Tail Dependence and Risk Spillover from the US to GCC Banking Sectors
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data and Descriptive Statistics
- To avoid the impacts of the GFC and its consequences, which might introduce multiple regimes (which is highly likely to occur during periods of financial crisis).
- We originally used local GCC banking indices, but preliminary outcomes were found to be highly affected by differences in the methodologies used for calculating the banking indices in each country. Consequently, we used S&P banking price indices for the six GCC banking sectors and the S&P 500 Banks Index for the US banking sector, providing a uniform methodology. Additionally, the S&P GCC banking indices were launched in 2010.
3.2. Methods
3.2.1. Marginal Model Estimates
3.2.2. Tail Dependence Using the Copula Approach
3.3. Systemic Risk Measure
4. Discussion
4.1. Marginal Model Estimates
4.2. Best-Fit Copula
4.3. Downside and Upside Risk Spillover
4.4. Conditional Diversification Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Balcilar, M.; Gupta, R.; Nguyen, D.K.; Wohar, M.E. Causal effects of the United States and Japan on Pacific-Rim stock markets: Nonparametric quantile causality approach. Appl. Econ. 2018, 5050, 5712–5727. [Google Scholar] [CrossRef]
- Balli, F.; Hajhoj, H.R.; Basher, S.A.; Ghassan, H.B. An analysis of returns and volatility spillovers and their determinants in emerging Asian and Middle Eastern countries. Int. Rev. Econ. Financ. 2015, 39, 311–325. [Google Scholar] [CrossRef] [Green Version]
- Ciner, C.; Gurdgiev, C.; Lucey, B.M. Hedges and safe havens: An examination of stocks, bonds, gold, oil and exchange rates. Int. Rev. Financ. Anal. 2013, 29, 202–211. [Google Scholar] [CrossRef]
- Claus, E.; Lucey, B.M. Equity market integration in the Asia Pacific region: Evidence from discount factors. Res. Int. Bus. Financ. 2012, 2626, 137–163. [Google Scholar] [CrossRef]
- Kim, J.S.; Ryu, D. Return and volatility spillovers and cojump behavior between the US and Korean stock markets. Emerg. Mark. Financ. Trade 2015, 51, S3–S17. [Google Scholar] [CrossRef]
- Lien, D.; Lee, G.; Yang, L.; Zhang, Y. Volatility spillovers among the US and Asian stock markets: A comparison between the periods of Asian currency crisis and subprime credit crisis. N. Am. J. Econ. Financ. 2018, 46, 187–201. [Google Scholar] [CrossRef]
- Badshah, I.; Bekiros, S.; Lucey, B.M.; Uddin, G.S. Asymmetric linkages among the fear index and emerging market volatility indices. Emerg. Mark. Rev. 2018, 37, 17–31. [Google Scholar] [CrossRef]
- Lucey, B.M.; Muckley, C. Robust global stock market interdependencies. Int. Rev. Financ. Anal. 2011, 2020, 215–224. [Google Scholar] [CrossRef]
- Majdoub, J.; Mansour, W. Islamic equity market integration and volatility spillover between emerging and US stock markets. N. Am. J. Econ. Financ. 2014, 29, 452–470. [Google Scholar] [CrossRef]
- Singh, M.; Nejadmalayeri, A.; Lucey, B. Do US macroeconomic surprises influence equity returns? An exploratory analysis of developed economies. Q. Rev. Econ. Financ. 2013, 5353, 476–485. [Google Scholar] [CrossRef]
- Fung, A.K.W.; Lam, K.; Lam, K.M. Do the prices of stock index futures in Asia overreact to U.S. market returns? J. Empir. Financ. 2010, 1717, 428–440. [Google Scholar] [CrossRef]
- Alotaibi, A.R.; Mishra, A.V. Global and regional volatility spillovers to GCC stock markets. Econ. Model. 2015, 45, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Ong, L.L.; Pazarbasioglu, C. Credibility and Crisis Stress Testing. Int. J. Financ. Stud. 2014, 2, 15–81. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, C. Correlation and spillover effects between the US and international banking sectors: New evidence and implications for risk management. Int. Rev. Financ. Anal. 2020, 70, 101392. [Google Scholar] [CrossRef]
