( m + n + 2 )   p − 1     4 p   · τ  (  b 2  )  .  











For   v ∈ S   defined as


  v  ( i , j )  =         l ,      i f  ( i , j ) ∈ Z ( 1 , m ) × Z ( 1 , n ) ,       0 ,      i f  i = 0 , j ∈ Z ( 0 , n + 1 )   o r   i = m + 1 , j ∈ Z ( 0 , n + 1 ) ,       0 ,      i f  j = 0 , i ∈ Z ( 0 , m + 1 )   o r   j = n + 1 , i ∈ Z ( 0 , m + 1 ) ,          








we obtain   Φ  ( v )  =   ( 2 n + 2 m )  p  ·  l p   . From     4  b 1     ( m + n + 2 )    p − 1  p    ·    1  2 n + 2 m     1 p   < l  , we have    ρ 1  < Φ  ( v )    and from   l <   b 2    ( n + m )   1 p    ·    4  m + n + 2      p − 1  p    , we get   Φ  ( v )  <   ρ 2  2   . It is clear that,


    Ψ ( v )   Φ ( v )   =   p τ ( l )   2 n + 2 m   .  











Owing to   (  g 3  )  , problem   (  S  λ  f  )   admits at least two positive solutions.  □





Theorem 3.

For every   ( i , j ) ∈ Z ( 1 , m ) × Z ( 1 , n )  , let   f  ( i , j ) , ·  : R → R   be a non-negative continuous function. Assume that there are positive constants   e 1  ,   e 2  ,   e 3   and d with


     4  e 1     ( m + n + 2 )    p − 1  p    ·    1  2 n + 2 m     1 p   < d <   4  e 2     ( m + n + 2 )    p − 1  p    ·    1  2 n + 2 m     1 p      a n d     e 2  <  e 3    ,   








such that




	  (  g 4  )   

	
  max  τ  (  e 1  )  , τ  (  e 2  )  ,     ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  ,  e 3  )     e  3  p  −  e  2  p     <    4  p − 1   τ  ( d )     ( n + m )  ·   ( m + n + 2 )   p − 1      .









Then, for all


      λ ∈     ( 2 n + 2 m )  ·  4 p     4 p  · τ  ( d )  p −  ( 2 n + 2 m )  · p τ  (  e 1  )  ·   ( m + n + 2 )   p − 1     ,                                   =       4 p   p ·   ( m + n + 2 )   p − 1   max  τ  (  e 1  )  , τ  (  e 2  )  ,     ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  ,  e 3  )     e  3  p  −  e  2  p        ,      








problem   (  S λ f  )   admits at least two positive solutions   x k  ,   k = 1 , 2  .





Proof. 

Let


   t 1  =    ( 4  e 1  )  p   p   ( m + n + 2 )   p − 1     ,  










   t 2  =    ( 4  e 2  )  p   p   ( m + n + 2 )   p − 1     ,  










   t 3  =     ( 4  e 3  )  p  −   ( 4  e 2  )  p    p   ( m + n + 2 )   p − 1     .  











By (1), we have


   max     i ∈ Z ( 1 , m )       j ∈ Z ( 1 , n )       | x ( i , j ) |  ≤    ( m + n + 2 )    p − 1  p   4  ·   p  t 1    1 p   =  e 1  ,  








for all   x ∈ S   such that    ∥ x ∥  ≤   p  t 1    1 p    , and


   max     i ∈ Z ( 1 , m )       j ∈ Z ( 1 , n )       | x ( i , j ) |  ≤    ( m + n + 2 )    p − 1  p   4  ·   p  t 2    1 p   =  e 2  ,  








for each   x ∈ S   such that    ∥ x ∥  ≤   p  t 2    1 p    , and


   max     i ∈ Z ( 1 , m )       j ∈ Z ( 1 , n )       | x ( i , j ) |  ≤    ( m + n + 2 )    p − 1  p   4  ·   p  t 2  + p  t 3    1 p   =  e 3  ,  








for all   x ∈ S   such that    ∥ x ∥  ≤   p  t 2  + p  t 3    1 p    . One has


     φ (  t 1  )    =     inf  x ∈  Φ  − 1    ( − ∞ ,  t 1  )        sup  x ∈  Φ  − 1    ( − ∞ ,  t 1  )    Ψ  ( x )   − Ψ  ( x )     t 1  − Φ  ( x )            ≤      sup  x ∈  Φ  − 1    ( − ∞ ,  t 1  )    Ψ  ( x )    t 1          =      sup   ∥ x ∥ <    p  t 1    1 p       ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  , x  ( i , j )  )    t 1          ≤       ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  ,  e 1  )    t 1          =      p τ  (  e 1  )  ·   ( m + n + 2 )   p − 1     4 p   ,     










