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Abstract: This paper analyzes the forecast performance of historical S&P500 and Dow Jones
Industrial Average (DJIA) excess returns while using nonparametric functional data analysis (NP-FDA).
The empirical results show that the NP-FDA forecasting strategy outperforms not only the the
prevailing-mean model, but also the traditional univariate predictive regressions with standard predictors
used in the literature and, most cases, also combination approaches that use all predictors jointly.
In addition, our results clearly have important implications for investors, from an asset allocation
perspective, a mean-variance investor realizes substantial economic gains. Indeed, our results show that
NP-FDA is the only one individual model that can overcome the historical average forecasts for excess
returns in statistically and economically significant manners for both S&P500 and DJIA during the entire
period, NBER recession, and expansions periods.

Keywords: return forecast; nonparametric functional data analysis; performance evaluation; predictive
regression; classical financial mathematics.

JEL Classification: C14; G11; G17

1. Introduction

Stock return predictability has been of considerable interest to practitioners and academics in finance.
Practitioners attempt to improve asset allocation and risk management performance using real-time
prediction of stock returns. Further, academics use information regarding stock return forecasting to
generate more realistic asset-pricing models, to test the market efficiency hypothesis, and other financial
problems. Therefore, it is not surprising that the search for accurate and reliable return forecasts has
attracted great interest from both finance professionals and academics.

In the early 1970s, it was widely accepted that stock markets were efficient. However, over the last
two decades, academics have found evidence of stock return predictability and highlighted the potential
benefits for actively managed investment strategies (see [1], for a recent survey). While many studies report
evidence of in-sample return predictability, out-of-sample return predictability remains controversial.
In an influential article, Ref. [2] show that it is difficult to find models that can surpass even the most
naive benchmarks out-of-sample. They observe that most individual predictor variables cannot provide
statistically significant forecast improvements over a historical average benchmark.
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Recent studies report evidence of excess return predictability that is based on macroeconomic
variables, technical indicators, short interest rates, investor sentiment, and so on. On the other hand,
several studies demonstrate that the out-of-sample forecasting ability of commonly used predictors can be
improved while using various strategies: imposing economically motivated restrictions on the model [3–7],
diffusion indices [8–11], using regime switching models [12–15], or combining forecasts from individual
predictive models [1,5,7,16–18]. Particularly, ref. [16] find that a combination forecast approach is able to
deliver consistently superior out-of-sample US equity premium prediction. Refs. [19,20] use partial least
squares methodology in order to create a sentiment index for predicting future market returns and finding
results that are both statistically and economically significant.

In this paper, we investigate the capacity of nonparametric functional data analysis (NP-FDA) to
directly forecast the S&P500 and Dow Jones Industrial Average (DJIA) excess returns and compare
their performance to that of the traditional regression model. We model monthly returns as curves in
a functional space. Specifically, we assume that daily cumulative returns can be interpreted as curves
describing the cumulative return during a given month. The daily cumulative return curves give more
relevant information, because they show how returns evolve during the month. The NP-FDA methodology
can be seen as a functional regression, in which the regressor is the curve for a given month, t. As our
main objective is the forecast of monthly return 1-step-ahead, the regressand, in this case, is the last
day of the next month, t + 1. Moreover, the NP-FDA estimator that is described in Section 2.1 may be
viewed as a weighted mean of monthly returns in which weights are a function of a measure of proximity
between a given curve and the other curves presented in the sample. An interisting relation between our
methodology and the prevailing-mean emerges. With appropriate choices for bandwidth, b, and kernel
function, K(·), our estimates coincide with those of the prevailing-mean. Nevertheless, since the bandwidth
is automaticaly chosen by a cross-validation procedure and the kernel is a density with smooth decay,
following the nonparametric literature, this coincidence will not happen in general. (For the NP-FDA
estimator to coincide with the prevailing-mean the kernel function would have to be the density of the
Uniform distribution.) In other words, we attempt, in this article, to forecast monthly returns while using
a flexible nonparametric estimator that uses the information presented in the sample of curves of daily
cumulative returns. For every fixed month, these curves exhibit a specific pattern, typically with some
upward or downward momentum, disturbed by some noise. Therefore, it is tempting to study their
statistical behaviour using the framework of NP-FDA.

We employ monthly S&P500 and DJIA excess returns and the 12 monthly economic fundamentals
of [2] for a sample period ranging from January 1927 to December 2019 for S&P500 and January 1889
to June 2020 for DJIA, respectively. We also consider a set of economic variables originally proposed
by [2] in the predictive regression models. The analysis is performed purely out-of-sample to inform
real-time investment decisions. A detailed performance assessment of forecast combinations strategies
in comparison to individual models is provided in terms of both statistical accuracy and economic
relevance. Because the final goal of returns forecasting is to improve economic and financial decision
making, we propose evaluating the accuracy and economic relevance of excess returns forecast based on a
mean-variance investor with quadratic utility, as in [1].

Our main empirical finding is that the NP-FDA delivers a statistically significant monthly
out-of-sample R2 of 0.57% and 0.37% for DJIA and S&P500, respectively. This is considerably higher
than the R2 values for the best individual model and for the standard forecast combination based on all
12 predictors. In addition, the NP-FDA also delivers high economic value in the context of a dynamic
mean-variance strategy. The average utility gain (certainty equivalent return) is approximately 0.98% and
0.28% per year over and above the historical mean benchmark for the full sample for DJIA and S&P500,
respectively. When we consider the economic cycle, the results are also the most impressive, 0.70% per
year in expansions, and 2.68% per year in recessions for the S&P500 dataset.
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The remaining sessions of the paper are organized, as follows. In Section 2, the predictive regression
framework is presented and the NP-FDA estimation is detailed. Section 3 describes the datasets and reports
out-of-sample results for statistical and economic evaluation. Section 4 contains concluding remarks.