- Prasad, A. Monetary Policy Transmission in the GCC Countries; IMF Working Papers 20122012; International Monetary Fund: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- Istiak, K.; Alam, M.R. US economic policy uncertainty spillover on the stock markets of the GCC countries. J. Econ. Stud. 2020, 4747, 36–50. [Google Scholar] [CrossRef]
- Simpson, J.L. Were there warning signals from banking sectors for the 2008/2009 global financial crisis? Appl. Financ. Econ. 2009, 20, 45–61. [Google Scholar] [CrossRef]
- Arouri, M.E.H.; Lahiani, A.; Nguyen, D.K. Return and volatility transmission between world oil prices and stock markets of the GCC countries. Econ. Model. 2011, 2828, 1815–1825. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, C.; Yang, L. Oil price shocks and stock market activities: Evidence from oil-importing and oil-exporting countries. J. Comp. Econ. 2013, 4141, 1220–1239. [Google Scholar] [CrossRef]
- Adrian, T.; Brunnermeier, M.K. CoVaR. Am. Econ. Rev. 2016, 106106, 1705–1741. [Google Scholar] [CrossRef]
- Reboredo, J.C.; Ugolini, A. Systemic risk in European sovereign debt markets: A CoVaR-copula approach. J. Int. Money. Financ. 2015, 51, 214–244. [Google Scholar] [CrossRef]
- Girardi, G.; Ergün, A.T. Systemic risk measurement: Multivariate GARCH estimation of CoVaR. J. Bank. Financ. 2013, 3737, 3169–3180. [Google Scholar] [CrossRef]
- Mseddi, S.; Benlagha, N. An Analysis of Spillovers Between Islamic and Conventional Stock Bank Returns: Evidence from the GCC Countries. Mult. Finan. J. 2017, 21, 91–113. [Google Scholar]
- Mensi, W.; Hammoudeh, S.; Shahzad, S.J.H.; Shahbaz, M. Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method. J. Bank. Financ. 2017, 75, 258–279. [Google Scholar] [CrossRef]
- Shahzad, S.J.H.; Arreola-Hernandez, J.; Bekiros, S.; Shahbaz, M.; Kayani, G.M. A systemic risk analysis of Islamic equity markets using vine copula and delta CoVaR modeling. J. Int. Financ. Mark. Inst. Money 2018, 56, 104–127. [Google Scholar] [CrossRef]
- Trabelsi, N.; Naifar, N. Are Islamic stock indexes exposed to systemic risk? Multivariate GARCH estimation of CoVaR. Res. Int. Bus. Financ. 2017, 42, 727–744. [Google Scholar] [CrossRef]
- Glosten, L.R.; Jagannathan, R.; Runkle, D.E. On the relation between the expected value and the volatility of the nominal excess return on stocks. J. Financ. 1993, 4848, 1779–1801. [Google Scholar] [CrossRef]
- Joe, H. Multivariate Models and Multivariate Dependence Concepts; Chapman and Hall/CRC: London, UK, 1997. [Google Scholar]
- Sibuya, M. Bivariate extreme statistics, I. Ann. Inst. Stat. Math. 1960, 1111, 195–210. [Google Scholar] [CrossRef]
- Sklar, A. Fonctions de repartition an dimensions et leures marges. Publ. Inst. Statist. Univ. Paris 1959, 8, 229–231. [Google Scholar]
- Patton, A.J. Modelling asymmetric exchange rate dependence. Int. Econ. Rev. 2006, 47, 527–556. [Google Scholar] [CrossRef]
- Chai, J.; Du, J.; Lai, K.K.; Lee, Y.P. A hybrid least square support vector machine model with parameters optimization for stock forecasting. Math. Probl. Eng. 2015, 231394. [Google Scholar] [CrossRef]
- Engle, R. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. J. Bus. Econ. Stat. 2002, 2020, 339–350. [Google Scholar] [CrossRef]
- Brownlees, C.T.; Engle, R. Volatility, Correlation and Tails for Systemic Risk Measurement. SSRN. 2012, p. 1611229. Available online: https://creates.au.dk/fileadmin/site_files/filer_oekonomi/subsites/creates/Seminar_Papers/2012/mes.pdf (accessed on 2 March 2018).