     φ (  t 2  )    =     inf  x ∈  Φ  − 1    ( − ∞ ,  t 2  )        sup  x ∈  Φ  − 1    ( − ∞ ,  t 2  )    Ψ  ( x )   − Ψ  ( x )     t 2  − Φ  ( x )            ≤      sup  x ∈  Φ  − 1    ( − ∞ ,  t 2  )    Ψ  ( x )    t 2          =      sup   ∥ x ∥ <    p  t 2    1 p       ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  , x  ( i , j )  )    t 2          ≤       ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  ,  e 2  )    t 2          =      p τ  (  e 2  )  ·   ( m + n + 2 )   p − 1     4 p   ,     








and


     γ (  t 2  ,  t 3  )    =      sup  x ∈  Φ  − 1    ( − ∞ ,  t 2  +  t 3  )    Ψ  ( x )    t 3          =      sup   ∥ x ∥ <    p  t 2  + p  t 3    1 p     Ψ  ( x )    t 3          =      sup   ∥ x ∥ <    p  t 2  + p  t 3    1 p       ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  , x  ( i , j )  )    t 3          ≤       ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  ,  e 3  )    t 3          =      p   ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  ,  e 3  )  ·   ( m + n + 2 )   p − 1       ( 4  e 3  )  p  −   ( 4  e 2  )  p    .     











Let   u ∈ S   be defined by


  u  ( i , j )  =         d ,      i f  ( i , j ) ∈ Z ( 1 , m ) × Z ( 1 , n ) ,       0 ,      i f  i = 0 , j ∈ Z ( 0 , n + 1 )   o r   i = m + 1 , j ∈ Z ( 0 , n + 1 ) ,       0 ,      i f  j = 0 , i ∈ Z ( 0 , m + 1 )   o r   j = n + 1 , i ∈ Z ( 0 , m + 1 ) .          











Then we have


     β (  t 1  ,  t 2  )    =     inf  x ∈  Φ  − 1    ( − ∞ ,  t 1  )     sup  y ∈  Φ  − 1    [  t 1  ,  t 2  )      Ψ ( y ) − Ψ ( x )   Φ ( y ) − Φ ( x )           ≥     inf  x ∈  Φ  − 1    ( − ∞ ,  t 1  )      Ψ ( u ) − Ψ ( x )   Φ ( u ) − Φ ( x )           ≥     inf  x ∈  Φ  − 1    ( − ∞ ,  t 1  )      Ψ ( u ) − Ψ ( x )   Φ ( u )           ≥      Ψ ( u )   Φ ( u )   −    sup  x ∈  Φ  − 1    ( − ∞ ,  t 1  )    Ψ  ( x )    t 1           =        ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  , d )      ( 2 n + 2 m )  ·  d p   p   −    sup   ∥ x ∥ <    p  t 1    1 p       ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  , x  ( i , j )  )    t 1           ≥      p   ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  , d )     ( 2 n + 2 m )   d p    −     ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  ,  e 1  )    t 1           =      p τ ( d )   2 n + 2 m   −   p τ  (  e 1  )  ·   ( m + n + 2 )   p − 1     4 p   .     