2. Excess Return Forecast Models

In this section, we outline our empirical framework to predict DJIA and S&P500 excess returns,
which we apply to our data in subsequent sections. In addition, we describe the methods for statistical
and economic evaluation of the accuracy of the return forecast. Now, let rt+1 denote the excess return
of the index held from period t to period t + 1, in excess of the risk-free rate. We use the continuously
compounded returns that were obtained by subtracting the short T-bill rate from the DJIA and S&P500
returns, including dividends, which is given by:

rt = log (1 + Rt)− log (1 + Rf,t−1) , (1)

where Rt is the return on a broad stock market index and Rf,t−1 denotes the risk-free rate from period t− 1
to t. The unit of time can be day, month, or year.

2.1. Functional Data Methodology and Nonparametric Estimation

In this section, we explain how the functional data analysis methodology can be applied to our
problem (For further details about the method see [21,22]). Following [23], let X be a functional random
variable taking values in a semi-metric space (E, d), where E is an infinite dimensional space and d is a
semi-metric (as described below). Moreover, let X be an observation of X. In particular, when X denotes a
random curve, it is convinient to identify X = {x(τ); τ ∈ D} (respectively, X = {x(τ); τ ∈ D}), where D
is the set of points at which the curve is evaluated. Now, consider the problem of predicting a dependent
scalar random variable y as a function of a functional regressor X. Let

rNP(X) = E(y|X = X) (2)

be the nonlinear regression operator and (Xt, yt)t=1,...,T be a sequence of random pairs taking values in
E×R. Given a fixed element Xs ∈ E, the nonparametric estimator for rNP(Xs) is defined by

r̂NP(Xs) =
∑T

t=1 ytK(b−1d(Xs, Xt))

∑T
t=1 K(b−1d(Xs, Xt))

, (3)

where K is an asymmetric kernel and b > 0 is a bandwidth. The estimator that is presented in (3) may
be viewed as a weighted mean, in which the weights are ultimately determined by the kernel density.
The argument of this kernel depends on the semi-metric, d, and the bandwidth, b. The proper selection
of the bandwidth is of fundamental importance. Given an observed sample (Xt, yt)t=1,...,T , the optimal
bandwidth, bopt, may be selected by the following cross-validation procedure

bopt = arg min
b

CV(b), (4)

where

CV(b) = T−1
T

∑
t=1

(
yt − r̂(−t)

NP (Xt)

)2

, (5)
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and

r̂(−t)
NP (Xt) =

∑T
j=1,j 6=t yjK(d(Xt, Xj)/b)

∑T
j=1,j 6=t K(d(Xt, Xj)/b)

. (6)

The estimator that is presented in Equation (6) is well known in nonparametric literature as the
leave-one-out estimator and it is also suggested by Ferraty et al. [24] and Ferraty and Vieu [21].

Now, we make the definition that a semi-metric d is a metric, but such that d(x, y) = 0 ; x = y,
where x, y ∈ E. This characteristic is suitable when dealing with infinite dimensional space, since, in such
spaces, there is no equivalence between norms. Many semi-metrics are available in the literature, each one
with its strength and weakness. (Here, we focus on the PCA semimetric. For other types of semimetrics,
the reader can refer to [21]) As pointed in [21], the PCA semi-metric is adequate for computing proximities
between curves in a reduced dimensional space and it has the advantage of being usable even if the
curves are rough. On the other hand, it only applies to balanced data. Technically, as stated in [21] and
in Ferraty et al. [24], the PCA semi-metric may be built when assuming that E

∫
X2(s)ds < ∞. Under this

assumption, the following expansion holds

X =
∞

∑
k=1

(∫
X(s)vk(s)ds

)
vk, (7)

where v1, v2, . . . are orthonormal eigenfunctions of the covariance operator ΓX(t, s) = E (X(t)X(s)).
Regarding its empirical counterpart, let

X̃(q) =
q

∑
k=1

(∫
X(s)vk(s)ds

)
vk, (8)

be a truncated version of X (Equation (7)). Based on the L2-norm, we have, for all (X1, X2) ∈ E2,
the following parametrized family of semi-metrics

dPCA
q (X1, X2) =

√√√√ q

∑
k=1

(∫
(X1(s)− X2(s))vk(s)ds

)2
. (9)

It is worth noting that q is a tunning parameter that needs to be estimated. One possibility is choosing
q via cross-validation. In the next paragraph, we detail how to estimate the non-observable quantities that
are presented in Equation (9).

Estimation Details

In practice, it is only possible to observe a discretized version of X = {x(τ); τ ∈ D}, which we denote
by X = {x(τ); τ = 1, 2, . . . , D}, implying that D = {1, 2, . . . , D}. Specific to our problem, a particular
month is viewed as a function (curve) that links days to cumulative excess returns. Therefore, we observe
a sequence {X1, X2, . . . , XT} of realizations of X, where Xt = {xt(τ); τ = 1, 2, . . . , D} corresponds to the
observed excess return curve at months t = 1, . . . , T, and D represents the number of days each month.
It is worth noting that balanced data are needed in order to use the PCA semimetric. In Section 3, we detail
how to adjust the data to make D constant over t.

The main goal of this article is to forecast, one step ahead, the excess return on the last day of a given
month, when considering the information available before the forecast is made. In other words, given a
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sequence {X1, X2, . . . , XT} of realizations of X, we want to estimate

rNP(XT) = E(yT+1|X = XT), (10)

where yt := xt(D), which means that the regressor is the excess return curve of a particular month and
the regressand is the last day excess return of the next month. Now, Equation (3) may be adapted to our
problem in the following way

r̂NP(XT) =
∑T

t=2 ytK(b−1d(XT , Xt−1))

∑T
t=2 K(b−1d(XT , Xt−1))

, (11)

where K, b and d are defined as before. Roughly speaking, Equation (11) states that the one step ahead
forecast for the excess return on the last day of the month is a weighted mean, in which the weights depend
on the proximity, in terms of the semi-metric d, between the curve XT and the other curves in the sample.

