New High Accuracy Analysis of a Double Set Parameter Nonconforming Element for the Clamped Kirchhoff Plate Unilaterally Constrained by an Elastic Obstacle
Abstract
:1. Introduction
2. A Twelve Parameter Double Set Parameter Element and Its Typical Properties
3. High Accuracy Analysis
4. Numerical Experiment
Author Contributions
Funding
Conflicts of Interest
References
- Tosone, C.; Maceri, A. The clamped plate with elastic unilateral obstacles: A finite element approach. Math. Model. Methods Appl. Sci. 2003, 13, 1231–1243. [Google Scholar] [CrossRef]
- Glowinski, R. Numerical Methods for Nonlinear Variational Inequality Problems; Springer: New York, NY, USA, 1984. [Google Scholar]
- Wang, L.H. Some strongly discontinuous nonconforming finite element approximations of a fourth order variational inequality with displacement obstacle. Acta. Numer. Math. 1992, 14, 98–101. [Google Scholar]
- Shi, D.Y.; Chen, S.C. Quasi conforming element approximation for a fourth order variational inequality with displacement obstacle. Acta Math. Sci. 2003, 23B, 61–66. [Google Scholar] [CrossRef]
- Shi, D.Y.; Chen, S.C. General estimates on nonconforming elements for a fourth order variational problem. Numer. Math. Sin. 2003, 25, 99–106. [Google Scholar]
- Brenner, S.C.; Sung, L.Y.; Zhang, Y. Finite element methods for the displacement obstacle problem of clamped plates. Math. Comp. 2012, 81, 1247–1262. [Google Scholar] [CrossRef]
- Brenner, S.C.; Sung, L.Y.; Zhang, H.C.; Zhang, Y. A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates. J. Comput. Appl. Math. 2013, 254, 31–42. [Google Scholar] [CrossRef]
- Shi, D.Y.; Pei, L.F. Double set parameter finite element method for two-sided displacement obstacle problem of clamped plate. J. Math. Anal. Appl. 2016, 436, 203–216. [Google Scholar] [CrossRef]
- Shi, D.Y.; Pei, L.F. A new error analysis of Bergan’s energy-orthogonal element for two-sided displacement obstacle problem of clamped plate. J. Math. Anal. Appl. 2016, 442, 339–352. [Google Scholar] [CrossRef]
- Han, W.M.; Hua, D.Y.; Wang, L.H. Nonconforming finite element methods for a clamped plate with elastic unilateral obstacle. J. Integral Eq. Appl. 2006, 18, 267–284. [Google Scholar] [CrossRef]
- Gustafsson, T.; Stenberg, R.; Videman, J. A stabilised finite element method for the plate obstacle problem. Br. Numer. Math. 2018, 2018, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Li, M.X.; Lin, Q.; Zhang, S.H. Superconvergence of finite element method for the Signorini problem. J. Comput. Appl. Math. 2008, 222, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.Y.; Ren, J.C.; Gong, W. Convergence and superconvergence analysis of a nonconforming finite element method for solving the Signorini problem. Nonlinear Anal. Theor. 2012, 75, 3493–3502. [Google Scholar] [CrossRef]
- Shi, D.Y.; Guan, H.B.; Guan, X.F. Superconvergence analysis of finite element method for a second-type variational inequality. J. Appl. Math. 2012, 2012, 1–12. [Google Scholar] [CrossRef]
- Xu, C.; Shi, D.Y. Superconvergence analysis of low order nonconforming finite element methods for variational inequality problem with displacement obstacle. Appl. Math. Comp. 2019, 348, 1–11. [Google Scholar] [CrossRef]
- Chen, S.C.; Yin, L.; Mao, S.P. An anisotropic, superconvergent nonconforming plate finite element. J. Comput. Appl. Math. 2008, 220, 96–110. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.Y.; Wu, Y.M. Uniform superconvergent analysis of a new mixed finite element method for nonlinear Bi-wave singular perturbation problem. Appl. Math. Lett. 2019, 93, 131–138. [Google Scholar] [CrossRef]
- Hu, J.; Shi, Z.C.; Yang, X.Q. Superconvergence of both two and three dimensional rectangular Morley elements for biharmonic equations. Mathematics 2015, 132, 491–509. [Google Scholar]
- Ruggieri, M.; Speciale, M.P. Approximate analysis of a nonlinear dissipative model. Acta Appl. Math. 2014, 132, 549–559. [Google Scholar] [CrossRef]