Hence, from     4  e 1     ( m + n + 2 )    p − 1  p    ·    1  2 n + 2 m     1 p   < d <   4  e 2     ( m + n + 2 )    p − 1  p    ·    1  2 n + 2 m     1 p    ,    e 2  <  e 3    and   (  g 4  )  , we obtain   φ  (  t 1  )  < β  (  t 1  ,  t 2  )   ,   φ  (  t 2  )  < β  (  t 1  ,  t 2  )    and   γ  (  t 2  ,  t 3  )  < β  (  t 1  ,  t 2  )   . Then it is clear that for all


     λ ∈     ( 2 n + 2 m )  ·  4 p     4 p  · τ  ( d )  p −  ( 2 n + 2 m )  · p τ  (  e 1  )  ·   ( m + n + 2 )   p − 1     ,                                   =       4 p   p ·   ( m + n + 2 )   p − 1   max  τ  (  e 1  )  , τ  (  e 2  )  ,     ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  ,  e 3  )     e  3  p  −  e  2  p        ,     








problem   (  S λ f  )   admits at least two positive solutions   x k  ,   k = 1 , 2  .  □





Let


   B ∞  =  lim sup  x → + ∞        ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  , x )    x p    .  











When    B ∞  = + ∞  , we agree to read    1  B ∞   = 0  .



Theorem 4.

Assume that there exist two real sequences   {  α t  }   and   {  β t  }  , with    lim  t → + ∞    β t  = + ∞  , such that


   0 ≤  α t  <   4  β t      ( 2 n + 2 m )   1 p   ·   ( m + n + 2 )    p − 1  p     ,     f o r  a l l   t ∈ N ,   








and


    Q ∞  =  lim  t → + ∞       ∑  j = 1  n     ∑  i = 1  m    max   | x |  ≤  β t    F  (  ( i , j )  , x )  −   ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  ,  α t  )      ( 4  β t  )  p  −  ( 2 n + 2 m )    (  α t  )  p    ( m + n + 2 )   p − 1     <   B ∞    ( 2 n + 2 m )  ·   ( m + n + 2 )   p − 1     .   











Then, for every   λ ∈    2 n + 2 m  p  ·  1  B ∞   ,  1  p   ( m + n + 2 )   p − 1     ·  1  Q ∞     , problem   (  S λ f  )   admits an unbounded sequence of solutions.





Proof. 

Fix   λ ∈    2 n + 2 m  p  ·  1  B ∞   ,  1  p   ( m + n + 2 )   p − 1     ·  1  Q ∞      and put


   γ t  =    ( 4  β t  )  p   p   ( m + n + 2 )   p − 1     ,     f o r  e a c h   t ∈ N .  











From (1), we have


   max     i ∈ Z ( 1 , m )       j ∈ Z ( 1 , n )       | x ( i , j ) |  ≤    ( m + n + 2 )    p − 1  p   4  ·   p  γ t    1 p   =  β t  ,    f o r  e v e r y    x ∈ S ,  








such that    ∥ x ∥  ≤   p  γ t    1 p     for each   t ∈ N  , and we obtain


     φ  (  γ t  )  ≤  inf  x ∈  Φ  − 1    ( − ∞ ,  γ t  )        ∑  j = 1  n     ∑  i = 1  m    max   | x |  ≤  β t    F  (  ( i , j )  , x )  −   ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  , x )       ( 4  β t  )  p   p   ( m + n + 2 )   p − 1     −    ∥ x ∥  p  p    .     











Now, we choose    η t  ∈ S  , defined by


   η t   ( i , j )  =          α t  ,      i f  ( i , j ) ∈ Z ( 1 , m ) × Z ( 1 , n ) ,       0 ,      i f  i = 0 , j ∈ Z ( 0 , n + 1 )   o r   i = m + 1 , j ∈ Z ( 0 , n + 1 ) ,       0 ,      i f  j = 0 , i ∈ Z ( 0 , m + 1 )   o r   j = n + 1 , i ∈ Z ( 0 , m + 1 ) .          











Clearly, we get   Φ  (  η t  )  =    2 n + 2 m  p    α  t  p    and    ∥   η t    ∥  p  < p  γ t   . One has


  φ  (  γ t  )  ≤      ∑  j = 1  n     ∑  i = 1  m    max   | x |  ≤  β t    F  (  ( i , j )  , x )  −   ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  ,  α t  )   · p   ( m + n + 2 )   p − 1       ( 4  β t  )  p  −  ( 2 n + 2 m )   α  t  p  ·   ( m + n + 2 )   p − 1     .  