Now, we turn attention to the PCA semimetric. Because ΓX is not observable, its empirical version is
set to be Γn

X(t, s) = n−1 ∑n
i=1 Xi(t)Xi(s). Moreover, the integral in (9) can be approximated by numerical

quadrature. Following [21], the empirical version of the PCA semi-metric is defined for all (X1, X2) ∈ E, as

dq(X1, X2) =

√√√√ q

∑
k=1

(
D

∑
τ=1

wj(X1(τ)− X2(τ))[vk]τ

)2

, (12)

where v1, v2, . . . , are the W-orthonormal eigenvectors of the covariance matrix

ΓTW = T−1

(
T

∑
t=1

X1,tX
ᵀ
2,t

)
W,

where W = diag(w1, w2, . . . , wD) is the diagonal matrix with the quadrature weights in the main diagonal.
In order to estimate q, we apply the cross-validation procedure described in (4) for q = 1, 2, 3 and choose
the pair (q, bopt) that produces the smallest value in (5).

2.2. Predictive Regressions

Following the literature on excess return predictability, we consider the standard multivariate
regression model for predicting excess returns, which can be expressed as

rt+1 = β0 + β1Zt + εt+1, εt+1 ∼ N
(

0, σ2
ε

)
, (13)

where rt+1 is the stock market index log excess return from period t to t + 1, Zt is a vector of predictive
variables available at the end of period t. β0 is the conditional average excess return, β1 is the incremental
expected excess return with respect to one unit change in predictor variable Zt, εt+1 is the regression
residual that is assumed to follow a standard normal distribution, and n is the number of predictors.
We then divide the total sample of T observations for rt and Zt into an in-sample period that comprises
the first P observations and an out-of-sample period comprising the last q observations (q = T − p).

As a simple no-predictability benchmark, we use the naive prevailing-mean and variance model,
as suggested by [3], which can be expressed as

rt+1 = β0 + εt+1, εt+1 ∼ N
(

0, σ2
ε

)
, (14)
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namely, the constant mean and volatility model. Note that the prevailing-mean forecast ignores information
in any predictor variable; it is simply the historical average excess return, which is calculated over all prior

observations E{rt+1} =
1
t

t
∑

s=1
rs. This is equivalent to restricting β1 = 0 in (13).

3. Data and Results

In this section, we first describe the predictor variables that are used in the literature and the details
of their data. Subsequently, we describe the methodology used to evaluate the excess return forecasts that
were obtained from the NP-FDA and regression based models. Furthermore, we present the statistically
based and then the economic value assessments of the forecasts based on the mean-variance optimizing
investor with quadratic utility.

3.1. Data and Traditional Predictors

We examined the performance of the NP-FDA and the competing models that are discussed in
Section 2 in forecasting excess returns from the DJIA and S&P 500 indices. To evaluate our finds to the
numerous literature on excess market return predictability, we compare the predictive accuracy of NP-FDA
to that of twelve predictor variables suggested by [2] (The data on both stock returns and used to construct
the popular predictors are downloaded from the website of Amit Goyal: http://www.hec.unil.ch/agoyal/).
Market excess returns are computed from the DJIA and S&P500 indexes (including dividends). In order
to capture excess returns, a short rate (Treasury bill) is subtracted from the returns, as in Equation (1).
Below, we provide a list of the predictors that constitute the set of variables used to predict the excess
return in (13):

• Dividend-price ratio (DP): the difference between the log of a twelve-month moving sum of dividends
paid on the S&P500 index and the log of stock prices.

• Dividend yield (DY): the difference between the log of a twelve-month moving sum of dividends and
the log of lagged stock prices.

• Earning-price ratio (EP): the log of a twelve-month moving sum of earnings on the S&P 500 index
minus the log of stock prices.

• Dividend-payout ratio (DE): DP minus EP.
• Excess stock return volatility (RVOL): the sum of the squared daily returns on the S&P 500 index.
• Book-to-market ratio (BM): book value at the end of the previous year divided by the end-of-month

market value of the Dow-Jones Industrial Average index.
• Net equity expansion (NITS): the 12-month moving sum of net equity issues by NYSE-listed stocks

divided by the total end-of-year market capitalization of NYSE stocks.
• Treasury bill rate (TBL): three-month Treasury bill interest rate from the secondary market rate.
• Long-term yield (LTY): the long-term government bond yield.
• Term Spread (TMS): LTY minus TBL.
• Default yield spread (DFY): Moody’s BAA- minus AAA-rated corporate bond yields.
• Inflation (INFL): change in the Consumer Price Index (CPI) for all urban consumers (Following

common practice in literature, we lag the inflation one extra month due to the delayed release of the
CPI index).

Specifically, we estimate predictive regressions while using updated monthly excess return data for
DJIA and S&P500 from [2] and Kenneth French’s Data Library (Available at http://mba.tuck.dartmouth.
edu/pages/faculty/ken.french/datalibrary.html). For the main results we start the sample in 1926:04 to
account for the lagged predictors when estimating the predictive regressions. After accounting for the
lagged predictors, the available estimation sample covers from 1926:04 to 2019:12 (1116 observations).

http://www.hec.unil.ch/agoyal/
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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In addition, in the out-of-sample analysis with NP-FDA, we consider a longest DIJA return series,
from 1885:01 to 2020:06 (1620 observations).

