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Abstract: This paper is concerned with the orthogonal polynomials. Upper and lower bounds of Legendre
polynomials are obtained. Furthermore, entropies associated with discrete probability distributions is a
topic considered in this paper. Bounds of the entropies which improve some previously known results are
obtained in terms of inequalities. In order to illustrate the results obtained in this paper and to compare
them with other results from the literature some graphs are provided.
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1. Introduction

The classical orthogonal polynomials play an important role in applications of mathematical analysis,
spectral method with applications in fluid dynamics and other areas of interest. In the recent years
many theoretical and numerical studies about Jacobi polynomials were given. Inequalities for Jacobi
polynomials using entropic and information inequalities were obtained in [1]. Bernstein type inequalities
for Jacobi polynomials and their applications in many research topics in mathematics were considered
in [2]. A very recent conjecture (see [3]) which asserts that the sum of the squared Bernstein polynomials is
a convex function in [0, 1] was validated using properties of Jacobi polynomials.This conjecture aroused
great interest, so that new proofs of it were given (see [4,5]). The main objective of this paper is to obtain
upper and lower bounds of Legendre polynomials and to apply these results in order to give lower and
upper bounds for entropies. Usually the entropies are described by complicated expressions, then it is
useful to establish some bounds of them. The concept of entropy is a measure of uncertainty of a random
variable and was introduced by C.E. Shannon in [6]. Later, A. Rényi [7] introduced a parametric family of
information measures, that includes Shannon entropy as a special case. The classical Shannon entropy was
given using discrete probability distributions. This concept was extended to the continuous case involving
the continuous probability distributions. For more details about this topic, the reader is referred to the
recent papers [8–12]. This paper is devoted to the entropy associated with discrete probability distribution.

The Jacobi polynomials P(α,β)
n are orthogonal polynomials with respect to the weight (1− x)α(1 + x)β,

α > −1, β > −1 on the interval [−1, 1]. Their representation by hypergeometric function is given as
follows (see [13,14])

P(α,β)
n (x) =

(α + 1)n

n! 2F1

(
−n, n + α + β + 1; α + 1;

1− x
2

)
, (1)
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where

2F1(a, b; c; z) =
∞

∑
k=0

(a)k(b)k
(c)k

· zk

k!
, |z| < 1,

and (a)k = a(a + 1) . . . (a + k− 1), k ≥ 1, (a)0 = 1 is the shifted factorial.
The normalization of P(α,β)

n is effected by

P(α,β)
n (1) =

Γ(n + α + 1)
n!Γ(α + 1)

.

Denote by R(α,β)
n the polynomials:

R(α,β)
n (x) =

P(α,β)
n (x)

P(α,β)
n (1)

. (2)

If α = β = λ, Jacobi’s polynomials P(α,β)
n (x) are called Gegenbauer polynomials (ultraspherical

polynomial). The usual notation and normalization for ultraspherical polynomial is the following (see [15])

C(λ)
n (x) =

Γ(α + 1)
Γ(2α + 1)

Γ(n + 2α + 1)
Γ(n + α + 1)

P(α,α)
n (x)

=
Γ
(

λ + 1
2

)
Γ(2λ)

Γ(n + 2λ)

Γ(n + λ + 1
2 )

P(
λ− 1

2 ,λ− 1
2 )

n (x), α = λ− 1
2

.

Note that

C(λ)
n (x) =

(2λ)n

n!
R(λ− 1

2 ,λ− 1
2 )

n (x) =
(2λ)n

n! 2F1

(
−n, n + 2λ; λ +

1
2

;
1− x

2

)
. (3)

Some important special cases are the Chebyshev polynomial of the first kind

Tn(x) =
P(
− 1

2 ,− 1
2 )

n (x)

P(
− 1

2 ,− 1
2 )

n (1)
= R(

− 1
2 ,− 1

2 )
n (x), (4)

the Chebyshev polynomial of the second kind

Un(x) = C(1)
n (x) = (n + 1)