Therefore,


  γ ≤  lim  t → + ∞   φ  (  γ t  )  ≤ p  Q ∞  ·   ( m + n + 2 )   p − 1   < + ∞ .  











Now, we need to prove that   I λ   is unbounded from below. To this end, we first assume that    B ∞  = + ∞  . Fix M such that   M >   2 n + 2 m   p λ     and let   {  e t  }   be a sequence of positive numbers, with    lim  t → + ∞    e t  = + ∞  , such that     ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  ,  e t  )  > M  e  t  p   ,   ∀ t ∈ N  . Define a sequence   {  d t  }   in S with


   d t   ( i , j )  =          e t  ,      i f  ( i , j ) ∈ Z ( 1 , m ) × Z ( 1 , n ) ,       0 ,      i f  i = 0 , j ∈ Z ( 0 , n + 1 )   o r   i = m + 1 , j ∈ Z ( 0 , n + 1 ) ,       0 ,      i f  j = 0 , i ∈ Z ( 0 , m + 1 )   o r   j = n + 1 , i ∈ Z ( 0 , m + 1 ) .          











It is clear that


   I λ   (  d t  )  =    2 n + 2 m  p    e  t  p  − λ   ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  ,  e t  )  <    2 n + 2 m  p    e  t  p  − λ M  e  t  p  ,  








which implies that    lim  t → + ∞    I λ   (  d t  )  = − ∞  . Next, we assume that    B ∞  < + ∞   and take   ε > 0   such that   ε <  B ∞  −   2 n + 2 m   p λ    . Then we have the sequence of positive numbers   {  e t  }   such that    lim  t → + ∞    e t  = + ∞   and


   (  B ∞  − ε )   e  t  p  <   ∑  j = 1  n     ∑  i = 1  m   F  (  ( i , j )  ,  e t  )  <  (  B ∞  + ε )   e  t  p  ,    ∀  t ∈ N .  











It is easy to see that


      I λ   (  d t  )  <    2 n + 2 m  p  − λ  B ∞  + λ ε  ·  e  t  p  .     











So,    lim  t → + ∞    I λ   (  d t  )  = − ∞   and   I λ   is unbounded from below. The proof is complete.  □





Remark 3.

When    B ∞  = + ∞  , according to Theorem 4, we have that for every   λ ∈  0 ,  1  p   ( m + n + 2 )   p − 1     ·  1  Q ∞     , problem   (  S λ f  )   admits an unbounded sequence of solutions.





Set


   D ∞  =  lim inf  x → + ∞       ∑  j = 1  n     ∑  i = 1  m    max  | ξ | ≤ x   F  (  ( i , j )  , ξ )    x p   .  











When    D ∞  = 0  , we agree to read    1  D ∞   = + ∞  .



Theorem 5.

Assume that    D ∞  <    4 p   B ∞     ( 2 n + 2 m )    ( m + n + 2 )   p − 1      . Then, for all


   λ ∈    2 n + 2 m  p  ·  1  B ∞   ,   4 p   p   ( m + n + 2 )   p − 1     ·  1  D ∞    ,   








problem   (  S λ f  )   admits an unbounded sequence of solutions.





Proof. 

Let   {  β t  }   be a sequence of positive numbers with    lim  t → + ∞    β t  = + ∞   and


   lim  t → + ∞       ∑  j = 1  n     ∑  i = 1  m    max   | x |  ≤  β t    F  (  ( i , j )  , x )     (  β t  )  p   =  D ∞  .  











Setting    α t  = 0   for each   t ∈ N  , we can reach the conclusion by Theorem 4.  □





Remark 4.

When    B ∞  = + ∞  , according to the Theorem 5, we have that for every   λ ∈  0 ,   4 p   p   ( m + n + 2 )   p − 1     ·  1  D ∞     , problem   (  S λ f  )   admits an unbounded sequence of solutions. When    D ∞  = 0  , according to the Theorem 5, we have that for every   λ ∈    2 n + 2 m  p  ·  1  B ∞   , + ∞   , problem   (  S λ f  )   admits an unbounded sequence of solutions. When    B ∞  = + ∞   and    D ∞  = 0  , according to the Theorem 5, we have that for every   λ > 0  , problem   (  S λ f  )   admits an unbounded sequence of solutions.