3.2. Dataset Used in NP-FDA Estimation

The PCA semimetric requires a balanced dataset to be usable, as pointed out in Section 2.1. On the
other hand, we have a sample of daily cumulative returns. Because the number of business days varies
along the months, we need to make some adjustment in the data in order to have a balanced dataset.
We propose organizing these data in a matrix, denoted by X, in which each row represents a month while
each column represents a day. We fixed the number of days to 20. The first column gets the data of the
first business day of each month in the sample, likewise the last column is filled with the data of the
last business day. The second and the penult column get the second and the penult business day data,
respectively. We keep doing that until the matrix is fullfilled. For some months, there is more than 20
business days. In such cases, the remaining data is dropped. For months with less than 20 days, we apply
linear interpolation in order to input data. The main justification to proceed this way is that the beginning
and end of each month carry more information about market movements.

It is important to highlight how that matrix X relates to Equation (11) in NP-FDA estimation process.
Let X1, X2, . . . , XT and Y1, Y2, . . . , Y20 be the rows and the columns of X, respectively. Because we are
interested in one-step-ahead forecast, the NP-FDA regressor is the matrix that formed by stacking
X1, X2, . . . , XT−1 and the regressand is the last column of X, i.e., Y20, with its first element discarded.

3.3. Forecast Combination

In addition to individual forecasting models, we consider another approach to improve the
excess return forecasts based on forecast combination. The motivation for doing this is in the
methodological literature on forecasting, which shows that more accurate predictions can be obtained
from a linear combination of two or more forecasts in relation to the use of just one forecast [25–27].
In addition, adaptive strategies to combine predictions can also alleviate the effect of structural breaks,
model uncertainty, and incorrect model specification [26,28]. In particular, there is recent evidence that the
combination of nested models can significantly improve the accuracy of the forecasts when compared to
predictions obtained from single model specifications [29].

Assuming M different models, a combined forecast for one-step-ahead return is given by

r̂t+1|t =
M

∑
m=1

wt+1|t,m r̂t+1|t,m,

where wt+1|t,m stands for the time −t weight assigned to the mth model, r̂t+1|t,m. The forecast combination
strategies are mostly adaptive, which means that the forecasts included inM = {r̂t+1|t,m, m = 1, 2, . . . , M}
and/or corresponding weights wt+1|t,m are selected in a sub-sample of observations, based on some criteria.
In this article, the following four combination strategies are considered:

1. Equally weighted forecasts or pooled (POOL-AVG): this forecast combination method assigns equal
weights to the forecasts of all individual models, i.e., wt+1|t,m = 1/M for m = 1, . . . , M. This approach
is likely to work well if the forecasting errors of different models have similar variances and are
highly correlated, as explained in [30]. Therefore, in many cases, this simple average of forecasts can
work well against more sophisticated weighting schemes [26,29].
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2. Thick Modeling Approach with MSFE (POOL-DMSFE): the second scheme consists of selecting models
by means oh thick modeling approach. Following [31], the weight for model m is computed as:

wt+1|t,m =
φ−1

m,t
M
∑

j=1
φ−1

m,t

, where φm,t =
t−1

∑
s=j

θt−1−s (rs+1 − r̂s+1,m)
2 ,

where θ is a discount factor. Thus, the DMSPE aproach assigns greater weights at time t + 1 to
individual predictive models with lower MSPE values over the holdout out-of-sample period,
which ranges from j + 1 to t.

3. Diffusion Index: this scheme involves the estimation of factors that are subsequently used for
forecasting. The idea here is to extract a small number of common factors (often called diffusion
indexes) assumed to drive the dynamics associated with a large number of potential return predictors
(see, e.g., [9]). The basic intuition behind this approach is to filter out the noise present in the
individual predictors, as discussed in [1]. The resulting factorial structure is more parsimoniuos,
thus generating a more reliable signal.

4. Sum-of-the-Parts Method: the fourth combination scheme is the sum-of-the-parts, which is in line with
the ideas that are presented in [4]. The sum-of-the-parts scheme consists of decomposing the return
index into three components: the dividend yield, the earnings growth rate, and the growth rate in the
price-earnings ratio. Subsequently, each of these components is predicted separately. Ref. [4] show
that their sum-of-the-parts forecast scheme significantly outperforms the historical average forecast.

3.4. Forecast Evatuation

Our out-of-sample procedure mimics the situation faced by real-time forecasters. Forecasts from NP-
FDA and regression models are generated while only using information available at period t. To compute
the results, we use a rolling window estimation of 360 monthly observations (30 years) (To save space,
we do not present the results of the in-sample analysis. The results are available upon request). Therefore,
our out-of-sample period for the forecast evaluation ranges from January 1956 to December 2019. Most of
our results refer to the full sample and two subsamples, one that focuses on economic expansions and the
other on recessions. These periods are defined according to the National Bureau of Economic Research
(NBER) business cycle dating committee methodology. Thus, a recession is the period following the peak
of economic activity until the trough. Firstly, we detect the statistical and economic predictability while
using individual models. Subsequently, we use the combination schemes that are presented above.

We follow the literature and compute the root mean squared forecast error (RMSFE) in order to
evaluate out-of-sample forecasts. Given a sample of P out-of-sample forecasts for 1-step-ahead forecast
horizon, the (RMSFE) for model m is defined, as follows:

RMSFEm =

√√√√ 1
P

P

∑
t=1

(
r̂t+1|t,m − rt+1

)2
, (15)

where rt+1 is the observed return at time t + 1, and r̂t+1|t,m is the corresponding forecast made at time t.
In addition, we follow the literature when using the out-of-sample R2 (R2

oos) in order to evaluate
the forecasting performance. The R2

oos compares unconditional forecasts for a one-month ahead of the
prevailing-mean benchmark, r̂t+1|t,bench, to the conditional forecasts, r̂t+1|t,m, of an alternative model, and it
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is defined, as follows:

R2
oos = 1− MSEm

MSEbench
= 1−

P
∑

t=1

(
rt+1 − r̂t+1|t,bench

)2
−

P
∑

t=1

(
rt+1 − r̂t+1|t,m

)2

P
∑

t=1

(
rt+1 − r̂t+1|t,bench

)2
(16)

A positive R2
oos means that the alternative model presents lower MSE than the benchmark model.