P(
1
2 , 1

2 )
n (x)

P(
1
2 , 1

2 )
n (1)

= (n + 1)R(
1
2 , 1

2 )
n (x), (5)

and the Legendre polynomial

Pn(x) = C( 1
2 )

n (x) = P(0,0)
n (x). (6)

2. Preliminary Results

Theorem 1. Let Bn,k :=
1

22n+1 ·
(

2k
k

)
·
(

2n− 2k + 2
n− k + 1

)
, k, n ∈ N, k ≤ n. Then, the inequalities

αn < Bn,k < βn, (7)



Mathematics 2020, 8, 2044 3 of 11

hold for all n ∈ N, k ∈ N \ {0}, k ≤ n, where

αn :=
1
π
· 4

n + 1 + 1
2 + 1

8(n+1)

,

βn :=
1
π
· 4 4

√
46√

1 + (8 +
√

46)(n + 1)
.

Proof. In order to prove the inequalities (7) we use Tóth’s result (see [16]):

1√
π(n + 1

4 + 1
32n )

< Ωn <
1√

π(n + 1
4 + 1

46n )
, (8)

where Ωn =
1 · 3 · · · (2n− 1)

2 · 4 · · · (2n)
=

1
4n

(
2n
n

)
for n ∈ N∗.

From (8), it follows that

2
π
· 1√

(k + 1
4 + 1

32k )
[
n− k + 1 + 1

4 + 1
32(n−k+1)

] < Bn,k (9)

<
2
π
· 1√

(k + 1
4 + 1

46k )
[
n− k + 1 + 1

4 + 1
46(n−k+1)

] .

Let α ∈ [ 1
46 , 1

32 ], and consider f : D → R a function defined by

f (x, y) =
(

x +
1
4
+

α

x

)(
y +

1
4
+

α

y

)
,

where D = {(x, y) ∈ R2
∣∣x > 0, y > 0, x + y = n + 1}.

Further, we determine the extreme points of function f .
We consider F(x, y) = f (x, y) + λ(x + y− n− 1). From the system

F′x = 0
F′y = 0
F′λ = x + y− n− 1 = 0,

we get  (y− x) · 4x2y2 − 4αxy− 4α(x2 + y2)− 4αxy− α(x + y)− 4α2

4x2y2 = 0,

(y− x){4x2y2 − α[4(n + 1)2 + n + 1 + 4α]} = 0,

Solving the sistem we obtain the following stationary points:

A
(

n + 1
2

,
n + 1

2

)
, B

(
n + 1−

√
∆′

2
,

n + 1 +
√

∆′

2

)
, C

(
n + 1 +

√
∆′

2
,

n + 1−
√

∆′

2

)
,

where ∆′ = (n + 1)2 − 2
√

α[4(n + 1)2 + (n + 1) + 4α].
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We have,

d2F(x, y) = F′′x2(x, y)dx2 + 2Fxy(x, y)dxdy + F′′y2(x, y)dy2 = [F′′x2(x, y)− 2F′′xy + F′′y2(x, y)]dx2.

Since d2F(A) < 0, it follows that A is a maximum point for f . For (x, y) ∈ {B, C}, we have

d2F(x, y) =
α

2x3y3 [4(n + 1)2 + (n + 1) + 4α]
(n + 1)4 − 4α[4(n + 1)2 + (n + 1) + 4α]

(n + 1)2 + 4xy
dx2 > 0.

Then f attains its minimum value at the points B and C
We compute

f (B) =

(
n + 1−

√
∆′

2
+

1
4
+

2α

n + 1−
√

∆′

)(
n + 1 +

√
∆′

2
+

1
4
+

2α

n + 1 +
√

∆′

)

=
√

α ·
√

4(n + 1)2 + (n + 1) + 4α +
4n + 5− 32α

16
.