Now, we mark the problem   (  S λ f  )   as   (  S λ  g , α   )   when   f ( ( i , j ) , x ( i , j ) ) = α ( i , j ) g ( x ( i , j ) )  , that is


   Δ 1   (  ϕ p   (  Δ 1  x  ( i − 1 , j )  )  )  +  Δ 2   (  ϕ p   (  Δ 2  x  ( i , j − 1 )  )  )  + λ α  ( i , j )  g  ( x  ( i , j )  )  = 0 ,    ( i , j )  ∈ Z  ( 1 , m )  × Z  ( 1 , n )  ,  








with boundary conditions


  x ( i , 0 ) = x ( i , n + 1 ) = 0 ,   i ∈ Z ( 0 , m + 1 ) ,  










  x ( 0 , j ) = x ( m + 1 , j ) = 0 ,   j ∈ Z ( 0 , n + 1 ) ,  








where   α : Z ( 1 , m ) × Z ( 1 , n ) → R   is a non-negative and non-zero function and   g : [ 0 , + ∞ ) → R   is a non-negative continuous function such that   g ( 0 ) = 0  .



Corollary 2.

Assume that


    lim inf  x → + ∞       ∫  0  x  g  ( s )  d s    x p   <   4 p    ( 2 n + 2 m )    ( m + n + 2 )   p − 1      lim sup  x → + ∞        ∫ 0 x  g  ( s )  d s    x p    .   











Then, for every


      λ   ∈     2 n + 2 m   p   lim sup  x → + ∞         ∑  j = 1  n     ∑  i = 1  m    ∫  0  x  α  ( i , j )  g  ( s )  d s    x p       ,                                                      =       4 p   p   ( m + n + 2 )   p − 1   ·   lim inf  x → + ∞        ∑  j = 1  n     ∑  i = 1  m    ∫  0  x  α  ( i , j )  g  ( s )  d s    x p       ,      








problem   (  S λ  g , α   )   admits an unbounded sequence of positive solutions.





Proof. 

Set


  f  (  ( i , j )  , x )  =         α ( i , j ) g ( x ) ,      x ≥ 0 ,       0 ,      x < 0 ,          








for each   ( i , j ) ∈ Z ( 1 , m ) × Z ( 1 , n )   and   x ∈ R  . Taking Proposition 2 into account, our goal can be obtained owing to Theorem 5.  □






4. Examples


We give two examples to illustrate our results.



Example 1.

Put   p = 3 ,  b 1  = 1 ,  b 2  = 14 , l = 2 , m = 2   and   n = 3  . Let   β : Z ( 1 , 2 ) × Z ( 1 , 3 ) → R   be a positive function and set   A =   ∑  j = 1  3     ∑  i = 1  2   β  ( i , j )   . Make   y : [ 0 , + ∞ ) → R   be the function defined as follows


   y  ( r )  =          r 14  ,      0 ≤ r < 2 ,         ( 4 − r )  14  ,      2 ≤ r < 3 ,       1 ,      3 ≤ r .           











One has


    ∫  0  1  y  ( ξ )  d ξ =  ∫  0  1   r 14  d r =  1 15  ,   










    2  14 3   ·  ∫  0  14  y  ( ξ )  d ξ =  2  14 3   ·  [  ∫  0  2   r 14  d r +  ∫  2  3    ( 4 − r )  14  d r +  ∫  3  14  1 d r ]  =  1095 343  ,   








and


     4 3    ( 3 × 2 + 3 × 3 )  (  2 3  ×   ( 3 + 2 + 2 )  2  )    ∫  0  2  y  ( ξ )  d ξ =   4 3    ( 3 × 2 + 3 × 3 )  (  2 3  ×   ( 3 + 2 + 2 )  2  )    ∫  0  2   r 14  d r =   262 , 144   11 , 025   .   