We implement the test proposed by [32] in order to assess the statistical significance of the R2
oos. In this test,

the null hypothesis is that the benchmark is not outperformed by the competing model in terms of forecast
MSE against the complementary alternative hypothesis. The statistic is calculated by first defining,

f̂t+1 =
(

rt+1 − r̂t+1|t,bench

)2
−
[(

rt+1 − r̂t+1|t,m

)2
−
(

r̂t+1|t,bench − r̂t+1|t,m

)2
]

. (17)

After regressing { f̂t+1}P
t=1 on a constant, the Clark and West statistic is nothing but the t-statistic of

the constant. The p-value for the test may be obtained from the standard normal distribution.

Out-of-Sample Excess Returns Predictability Results

Tables 1 and 2 report the statistical measures of the out-of-sample forecasting performance from
the NP-FDA, individual regression models, and four combination schemes for S&P500 and DJIA excess
returns. All of the models are evaluated relative to the prevailing-mean benchmark. The out-of-sample
forecasts are generated by rolling predictive regressions. The period 1926:12-1956:12 is considered as
the initial in-sample estimation period. Hence, we compute out-of-sample forecasts for 1957:01-2019:12
(756 observations). In addition to the full forecast evaluation period, we present results that were computed
separately during NBER-dated business-cycle expansions and recessions.

The first column of Tables 1 and 2 report the RMSE-value relative to the benchmark prevailing-mean
model, i.e., (RMFSEmodel − RMFSEbench)/RMFSEbench. Therefore, negative entries indicate that the
candidate model outperforms the benchmark model in term of RMFSE, thus generating more accurate
point forecasts, while positive values indicate the opposite. The evidence found is consistent with [2]:
very few of the univariate models beat the historical average benchmark in terms of RMFSE. In fact,
for S&P500, only NP-FDA and SVAR models produce lower RMSE-values than the benchmark model
when we consider the entire out-of-sample period and individual models. For DJIA, seven predictors and
the NP-FDA produce lower RMSE-values than the prevailing-mean model for entire out-of-sample period.

In Table 1 for the S&P500 excess returns forecast, none of the individual predictors generate
significantly positive R2

OOS, except NP-FDA in the three sample periods. On the other hand, all of
the combing methods exhibit positive R2

OOS (ranging from 0.21% to 0.48%) in the full sample period.
Nevertheless, none combing approach generates significantly positive R2

OOS (significant at 10% level) in
all considered sub-samples. The superiority of NP-FDA forecast is further confirmed when the NP-FDA
approach methods outperform the historical average forecast in the full sample period, expansions,
and recessions. Similar to Table 1, Table 2 (when we consider the DJIA excess returns) shows that all
of the individual predictors also fail to deliver significantly positive R2

OOS, except TBL, LTY, and LTR
in the full sample period. On the other hand, the NP-FDA method consistently generates significantly
superior performance compared to the historical average premium forecast. In addition to NP-FDA, for the
DJIA excess returns, all of the combination forecast strategies consistently generate performance that is
significantly superior to the historical average.
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Overall, we find that the NP-FDA exhibits a positive and statistically significant R2
OOS for both indices.

The result is particularly strong along the entire out-of-sample period, where the NP-FDA produces
R2

OOS of 0.37% and 0.57% for S&P500 and DJIA, respectively. Among the other predictors, we highlight
the performance of TBL, LTY, and LTR. For both indices, we find that 7 of the 14 predictors result in
negative R2

OOS values, suggesting underperformance relative to the benchmark model. These results are
consistent with the findings of [2] and more recent literature ([1,33,34], among others) that it is hard to
find an individual variable that can significantly beat the historical average model. It is worth noting that
predictive regressions typically have a very low R2. A monthly R2 statistic of even 0.5 percent can yield an
economically significant result (in terms of utility gain) in a return predictability study [3].

Table 1. Out of sample forecasting evaluation of S&P500 excess return based on nonparametric functional data
analysis (NP-FDA) and regression models.

Predictor
Overall Expansion Recession

RRMSFE R2
oos p-Value RRMSFE R2

OOS p-Value RRMSFE R2
oos p-Value

Individual Models

NP-FDA −0.262 0.374 0.023 −0.151 0.244 0.062 −0.580 0.690 0.002

log(DP) 0.244 0.106 0.101 0.334 0.169 0.025 −0.298 −0.046 0.556
log(DY) 0.366 0.144 0.081 0.690 0.203 0.021 −0.744 0.006 0.450
log(EP) 1.182 −0.535 0.567 1280 −0.121 0.297 0.617 −1.518 0.716
log(DE) 1.347 −1.779 0.636 0.469 −0.422 0.084 3.080 −5.003 0.988
SVAR −0.351 0.104 0.096 −0.328 0.183 0.015 −0.736 −0.083 0.629
BM 0.746 −0.264 0.448 0.866 0.089 0.196 0.126 −1.103 0.665
NTIS 0.172 −0.287 0.243 −0.650 1.249 0.002 1.777 −3.937 0.973
TBL 0.152 0.270 0.018 0.243 0.522 0.001 −0.398 −0.328 0.865
LTY 0.718 0.275 0.004 1.105 0.455 0.001 −0.538 −0.153 0.738
LTR 0.207 0.213 0.124 0.233 0.381 0.094 −0.186 −0.184 0.445
TMS 0.169 −0.108 0.489 0.056 0.008 0.340 0.109 −0.382 0.873
DFY 0.234 −0.032 0.340 0.023 0.214 0.077 0.406 −0.618 0.953
DFR 0.080 −0.225 0.483 −0.041 0.227 0.121 0.038 −1.300 0.821
INFL 0.107 0.036 0.331 −0.050 0.270 0.003 0.152 −0.520 0.933