- Christoffersen, P.; Errunza, V.; Jacobs, K.; Langlois, H. Is the potential for international diversification disappearing? A dynamic copula approach. Rev. Financ. Stud. 2012, 2525, 3711–3751. [Google Scholar] [CrossRef] [Green Version]
- Christoffersen, S.E.; Simutin, M. On the demand for high-beta stocks: Evidence from mutual funds. Rev. Financ. Stud. 2017, 3030, 2596–2620. [Google Scholar] [CrossRef] [Green Version]
- Jeong, K.; Härdle, W.K.; Song, S. A consistent nonparametric test for causality in quantile. Economet. Theor. 2012, 2828, 861–887. [Google Scholar] [CrossRef] [Green Version]
S&P 500 | UAE | Bahrain | Qatar | Oman | Kuwait | KSA | |
---|---|---|---|---|---|---|---|
Mean | 0.0440 | 0.0406 | 0.0202 | 0.0272 | −0.0107 | −0.0061 | 0.0014 |
Minimum | −9.7612 | −7.5447 | −7.0469 | −7.3751 | −8.1635 | −5.5086 | −11.6809 |
Maximum | 6.8171 | 10.2567 | 6.5565 | 7.5161 | 10.7943 | 6.5367 | 13.5331 |
Std. Dev. | 1.4893 | 1.1966 | 0.9328 | 1.0177 | 0.8717 | 0.8579 | 1.1941 |
Skewness | −0.2585 | 0.0422 | −0.0791 | 0.1332 | −0.0817 | −0.0572 | 0.4060 |
Kurtosis | 7.0390 | 12.1542 | 14.2917 | 11.0782 | 26.4986 | 9.8303 | 22.6199 |
J-B | 1327.16 *** | 6708.01 *** | 10,207.46 *** | 5228.93 *** | 44,199.98 *** | 3735.27 *** | 30,864.09 *** |
Q (20) | 74.49 *** | 52.14 *** | 43.349 *** | 39.29 *** | 61.84 *** | 27.29 | 31.48 ** |
Q2(20) | 1100.15 *** | 639.04 *** | 264.64 *** | 224.46 *** | 383.59 *** | 172.21 *** | 165.29 *** |
ARCH (20) | 359.29 *** | 356.36 *** | 187.79 *** | 149.53 *** | 278.13 *** | 130.90 *** | 122.83 *** |
ADF | −22.19 *** | −40.51 *** | −43.93 *** | −42.21 *** | −27.43 *** | −45.42 *** | −41.32 *** |
PP | −48.11 *** | −40.48 *** | −44.01 *** | −42.25 *** | −41.66 *** | −45.43 *** | −41.27 *** |
KPSS | 0.0451 | 0.2112 | 0.1112 | 0.3156 | 0.0289 | 0.2206 | 0.0632 |
S&P 500 | 1.000 | ||||||
UAE | 0.098 *** | 1.000 | |||||
(4.319) | |||||||
Bahrain | 0.021 | 0.159 *** | 1.000 | ||||
(0.925) | (7.043) | ||||||
Qatar | 0.095 *** | 0.450 *** | 0.139 *** | 1.000 | |||
(4.180) | (22.09) | (6.158) | |||||
Oman | 0.080 *** | 0.382 *** | 0.135 *** | 0.341 *** | 1.000 | ||
(3.510) | (18.13) | (5.965) | (15.88) | ||||
Kuwait | 0.050 ** | 0.235 *** | 0.149 *** | 0.207 *** | 0.251 *** | 1.000 | |
(2.182) | (10.59) | (6.587) | (9.285) | (11.37) | |||
KSA | 0.140 *** | 0.396 *** | 0.154 *** | 0.298 *** | 0.262 *** | 0.166 *** | 1.000 |