We observe that

f (C) = f (B) >
1√
46

√
4(n + 1)2 + (n + 1) +

2
23

+
n + 1

4
>

1√
46

(
2n + 2 +

1
4

)
+

n + 1
4

,

f (B) >
1 + (8 +

√
46)(n + 1)

4
√

46
, f (A) =

1
4

(
n + 1 +

1
2
+

4α

n + 1

)2

.

It follows
f (B) ≤ f (x, y) ≤ f (A),

1√
f (A)

≤ 1√
f (x, y)

≤ 1√
f (B)

,

2
n + 1 + 1

2 + 4α
n+1
≤ 1√

f (x, y)
≤ 2 4

√
46√

1 + (8 +
√

46)(n + 1)
.

For α ∈
{

1
32

,
1

46

}
and k ∈ N \ {0}, we obtain (7).

Remark 1. The bounds of Bn,k for n ∈ N and k = 0 were obtained [16], as follows

Bn−1,0 =
1

22n−1

(
2n
n

)
∈

 2√
π

(
n + 1

4 + 1
32n

) ,
2√

π

(
n + 1

4 + 1
46n

)
 . (10)

From Theorem 1 and (10), we get
αn < Bn,k < γn, (11)

for all k = 0, 1, . . . , n, where γn :=
2√

π
(

n + 1 + 1
4 + 1

46(n+1)

) .
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3. Bounds for Legendre Polynomials

Lemma 1. Let

Sn(x) :=
b n

2 c
∑
k=0

[
Un−2k

(√
1 + x

2

)]2

, x ∈ (−1, 1),

where bxc is integer part of positive real number x. The following relation holds

Sn(x) =
1

2(1− x)
[n + 2−Un+1(x)] . (12)

Proof. From (1) and (2) the polynomials R(α,β)
n admite the following representation by hypergeometric function

R(α,β)
n = 2F1

(
−n, n + α + β + 1; α + 1;

1− x
2

)
. (13)

From [14] (eq. 4.7.30, p. 83) we have

R(
λ− 1

2 ,λ− 1
2 )

n (x) = 2F1

(
−n

2
,

n
2
+ λ; λ +

1
2

; 1− x2
)

. (14)

Therefore,

R( 1
2 , 1

2 )
2n (x) = 2F1

(
−n, n + 1;

3
2

; 1− x2
)

,

R( 1
2 , 1

2 )
2n+1 (x) = 2F1

(
−n− 1

2
, n +

3
2

;
3
2

; 1− x2
)

.

Using the below formula (see [17] ((15.3.3), p. 559))

2F1(a, b; c; z) = (1− z)c−a−b
2F1(c− a, c− b; c; z), |z| < 1,

we obtain
R( 1

2 , 1
2 )

2m+1(x) = x 2F1(n + 2,−n;
3
2

; 1− x2).

Then,

R( 1
2 , 1

2 )
2n+1

(√
1 + x

2

)
=

√
1 + x

2
R( 1

2 , 1
2 )

n (x). (15)

The link between Chebyshev polynomial of the first and second kind are presented in the following
two relations (see [14] (Theorem 4.1, p. 59))

T2n(x) = Tn(2x2 − 1), (16)

2(1− x2)U2
n(x) = 1− T2n+2(x). (17)
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Using relations (15) and (17) we get

S2n+1(x) =
n

∑
k=0

(2n− 2k + 2)2

[
R(

1
2 , 1

2 )
2n−2k+1

(√
1 + x

2

)]2

=
n

∑
k=0

(2n− 2k + 2)2 x + 1
2

[
R(

1
2 , 1

2 )
n−k (x)

]2
=

n

∑
k=0

2(x + 1) [Un−k(x)]2

=
n

∑
k=0

1
1− x

[1− T2n−2k+2(x)] =
n

∑
k=0

1− T2k+2(x)
1− x

.

From relations (16) and (17) it follows

S2n(x) =
n

∑
k=0

[
U2n−2k

(√
1 + x

2

)]2

=
n

∑
k=0

1
1− x

[
1− T4n−4k+2

(√
1 + x

2

)]

=
n

∑
k=0

1− T2n−2k+1(x)
1− x

=
n

∑
k=0

1− T2k+1(x)
1− x

.