Foreacst Combination

POOL-AVG −0.229 0.215 0.105 −0.547 0.559 0.002 −0.062 0.141 0.188
POOL-DMSFE −0.283 0.221 0.085 −0.548 0.561 0.002 −0.070 −0.040 0.258
Diffusion index −0.365 0.350 0.032 −0.485 0.434 0.025 −0.171 0.111 0.145
Sum-of-the-parts −0.497 0.483 0.015 −0.781 1.025 0.005 0.174 −0.286 0.381

Note: This table reports out-of sample forecasting performance based on NP-FDA, univariate prediction regression,
and combination schemes. RRMSFE refers to the percentage reduction in the Root Mean Square Forecast Error in
relation to the prevailing-mean forecasts. A negative number means that the model with the predictor variables that
are listed in the row has a lower RMSE in relation to the prevailing-mean model, while a positive number suggests the
opposite. R2

OOS stands for the out-of-sample R2 defined by the percentage reduction of MSPE of the model of interest in
relation to the benchmark model. p-value contains the p-values that are associated with testing H0 : R2

OOS ≤ 0 against
HA : R2

OOS > 0. All of the results are out-of-sample and they cover the entire forecast evaluation period (1957:01-2019:12).
Separate results for NBER-dated expansions and recessions are provided. In order to calculate the results, we use a
rolling window estimation of the most recent 30 years of observations.

The last four rows in each table shows the results for combination schemes. Tables 1 and 2 also reports
statistics computed separately during NBER expansions and recessions, respectively. The most important
finding is that NP-FDA performs well in expansions and recessions, exhibiting positive and significant
statistically R2

OOS for all sub-sample periods. In contrast, none of the 14 predictors perform well in both
states of the economy for both indices. When we consider the other economic fundamentals, the results
change considerably between periods of recession and expansion. In fact, most of the predictors produce
better results in periods of expansion than in periods of recession.
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Recent literature (e.g., [1,16,34]) shows that individual models have performed poorly in forecasting
stock returns because of model uncertainty and instability. Ref. [16] finds that combining individual
forecasts provides convincing predictability performance out-of-sample. Inspired by their paper,
we examined whether forecast combinations while using NP-FDA and traditional predictor models
can lead to better performance when compared to univariate counterparts.

We consider four combinations strategies, which differ depending on the weighting scheme,
as discussed in Section 3.3 above. We find that for the entire out-of-sample period and for both indices the
combination strategies under consideration produce R2

OOS that range from 0.18% to 0.50%, and they are
statistically significant at the 10% level. These results that were obtained from the forecast combination are
consistent with the findings of ([7,16,34], among others). Interestingly, we find that the Sum-of-the-parts
scheme results in higher R2

OOS during expansion periods, but deteriorates in NBER recessions.
Although RRMSFE and R2

OOS provide a statistical measure of excess return predictability, they do
not take account of an investor’s risk during the out-of-sample period. Interestingly, R2

OOS values are
typically small; nevertheless, a modest forecasting ability may yield substantial utility gains for risk-averse
investors [3]. In the next section, we use a utility gain measurement to assess economic significance of
return predictability.

Table 2. Out of sample forecasting evaluation of Dow Jones Industrial Average (DJIA) excess return based on
NP-FDA and regression models.

Predictor
Full Sample Expansion Recession

RRMSFE R2
oos p-Value RRMSFE R2

oos p-Value RRMSFE R2
oos p-Value

Individual Models

NP-FDA −0.287 0.574 0.010 −0.529 1.056 0.001 0.404 0.280 0.089

log(DP) −0.002 0.005 0.382 −0.0640 0.128 0.173 0.168 0.248 0.101
log(DY) −0.058 0.116 0.142 −0.1306 0.262 0.022 0.143 1.110 0.008
log(EP) 0.277 −0.555 0.666 0.1092 −0.219 0.433 0.737 −0.617 0.414
log(DE) 0.805 −1.618 0.684 0.2395 −0.48 0.143 2.347 −5.453 0.901
SVAR −0.066 0.131 0.117 −0.141 0.283 0.015 0.143 1.365 0.119
BM 0.156 −0.313 0.470 0.008 −0.016 0.271 0.564 −0.116 0.371
NTIS 0.142 −0.286 0.141 −0.771 1.537 0.000 2.616 −4.782 0.950
TBL −0.147 0.295 0.028 −0.305 0.610 0.000 0.287 0.976 0.121
LTY −0.147 0.294 0.014 −0.263 0.525 0.000 0.171 0.736 0.099
LTR −0.141 0.282 0.089 −0.272 0.543 0.054 0.219 0.863 0.117
TMS 0.072 −0.145 0.450 −0.014 0.028 0.293 0.308 0.286 0.266
DFY 0.015 −0.031 0.326 −0.109 0.219 0.087 0.357 −0.836 0.825
DFR 0.090 −0.182 0.519 −0.172 0.344 0.038 0.810 −0.586 0.533
INFL −0.041 0.082 0.204 −0.114 0.228 0.039 0.160 −0.208 0.960