(6.209) | (18.90) | (6.826) | (13.69) | (11.91) | (7.366) |
S&P 500 | UAE | Bahrain | Qatar | Oman | Kuwait | KSA | |
---|---|---|---|---|---|---|---|
Cst (M) | 0.041 | 0.046 | 0.017 | 0.021 | 0.001 | −0.023 | −0.016 |
(0.025) | (0.029) | (0.017) | (0.068) | (0.020) | (0.019) | (0.021) | |
AR (1) | −0.907 *** | −0.984 *** | −0.249 *** | −0.786 *** | 0.690 *** | 0.029 | |
(0.060) | (0.002) | (0.009) | (0.083) | (0.244) | (0.019) | ||
AR (2) | −0.946 *** | 0.042 *** | |||||
(0.008) | (0.015) | ||||||
MA (1) | 0.888 *** | 1.019 *** | 0.259 *** | 0.817 *** | −0.626 ** | ||
(0.066) | (0.000) | (0.008) | (0.085) | (0.243) | |||
MA (2) | 0.033 *** | 0.943 *** | −0.028 | ||||
(0.001) | (0.008) | (0.026) | |||||
Cst (V) | 0.054 ** | 0.129 * | 0.057 | 0.034 | 0.054 *** | 0.058 * | 0.080 |
(0.025) | (0.073) | (0.053) | (0.237) | (0.019) | (0.030) | (0.174) | |
ARCH | 0.039 ** | 0.053 * | 0.031 *** | 0.092 | 0.051 ** | 0.081 ** | 0.028 |
(0.018) | (0.029) | (0.021) | (0.086) | (0.024) | (0.036) | (0.045) | |
GARCH | 0.878 *** | 0.838 *** | 0.934 *** | 0.880 *** | 0.863 *** | 0.868 *** | 0.865 *** |
(0.041) | (0.062) | (0.048) | (0.406) | (0.037) | (0.035) | (0.222) | |
Gamma | 0.128 ** | 0.212 *** | −0.074 | 0.053 | 0.171 *** | 0.070 | 0.214 ** |
(0.053) | (0.074) | (0.058) | (0.171) | (0.047) | (0.057) | (0.105) | |
Asymmetry | 0.981 *** | 1.022 *** | 1.024 *** | 1.006 *** | 0.992 *** | 0.979 *** | 0.992 *** |
(0.030) | (0.023) | (0.020) | (0.070) | (0.024) | (0.021) | (0.021) | |
Tail | 5.304 *** | 2.469 *** | 2.174 *** | 2.589 *** | 2.325 *** | 2.690 *** | 2.277 *** |
(0.692) | (0.081) | (0.033) | (0.311) | (0.050) | (0.241) | (0.135) | |
LL | −3179.81 | −2590.91 | −1941.46 | −2255.22 | −1725.55 | −2148.4 | −2288.28 |
AIC | 3.3199 | 2.7079 | 2.0328 | 2.3584 | 1.8069 | 2.244 | 2.3907 |
Q (20) | [0.8735] | [0.9084] | [0.4950] | [0.5734] | [0.4346] | [0.9083] | [0.7676] |
Q2(20) | [0.8439] | [0.4894] | [0.9953] | [0.4971] | [0.7319] | [0.5916] | [0.5058] |
ARCH (20) | [0.3821] | [0.6045] | [0.7990] | [0.3040] | [0.8038] | [0.2042] | [0.2372] |
K-S test | [0.3603] | [0.3530] | [0.9274] | [0.9908] | [0.7535] | [0.7251] | [0.3471] |
C-vM test | [0.2549] | [0.6081] | [0.1071] | [0.1603] | [0.5874] | [0.7016] | [0.1175] |
A-D test | [0.3127] | [0.2398] | [0.0823] | [0.1127] | [0.7106] | [0.4976] | [0.9378] |
Panel A: Parameter estimates for time-invariant copulas. | ||||||