- Shi, D.Y.; Mao, S.P.; Chen, S.C. On the anisotropic accuracy analysis of ACM’s nonconforming finite element. J. Comput. Math. 2005, 23, 185–198. [Google Scholar]
- Frehse, J. On the regularity of the solution of the biharmonic variational inequality. Manuscripta Math. 1973, 9, 91–103. [Google Scholar] [CrossRef]
- Schild, B. A regularity result for polyharmonic variational inequalities with thin obstacles. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1984, 11, 87–122. [Google Scholar]
- Chen, S.C.; Shi, Z.C. Double set parameter method of constructing stiffness matrices. Numer. Math. Sin. 1991, 3, 286–296. [Google Scholar]
- Chen, S.C.; Shi, D.Y. The error estimates for double set parameter elemet. J. Eng. Math. 2005, 22, 599–605. [Google Scholar]
- Stummel, F. The generalized patch test. SIAM J. Numer. Anal. 1979, 16, 449–471. [Google Scholar] [CrossRef]
- Shi, Z.C. The F-E-M-test for convergence of nonconforming finite element. Math. Comp. 1987, 49, 391–405. [Google Scholar]
- Shi, D.Y. Studies on Nonconforming Elements. Ph.D. Thesis, Xi’an Jiaotong University, Xi’an, China, 1997. [Google Scholar]
- Mao, S.P.; Chen, S.C. A quadrilateral nonconforming finite element for linear elasticity problem. Adv. Comput. Math. 2008, 28, 81–100. [Google Scholar] [CrossRef]
- Chen, S.C.; Zhao, Y.C.; Shi, D.Y. Non C0 nonconforming elements for elliptic fourth order singular perpurbation problem. J. Comput. Math. 2005, 23, 185–198. [Google Scholar]
- Xie, P.L.; Shi, D.Y.; Li, H. A new robust C0-type nonconforming triangular element for singular perturbation problems. Appl. Math. Comput. 2010, 217, 3832–3843. [Google Scholar] [CrossRef]
- Chen, S.C.; Liu, M.F.; Qiao, Z.H. An anisotropic nonconforming element for fourth order elliptic singular perturbation problem. Int. J. Numer. Anal. Model. 2010, 7, 766–784. [Google Scholar]
- Ciarlet, P.G. The Finite Element Method for Elliptic Problems; North-Holland: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Brenner, S.C.; Scott, L.R. Mathematics Theory Finite Element Methods; Springer: New York, NY, USA, 1994. [Google Scholar]
= | 13.50099036072611 | 3.60334964063092 | 0.88702928335453 | 0.20887990183367 | 0.04536489180482 |
0.048482 | 0.073726 | 0.207029 | 0.667169 | 51.440274 | |
= | 13.48345125601387 | 3.59535482262866 | 0.88451602203801 | 0.20828947880233 | 0.04523833745855 |
0.108480 | 0.394770 | 2.421881 | 10.936272 | 50.397260 | |
= | 11.44582259361440 | 2.88258835869155 | 0.69885436205702 | 0.16610400089376 | 0.03616945545106 |
5.307547 | 28.444150 | 187.683438 | 793.338376 | 3411.901540 | |
= | 11.241262037642660 | 2.87323216390585 | 0.62499932334938 | 0.15026200240187 | 0.03545375844482 |
17.876946 | 99.593113 | 919.972509 | 5191.457737 | 19,710.033405 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, D.; Pei, L. New High Accuracy Analysis of a Double Set Parameter Nonconforming Element for the Clamped Kirchhoff Plate Unilaterally Constrained by an Elastic Obstacle. Mathematics 2020, 8, 2038. https://doi.org/10.3390/math8112038
Shi D, Pei L. New High Accuracy Analysis of a Double Set Parameter Nonconforming Element for the Clamped Kirchhoff Plate Unilaterally Constrained by an Elastic Obstacle. Mathematics. 2020; 8(11):2038. https://doi.org/10.3390/math8112038
Chicago/Turabian StyleShi, Dongyang, and Lifang Pei. 2020. "New High Accuracy Analysis of a Double Set Parameter Nonconforming Element for the Clamped Kirchhoff Plate Unilaterally Constrained by an Elastic Obstacle" Mathematics 8, no. 11: 2038. https://doi.org/10.3390/math8112038
APA StyleShi, D., & Pei, L. (2020). New High Accuracy Analysis of a Double Set Parameter Nonconforming Element for the Clamped Kirchhoff Plate Unilaterally Constrained by an Elastic Obstacle. Mathematics, 8(11), 2038. https://doi.org/10.3390/math8112038