Foreacst Combination

POOL-AVG −0.090 0.181 0.065 −0.262 0.524 0.000 −0.613 1.223 0.007
POOL-DMSFE −0.093 0.187 0.058 −0.261 0.523 0.000 −0.657 1.311 0.010
Diffusion index −0.093 0.187 0.060 −0.270 0.542 0.000 −1.884 3.734 0.000
Sum of the parts −0.256 0.513 0.007 −0.797 1.590 0.000 1.968 −3.976 0.999

Note: this table reports out-of sample forecasting performance based on NP-FDA, univariate prediction regression,
and combination schemes. RRMSFE refers to the percentage reduction in the Root Mean Square Forecast Error in
relation to the prevailing-mean forecasts. A negative number means that the model with the predictor variables
listed in the row has a lower RMSE in relation to the prevailing-mean model, while a positive number suggests
the opposite. R2

OOS stands for the out-of-sample R2 that is defined by the percentage reduction of MSPE of the
model of interest in relation to the benchmark model. p-value contains the p-values associated with testing
H0 : R2

OOS ≤ 0 against HA : R2
OOS > 0. All results are out-of-sample and cover the entire forecast evaluation period

(1957:01-2019:12). Separate results for NBER-dated expansions and recessions are provided. In order to calculate
the results, we use a rolling window estimation of the most recent 30 years of observations.
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3.5. Economic-Based Forecast Evaluation

Although our analysis is focused on statistical measures of predictive accuracy, it is important to
evaluate the extent to which apparent gains in predictive accuracy can be used in real time to improve
economic utility of the investor, that is, translate into better investment performance. Given that statistical
significance does not necessarily imply economic significance ([1,5,33,34], among others), we assessed the
economic value of the predictive power of stock returns by investigating the utility gains for investors
who exploit the predictability of excess returns over an alternative without predictability associated with
the prevailing average model. The motivation here is that investors are primarily concerned with the
performance of return forecasts in terms of asset allocation.

We consider a mean-variance investor with quadratic utility who split her portfolio between stock
market indices and a risk-free rate [1]. At the end of t, she chooses to invest, during t + 1, the following
share of her portfolio to stocks:

wi,t+1 =

(
1
γ

)(
r̂i,t+h

σ̂i,t+h

)
(18)

where γ is the relative risk aversion γ, and σ̂2
i is a forecast of the variance of the index returns.

Similar to [16], we simply assume the variance to be a 10-year rolling window of quarterly returns.
Over the forecast evaluation period, the investor realizes the average utility,

ν̂m = µ̂m − 0.5γσ̂2
m, (19)

where µ̂m and σ̂2
m are, respectively, the out-of-sample mean and variance of the return on the dynamic

portfolio formed on the basis of r̂t+h and σ̂2
m over the forecast evaluation period for each model m.

The quantity that is defined in Equation (19) may be calculated for the prevailing-mean model as well
(ν̂bench). The difference ν̂m − ν̂bench represents the utility gain of using the competitor model m to forecast
the excess returns in place of the prevailing-mean forecast in the asset allocation decision. This utility gain
is the certainty equivalent return, which may be viewed as the quantity an investor would be willing to
pay to have access to the return forecasts generated using the model m instead of using the information in
the historical average.

We compute the utility for the same investor who uses the historical average excess return forecast.
We measure the utility gain (or certainty equivalent return) as the extra utility that is generated from
Equation (19) relative to this benchmark. This difference is multiplied by 1200 to express the utility gain
in average annualized percentage return. Table 3 reports certainty equivalent (in annualized percent
return) for a mean-variance investor with γ = 5 who allocates among stocks and risk-free bills while using
forecasts that are based on competitors models in place of historical average forecasts.

The results indicate that the NP-FDA is the only one that provides economic value relative to the
prevailing-mean benchmark for all considered datasets and for both market indices. Specifically, when we
consider the entire out-of-sample period the NP-FDA approach provides annualized gain above 0.7% and
0.3% for S&P500 and DJIA, respectively, meaning, in these cases, that the investor would be willing to pay
more than 0.7% and 0.3% to have access to the information in the NP-FDA compared to the historical average
forecasts, respectively. The certainty equivalent gains of the popular preditor models imply evidence of
moderate economic performance relative to the prevailing-mean model. Indeed, only 5 out of the 14 univariate
models produces positive ∆ for S&P500 excess returns, indicating that the predictive regression forecast has a
higher certainty equivalent than the historical average. The performance for the DJIA index is even worse.
Overall, the average utility gains provided here supports NP-FDA approach to forecast stock indices excess
returns. It is important to emphasize the need to supplement standard statistical criteria with more direct
economic-based measures when analyzing out-of-sample bond return predictability.
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Table 3. Performance evaluation for an Investor with Mean Variance Utility with γ = 5, 1956:01-2019:12.

Predictor
S&P500 DJIA

Full Sample Expansion Recession Full Sample Expansion Recession

Individual Models

NP-FDA 0.983 0.691 2.676 0.277 0.390 0.087

log(DP) −0.005 −0.025 0.113 −0.205 −0.223 −0.096
log(DY) 0.052 0.024 0.216 −0.020 −0.023 0.000
log(EP) −1031 −0.164 −6.172 −0.866 −0.34 −3.989
log(DE) −3.132 −0.617 −1.773 −2.851 −0.842 −1.458
SVAR 0.000 0.000 0.000 0.000 0.000 0.000
BM −0.666 −0.019 −4.504 −0.624 −0.189 −3.214
NTIS −1.303 1.156 −1.566 −0.860 1.482 −1.452
TBL 0.137 0.409 −1.471 0.162 0.452 −1.556
LTY 0.239 0.352 −0.435 0.273 0.363 −0.265
LTR 0.066 0.271 −1154 0.045 0.272 −1.308
TMS −0.446 −0.237 −1.690 −0.565 −0.350 −1.839
DFY −0.205 0.027 −1.582 −0.309 −0.147 −1.274
DFR −0.412 0.022 −2.983 −0.490 0.041 −3.634
INFL −0.107 0.150 −1.633 −0.092 −0.089 −0.111