We get


    max    ∫  0  1  y  ( ξ )  d ξ ,    2  14 3   ·  ∫  0  14  y  ( ξ )  d ξ   <   4 3    ( 3 × 2 + 3 × 3 )  × (  2 3  ×   ( 3 + 2 + 2 )  2  )   ×  ∫  0  2  y  ( ξ )  d ξ ,    








and


     4 × 1     ( 2 + 3 )   1 3   ·   ( 2 + 3 + 2 )   2 3     < 2 <    4  2 + 3 + 2     2 3   ×  14   ( 2 + 3 )   1 3    .   











Applying to Corollary 1, for each   λ ∈ (  75  4096 A   ,  448  3285 A   )  , the following problem


    Δ 1   (  ϕ 3   (  Δ 1  x  ( i − 1 , j )  )  )  +  Δ 2   (  ϕ 3   (  Δ 2  x  ( i , j − 1 )  )  )  + λ β  ( i , j )  y  ( x  ( i , j )  )  = 0 ,    ( i , j )  ∈ Z  ( 1 , 2 )  × Z  ( 1 , 3 )  ,   








with boundary conditions


   x ( i , 0 ) = x ( i , 4 ) = 0 ,   i ∈ Z ( 0 , 3 ) ,   










   x ( 0 , j ) = x ( 3 , j ) = 0 ,   j ∈ Z ( 0 , 4 ) ,   








admits at least two positive solutions.





Example 2.

Put   m = 2  ,   n = 2   and   p = 2  . Set   α ( i , j ) = 1  , for   ( i , j ) ∈ Z ( 1 , 2 ) × Z ( 1 , 2 )   and let   g :  [ 0 , + ∞ ) → R   be the function defined as follows


   g  ( x )  =          18 5  x + x cos  ( ln  ( x )  )  + 2 x sin  ( ln  ( x )  )  ,      x > 0 ,       0 ,      x = 0 .           











We have


    lim inf  x → + ∞       ∫  0  x  g  ( s )  d s    x 2   =  lim inf  x → + ∞      9 5   x 2  +  x 2  sin  ( ln  ( x )  )    x 2   =  4 5  ,   








and


    lim sup  x → + ∞       ∫  0  x  g  ( s )  d s    x 2   =  lim sup  x → + ∞      9 5   x 2  +  x 2  sin  ( ln  ( x )  )    x 2   =  14 5  .   











Since


     4 2    ( 2 × 2 + 2 × 2 )  ×   ( 2 + 2 + 2 )   2 − 1     >   4 5   14 5   ,   








one has


    lim inf  x → + ∞       ∫  0  x  g  ( s )  d s    x 2   <   4 2    ( 2 × 2 + 2 × 2 )  ×   ( 2 + 2 + 2 )   2 − 1     ·  lim sup  x → + ∞       ∫  0  x  g  ( s )  d s    x 2   .   











By Corollary 2, for each   λ ∈ (  5 14  ,  5 12  )  , the following problem


             Δ 1    ϕ 2    Δ 1  x  ( i − 1 , j )    +  Δ 2    ϕ 2    Δ 2  x  ( i , j − 1 )            +    λ [  18 5  x  ( i , j )  + x  ( i , j )  cos  ( ln  ( x  ( i , j )  )  )  + 2 x  ( i , j )  sin  ( ln  ( x  ( i , j )  )  )  ] = 0 ,      








for   ( i , j ) ∈ Z ( 1 , 2 ) × Z ( 1 , 2 )  , with boundary conditions


   x ( i , 0 ) = x ( i , 3 ) = 0 ,   i ∈ Z ( 0 , 3 ) ,   










   x ( 0 , j ) = x ( 3 , j ) = 0 ,   j ∈ Z ( 0 , 3 ) ,   








admits an unbounded sequence of positive solutions.






5. Conclusions


In this paper, we consider the existence of multiple solutions for a partial discrete Dirichlet problem   (  S λ f  )   involving the p-Laplacian. For problem   (  S λ f  )  , in the framework of variational methods, we give that the set of  λ  can be more specific than that in the special case of   p = 2   ([30] Theorem 3.2). Furthermore, with appropriate assumptions on the nonlinear term, we get that problem   (  S λ f  )   admits an unbounded sequence of solutions by using Theorem 2.1 of [34]. By the method of the critical point theory, we obtain sufficient conditions to guarantee the existence of multiple solutions for problem   (  S λ f  )  , which are different from these conditions in [30,33,34]. In the future, we will consider problem   (  S λ f  )   with fewer and looser constraints and we could consider the existence of partial difference equations with different boundary value conditions.