Using the equalities

n

∑
k=0

T2k+1(x) =
1
2

U2n+1(x),
n

∑
k=0

T2k(x) =
1
2
[1 + U2n(x)] ,

we obtain, after a straight forward computation:

S2n+1(x) =
n

∑
k=0

1− T2k+2(x)
1− x

=
1

1− x

[
n + 1−

n

∑
k=0

T2k+2(x)

]

=
1

1− x

[
n + 1−

n+1

∑
k=1

T2k(x)

]
=

1
1− x

[
n + 2−

n+1

∑
k=0

T2k(x)

]

=
1

2(1− x)
[2n + 3−U2n+2(x)] ,

S2n(x) =
n

∑
k=0

1− T2k+1(x)
1− x

=
1

1− x

[
n + 1−

n

∑
k=0

T2k+1(x)

]
=

1
2(1− x)

[2n + 2−U2n+1(x)] .

Therefore
Sn(x) =

1
2(1− x)

[n + 2−Un+1(x)].

Theorem 2. Let Pn be the Legendre polynomial of degree n, n ∈ N. Then, for x ∈ (−1, 1)

2

π
(

n + 1
2 + 1

8n

) [n + 1−Un(x)] < 1− Pn(x) <
1√

π
(

n + 1
4 + 1

46n

) [n + 1−Un(x)] ,

where Un is the Chebyshev polynomial of the second kind.
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Proof. Using the relation (see [18] (p. 713))

n

∑
k=0

P(α,0)
k (x) =

[ n
2 ]

∑
k=0

( 1
2 )k(

α+2
2 )n−k(

α+3
2 )n−2k(n− 2k)!

k!( α+3
2 )n−k(

α+1
2 )n−2k(α + 1)n−2k

[
C( α+1

2 )
n−2k

(√
1 + x

2

)]2

,

we get

n

∑
k=0

P(1,0)
k (x) =

b n
2 c

∑
k=0

( 1
2 )k(

3
2 )n−k

k!(2)n−k

[
C(1)

n−2k

(√
1 + x

2

)]2

=
b n

2 c

∑
k=0

Bn,k

[
C(1)

n−2k

(√
1 + x

2

)]2

. (18)

The Jacobi polynomials P(α,β)
n , n ∈ N, α > −1, β > −1 verify the following equality (see [14] ((4.5.4),

p. 71)):

P(α+1,β)
n (x) =

2
2n + α + β + 2

· 1
1− x

·
[
(n + α + 1)P(α,β)

n (x)− (n + 1)P(α,β)
n+1 (x)

]
. (19)

From relations (5), (18) and (19) we obtain

1− Pn+1(x)
1− x

=
b n

2 c

∑
k=0

Bn,k

[
Un−2k

(√
1 + x

2

)]2

.

Using relation (11), we get

αn

b n
2 c

∑
k=0

[
Un−2k

(√
1 + x

2

)]2

<
b n

2 c

∑
k=0

Bn,k

[
Un−2k

(√
1 + x

2

)]2

< γn

b n
2 c

∑
k=0

[
Un−2k

(√
1 + x

2

)]2

.

Therefore,

αnSn <
1− Pn+1(x)

1− x
< γnSn.

Consequently,

αn−1

2
[n + 1−Un(x)] < 1− Pn(x) <

γn−1

2
[n + 1−Un(x)] , (20)

and the Theorem is proved.

Example 1. Let un(x) :=
2 [n + 1−Un(x)]

π
(

n + 1
2 + 1

8n

) , vn(x) :=
[n + 1−Un(x)]√
π
(

n + 1
4 + 1

46n

) . In Figure 1 are given the graphics

of the polynomial 1− Pn(x) and the lower and the upper bounds of it obtained in Theorem 2.
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Figure 1. Graphs of un, vn and 1− Pn.