UAE | Bahrain | Qatar | Oman | Kuwait | KSA | |
Gaussian copula | ||||||
0.073 | 0.033 | 0.085 | 0.071 | 0.037 | 0.145 | |
(0.023) | (0.023) | (0.023) | (0.023) | (0.023) | (0.022) | |
AIC | −10.307 | −2.036 | −14.036 | −9.710 | −2.667 | −40.768 |
Student-T copula | ||||||
ρ | 0.073 | 0.032 | 0.084 | 0.071 | 0.041 | 0.146 |
(0.362) | (0.358) | (0.254) | (1.000) | (0.185) | (1.000) | |
υ | 0.024 | 0.024 | 0.024 | 0.026 | 0.024 | 0.023 |
(0.303) | (0.370) | (0.169) | (0.861) | (0.088) | (0.990) | |
AIC | −11.620 | −3.261 | −16.469 | −9.716 | −7.780 | −40.055 |
Gumbel copula | ||||||
δ | 1.031 | 1.015 | 1.043 | 1.030 | 1.020 | 1.070 |
(0.015) | (0.013) | (0.015) | (0.014) | (0.014) | (0.017) | |
AIC | −4.830 | −1.456 | −9.501 | −4.891 | −2.381 | −21.759 |
Rotated Gumbel copula | ||||||
1.048 | 1.022 | 1.054 | 1.035 | 1.024 | 1.084 | |
(0.014) | (0.013) | (0.014) | (0.013) | (0.013) | (0.016) | |
AIC | −18.064 | −3.645 | −20.522 | −10.427 | −4.012 | −38.864 |
SJC copula | ||||||
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | |
(0.000) | (0.678) | (1.400) | (0.001) | (1.743) | (0.006) | |
0.004 | 0.000 | 0.019 | 0.001 | 0.000 | 0.040 | |
(0.000) | (5.624) | (0.440) | (0.005) | (1.609) | (0.023) | |
AIC | −14.565 | −2.983 | −19.472 | −10.340 | −3.272 | −40.584 |
Panel B: Parameter estimates for time-varying copulas. | ||||||
UAE | Bahrain | Qatar | Oman | Kuwait | KSA | |
TVP Gaussian copula | ||||||
0.278 | 0.008 | 0.042 | 0.039 | 0.165 | 0.035 | |
(0.098) | (0.010) | (0.036) | (0.046) | (0.086) | (0.058) | |
−0.085 | 0.043 | −0.049 | −0.055 | −0.296 | −0.024 | |
(0.218) | (0.041) | (0.049) | (0.063) | (0.188) | (0.035) | |
−1.779 | 1.673 | 1.560 | 1.539 | −1.692 | 1.803 | |
(0.532) | (0.265) | (0.373) | (0.559) | (0.311) | (0.372) | |
AIC | −10.459 | −3.770 | −15.705 | −11.338 | −5.028 | −41.601 |
TVP Student-t copula | ||||||
0.138 | 0.076 | 0.277 | 0.080 | 0.182 | 0.042 | |
(0.138) | (0.115) | (0.174) | (0.212) | (0.098) | (0.155) | |
−0.066 | 0.120 | −0.027 | −0.083 | −0.093 | −0.010 | |
(0.098) | (0.079) | (0.115) | (0.194) | (0.113) | (0.027) | |
0.012 | −1.980 | −1.664 | 0.833 | −1.808 | 1.718 | |
(1.902) | (0.038) | (2.349) | (3.183) | (0.447) | (1.125) | |
5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | |
(0.441) | (0.530) | (1.205) | (0.433) | (0.464) | (0.401) | |
AIC | 26.415 | 30.870 | 15.734 | 41.068 | 19.119 | 23.068 |