Author Contributions


All authors contributed equally and significantly in writing this paper. All authors have read and agreed to the published version of the manuscript.




Funding


This work is supported by the National Natural Science Foundation of China (Grant No. 11971126), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT 16R16), the Innovation Research for the postgraduates of Guangzhou University (Grant No. 2019GDJC-D04), and Science and Technology Planning Project of Guangdong Province of China (Grant No. 2020A1414010106).




Conflicts of Interest


The authors declare that they have no conflict of interest.




References


	



Elaydi, S. An Introduction to Difference Equations, 3rd ed.; Springer: New York, NY, USA, 2011. [Google Scholar]

	



Kelly, W.G.; Peterson, A.C. Difference Equations: An Introduction with Applications; Academic Press: San Diego, CA, USA; New York, NY, USA; Basel, Switzerland, 1991. [Google Scholar]

	



Yu, J.S.; Zheng, B. Modeling Wolbachia infection in mosquito population via discrete dynamical model. J. Differ. Equ. Appl. 2019, 25, 1549–1567. [Google Scholar] [CrossRef]

	



Balanov, Z.; Garcia–Azpeitia, C.; Krawcewicz, W. On variational and topological methods in nonlinear difference equations. Commun. Pure Appl. Anal. 2018, 17, 2813–2844. [Google Scholar] [CrossRef]

	



Zhou, Z.; Yu, J.S.; Chen, Y.M. Homoclinic solutions in periodic difference equations with saturable nonlinearity. Sci. China Math. 2011, 54, 83–93. [Google Scholar] [CrossRef]

	



Zhou, Z.; Ma, D.F. Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials. Sci. China Math. 2015, 58, 781–790. [Google Scholar] [CrossRef]

	



Chen, P.; Tang, X.H. Existence of homoclinic orbits for 2nth-order nonlinear difference equations containing both many advances and retardations. J. Math. Anal. Appl. 2011, 381, 485–505. [Google Scholar] [CrossRef]

	



Lin, G.H.; Zhou, Z. Homoclinic solutions in non-periodic discrete ϕ-Laplacian equations with mixed nonlinearities. Appl. Math. Lett. 2017, 64, 15–20. [Google Scholar] [CrossRef]

	



Erbe, L.; Jia, B.G.; Zhang, Q.Q. Homoclinic solutions of discrete nonlinear systems via variational method. J. Appl. Anal. Comput. 2019, 9, 271–294. [Google Scholar] [CrossRef]

	



Zhang, Q.Q. Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions. Commun. Pure Appl. Anal. 2019, 18, 425–434. [Google Scholar] [CrossRef]

	



Lin, G.H.; Zhou, Z. Homoclinic solutions of discrete ϕ-Laplacian equations with mixed nonlinearities. Commun. Pure Appl. Anal. 2018, 17, 1723–1747. [Google Scholar] [CrossRef]

	



Iannizzotto, A.; Tersian, S.A. Multiple homoclinic solutions for the discrete p-Laplacian via critical point theory. J. Math. Anal. Appl. 2013, 403, 173–182. [Google Scholar] [CrossRef]

	



Guiro, A.; Kone, B.; Ouaro, S. Weak homoclinic solutions of anisotropic difference equation with variable exponents. Adv. Differ. Equ. 2012, 2012, 154. [Google Scholar] [CrossRef]

	



Shi, H.P. Periodic and subharmonic solutions for second-order nonlinear difference equations. J. Appl. Math. Comput. 2015, 48, 157–171. [Google Scholar] [CrossRef]

	



Zhou, Z.; Yu, J.S.; Chen, Y.M. Periodic solutions of a 2nth-order nonlinear difference equation. Sci. China Math. 2010, 53, 41–50. [Google Scholar] [CrossRef]

	