4. Bounds for Information Potentials

Let p(x) = (pk(x))k≥0 be a parameterized discrete probability distribution. The associated information
potential is defined by

S(x) =
∞

∑
k=0

p2
k(x), x ∈ T, where I is a real interval.

The Rényi entropy of order 2 and the Tsallis entropy of order 2 associated with p(t, x) can be expressed
in terms of the information potential S(x) as follows (see [18] (pp. 20–21)):

R(x) := − log S(x); T(x) = 1− S(x).

In the following, we consider the binomial distribution p[−1]
n,k , the Poisson distribution p[0]n,k and the

negative binomial distribution p[1]n,k:

p[−1]
n,k (x) =

(
n
k

)
xk(1− x)n−k, x ∈ [0, 1],

p[0]n,k(x) = e−nx (nx)k

k!
, x ≥ 0,

p[1]n,k(x) =
(

n + k− 1
k

)
xk(1 + x)−n−k, x ≥ 0.

The associated information potentials (index of coincidence) of this distributions are defined
as follows:

Sn,−1(x) :=
n

∑
k=0

((
n
k

)
xk(1− x)n−k

)2
, x ∈ [0, 1], (21)

Sn,0(x) := e−2nx
∞

∑
k=0

(nx)2k

(k!)2 , x ≥ 0, (22)

Sn,1(x) :=
∞

∑
k=0

((
n + k− 1

k

)
xk(1 + x)−n−k

)2
, x ≥ 0. (23)
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From [10] (56) and [12] (21) we know that

Sn,−1(x) =
1
2

n
∑

k=0
Bn−1,k(1− 2x)2k,

Sn+1,1(x) =
1
2

n−1
∑

k=0
Bn−1,k(1 + 2x)−2k−1.

The following lower and upper bounds for the information potential associated to binomial
distribution was obtained in [11]:

[1 + (n− 3)x(1− x)]−
2n

n−3 ≤ Sn,−1(x) ≤ 1√
1 + 4(n− 1)x(1− x)

. (24)

Using Remark 1 can be obtained new bounds for the information potential Sn,−1 and Sn,1 as follows:

Theorem 3. The following inequalities are satisfied

1

π
(

n + 1
2 + 1

8n

) 1− (1− 2x)2n+2

2x(1− x)
< Sn,−1(x) <

1√
π
(

n + 1
4 + 1

46n

) 1− (1− 2x)2n+2

4x(1− x)
, x ∈ [0, 1], (25)

1

π
(

n+ 1
2+

1
8n

) 1+2x
2x(1+x)

(
1− 1

(1 + 2x)2n

)
< Sn+1,1(x)

<
1√

π
(

n + 1
4 + 1

46n

) 1+2x
4x(1+x)

(
1− 1

(1+2x)2n

)
, x > 0.

Remark 2. Let n = 10. In Figure 2 we give a graphical representation of the lower bound of Sn,−1(x) from (24)
and (25), respectively. Denote these bounds with LS(24) and LS(25), respectively. In Figure 3 we give a graphical
representation of the upper bound of Sn,−1(x) from (24) and (25), respectively. Denote these bounds with RS(24) and
RS(25), respectively. Remark that on certain intervals the results obtained in Theorem 3 improve the result from [11].

Figure 2. Graphs of lower bounds of Sn,−1.
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Figure 3. Graphs of upper bounds of Sn,−1.

5. Conclusions

This paper is devoted to the orthogonal polynomials. Bounds of Legendre polynomials are obtained
in terms of inequalities. A more general result in regard with the estimate of the coefficients Bn,k is obtained
and used in order to give bounds of information potentials associated of the binomial distribution and the
negative binomial distribution. The bounds of the entropies are useful especially when they are described
by complicated expressions. The results obtained in this paper improve some results from the literature.
Motivated by many applications of entropies in secure data transmission, speech coding, cryptography,
algorithmic complexity theory, finding such bounds for the entropies will be a topic for future work.
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9. Raşa, I. Convexity Properties of Some Entropies (II). Results Math. 2019, 74, 154. [CrossRef]
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