Foreacst Combination

POOL-AVG 2.162 2.853 1.388 0.044 0.034 −0.756
POOL-DMSFE 2.269 2.536 1.516 0.073 0.034 −0.571
Diffusion index 2.360 2.360 3.921 0.104 0.054 0.050
Sum-of-the-parts 1.947 3.149 −0.152 −0.012 1.608 −1.282

Note: This table presents the average utility gain (∆) in the portfolio management fee (in annualized percentage
return) that an investor would be willing to pay to have access to the NP-FDA forecasts and the predictive
regression forecast that is based on the economic variables given in the first column relative to the prevailing-mean
benchmark forecast. All results are out-of-sample and were calculated using a rolling window estimation of the
most recent 30 years of observations (1957:01-2019:12).

As discussed earlier, forecast combinations improve the forecast results by weighting the individual
regression forecasts resulting in a lower variance relative to the individual forecasted returns. The utility
gains in the certainty equivalent, ∆ (annual %) are presented in the last four rows of Table 3 for S&P500 and
DJIA. The utility gains provide economic evidence for stock return predictability of combination forecast
models. Specifically, we find consistent evidence that the incorporation of NP-FDA improves the forecast
combination performance, from both the statistical and economic perspectives, mainly for S&P500 excess
returns. The best performance is found for the diffusion index scheme, in which the utility gains are greater
than 230 basis points for all of the considered time periods. This finding on the return predictability based
on forecast combination is consistent with the result in ([7,16,34], among others). Interestingly, for the
S&P500 index, the simple equally weighted forecast combination (POOL-AVG) delivers an ∆ (annual %)

of 2.62%, which is considerably higher than the ∆ (annual %) of the better individual model.
Our results show that the performance of some of the predictor models, according to R2

OOS and utility
gain metrics, is quite similar. For example, in the S&P500 index, the NP-FDA approach has an R2

OOS of
0.37 percent and a utility gain of 0.98 percent. The prior literature suggests a lack of association between
utility gain and R2

OOS [1] and shows that different performance metrics can lead researchers to draw
different conclusions regarding the forecasting ability of the predictor variables.
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3.6. Robustness Check

In addition to evaluate the forecast performance of the NP-FDA approach in both NBER expansions
and recessions, we extend our analysis to a longer DJIA dataset, from 1985:01-2020:06. As in the previous
analysis, we use a 30-year rolling window of the data, generating 1252 out-of-sample forecasts for the
period 1915:01-2020:06. Table 4 reports the same statistics that were considered before. In this case,
we compare the NP-FDA forecasts with those of the prevailing-mean model. Once again, we report
results for the full sample as well as NBER-dated expansions and recessions. In the expansion periods,
the NP-FDA exhibit positive and statistically significant R2

oos of 0.48%. However, the performance
deteriorates in recession periods. For the full sample period NP-FDA forecasts beat the historical mean,
statistically and economically. More importantly, taking into account that investors are primarily concerned
with the performance of return forecasts in terms of asset allocation, the NP-FDA forecasts overcome
the prevailing-mean model in economic terms at all time periods considered. In summary, this result
corroborates previous findings that NP-FDA presents good performance when used to forecast excess
stock returns.

Table 4. Performance evaluation for an Investor with Mean Variance Utility, 1956:01-2019:12.

RRMSFE R2
oos p-Value ∆ (annual %)

Full-Sample −0.081 0.163 0.067 0.141
Expansion −0.238 0.477 0.008 0.471
Recession 0.070 −0.142 0.715 0.051

4. Conclusions

This study provides a comprehensive examination of out-of-sample predictability of excess returns
for both the S&P500 and DJIA indices while using NP-FDA approach, a variety of individual regression
models as well as combination forecast models. Similar to the previous literature, our results reveal that it
is difficult to find an individual predictor that consistently outperforms the historical average benchmark
and provides significant out-of-sample forecasts of the equity premium. Nevertheless, the NP-FDA tends
to generate significantly positive R2

oos for both indices and different out-of-sample periods.
Assuming that daily cumulative returns can be interpreted as curves describing the cumulative return

during a given month, we propose predicting the S&P500 and the DJIA excess returns out of sample
based on the NP-FDA estimator. This estimator may be viewed as a weighted mean of monthly stock
excess returns, in which the weights are defined based on a measure of proximity between those curves.
In addition, we propose combining the forecasts that are generated by the NP-FDA and the traditional
predictor variables. We find that NP-FDA produces excess returns forecasts that are statistically and
economically significantly superior to the benchmark prevailing-mean model, over our out-of-sample
period, 1957:01-2019:12. Indeed, our results show that NP-FDA is the only one individual model that can
overcome the historical average forecasts for excess returns in statistically and economically significant
manners for both S&P500 and DJIA during the entire period, NBER recession, and expansions periods.
Furthermore, the NP-FDA provides additional relevant information for predicting stock returns in relation
to popular predictor variables to a large extent.

Our results show that adding NP-FDA forecasts to the traditional univariate predictive regressions
with a popular predictors significantly improves the forecasting combination performance with different
schemes in terms of conventional statistical measures of forecast performance and economic gains term.
Economic gains are of particular importance from the perspective of investors, and our NP-FDA approach
is of tremendous value in this regard, when compared to the methods adopted in the existing literature
so far.
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As part of future analysis, it would be interesting to extend our analysis to other developed
and emerging market economies in order to confirm the superiority of the NP-FDA approach in a
robust manner.
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