Mei, P.; Zhou, Z.; Lin, G.H. Periodic and subharmonic solutions for a 2nth-order ϕc -Laplacian difference equation containing both advances and retardations. Discret. Contin. Dyn. Syst. Ser. S 2019, 12, 2085–2095. [Google Scholar]

	



Avci, M.; Pankov, A. Nontrivial solutions of discrete nonlinear equations with variable exponent. J. Math. Anal. Appl. 2015, 431, 22–33. [Google Scholar] [CrossRef]

	



Lin, G.H.; Zhou, Z.; Yu, J.S. Ground state solutions of discrete asymptotically linear Schrödinger equations with bounded and non-periodic potentials. J. Dynam. Differ. Equ. 2020, 32, 527–555. [Google Scholar] [CrossRef]

	



Long, Y.H.; Wang, S.H. Multiple solutions for nonlinear functional difference equations by the invariant sets of descending flow. J. Differ. Equ. Appl. 2019, 25, 1768–1789. [Google Scholar] [CrossRef]

	



Long, Y.H.; Chen, J.L. Existence of multiple solutions to second-order discrete Neumann boundary value problems. Appl. Math. Lett. 2018, 83, 7–14. [Google Scholar] [CrossRef]

	



Zhou, Z.; Su, M.T. Boundary value problems for 2n-order ϕc-Laplacian difference equations containing both advance and retardation. Appl. Math. Lett. 2015, 41, 7–11. [Google Scholar] [CrossRef]

	



Zhou, Z.; Ling, J.X. Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with ϕc-Laplacian. Appl. Math. Lett. 2019, 91, 28–34. [Google Scholar] [CrossRef]

	



D’Aguì, G.; Mawhin, J.; Sciammetta, A. Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian. J. Math. Anal. Appl. 2017, 447, 383–397. [Google Scholar] [CrossRef]

	



Bonanno, G.; Jebelean, P.; Şerban, C. Superlinear discrete problems. Appl. Math. Lett. 2016, 52, 162–168. [Google Scholar] [CrossRef]

	



Bonanno, G.; Candito, P.; D’Aguì, G. Positive solutions for a nonlinear parameter-depending algebraic system. Electron. J. Differ. Equ. 2015, 2015, 1–14. [Google Scholar]

	



Bonanno, G.; Candito, P.; D’Aguì, G. Variational methods on finite dimensional banach spaces and discrete problems. Adv. Nonlinear Stud. 2014, 14, 915–939. [Google Scholar] [CrossRef]

	



Dinca, G.; Jebelean, P.; Mawhin, J. Variational and topological methods for Dirichlet problems with p-Laplacian. Port. Math. 2001, 58, 339–378. [Google Scholar]

	



Moghadam, M.K.; Avci, M. Existence results to a nonlinear p(k)-Laplacian difference equation. J. Differ. Equ. Appl. 2017, 23, 1652–1669. [Google Scholar]

	



Chen, Y.S.; Zhou, Z. Existence of three solutions for a nonlinear discrete boundary value problem with ϕc-Laplacian. Symmetry 2020, 12, 1839. [Google Scholar] [CrossRef]

	



Heidarkhani, S.; Imbesi, M. Multiple solutions for partial discrete Dirichlet problems depending on a real parameter. J. Differ. Equ. Appl. 2015, 21, 96–110. [Google Scholar] [CrossRef]

	



Galewski, M.; Orpel, A. On the existence of solutions for discrete elliptic boundary value problems. Appl. Anal. 2010, 89, 1879–1891. [Google Scholar] [CrossRef]

	



Imbesi, M.; Bisci, G.M. Discrete elliptic Dirichlet problems and nonlinear algebraic systems. Mediterr. J. Math. 2016, 13, 263–278. [Google Scholar] [CrossRef]

	



Bonanno, G.; Candito, P. Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities. J. Differ. Equ. 2008, 244, 3031–3059. [Google Scholar] [CrossRef]

	



Bonanno, G.; Bisci, G.M. Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Bound. Value Probl. 2009, 2009, 1–20. [Google Scholar] [CrossRef]












	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






nav.xhtml


  mathematics-08-02030


  
    		
      mathematics-08-02030
    


  




  