TVP Gumbel copula | ||||||
−0.293 | 0.015 | −1.443 | −1.067 | 2.463 | 2.353 | |
(1.007) | (11.456) | (0.203) | (0.734) | (0.707) | (0.135) | |
−0.498 | 0.237 | 1.542 | 0.997 | −2.693 | −1.582 | |
(0.878) | (10.792) | (0.061) | (0.843) | (0.627) | (0.196) | |
2.566 | −0.445 | 0.142 | 0.619 | 1.360 | −1.285 | |
(1.007) | (11.456) | (0.203) | (0.734) | (0.707) | (0.135) | |
AIC | −13.022 | −1.701 | −11.867 | −7.035 | −5.796 | −26.722 |
TVP Rotated Gumbel copula | ||||||
2.000 | 1.077 | −1.350 | 1.545 | 2.029 | 2.239 | |
(0.785) | (0.105) | (4.322) | (1.379) | (0.510) | (0.128) | |
−1.882 | −0.930 | 1.447 | −1.598 | −2.262 | −1.486 | |
(0.776) | (0.103) | (0.300) | (1.265) | (0.431) | (0.168) | |
0.575 | 0.072 | 0.168 | 0.903 | 1.493 | −1.101 | |
(0.785) | (0.105) | (4.322) | (1.379) | (0.510) | (0.128) | |
AIC | −18.735 | −3.865 | −23.446 | −11.794 | −12.406 | −45.238 |
TVP SJC copula | ||||||
−0.192 | −0.176 | −0.170 | −0.161 | −0.174 | −0.080 | |
(8.549) | (2.325) | (2.895) | (2.124) | (2.911) | (0.740) | |
−0.023 | −0.005 | −0.009 | −0.013 | −0.017 | 0.031 | |
(3.085) | (0.810) | (1.081) | (0.360) | (0.936) | (2.329) | |
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.250 | |
(0.013) | (0.010) | (0.010) | (0.010) | (0.011) | (38.353) | |
−0.118 | −0.214 | −0.117 | −0.154 | −0.225 | 0.023 | |
(0.066) | (30.488) | (0.063) | (3.582) | (10.385) | (0.018) | |
0.173 | −0.033 | 0.205 | −0.023 | −0.028 | −0.164 | |
(0.115) | (9.565) | (0.142) | (0.748) | (2.015) | (0.081) | |
0.053 | 0.000 | −0.076 | 0.000 | 0.000 | −0.123 | |
(0.026) | (0.033) | (0.099) | (0.012) | (0.013) | (0.049) | |
AIC | −16.077 | 0.319 | −20.184 | −10.083 | −0.661 | −44.131 |
UAE | Bahrain | Qatar | Oman | Kuwait | KSA | |
---|---|---|---|---|---|---|
Panel A: At the 5% level | ||||||
0.05 | 0.196 | 0.210 | 0.237 | 0.251 | 0.245 | 0.199 |
(0.062) | (0.064) | (0.077) | (0.066) | (0.061) | (0.062) | |
0.20 | 0.484 | 0.507 | 0.523 | 0.542 | 0.545 | 0.478 |
(0.075) | (0.069) | (0.073) | (0.062) | (0.053) | (0.069) | |
0.50 | 0.631 | 0.647 | 0.614 | 0.618 | 0.638 | 0.603 |
(0.026) | (0.026) | (0.037) | (0.033) | (0.029) | (0.024) | |
0.80 | 0.485 | 0.488 | 0.425 | 0.414 | 0.438 | 0.443 |
(0.077) | (0.076) | (0.090) | (0.076) | (0.068) | (0.076) | |
0.95 | 0.198 | 0.194 | 0.158 | 0.148 | 0.159 | 0.171 |
(0.063) | (0.054) | (0.060) | (0.051) | (0.041) | (0.054) | |
Panel B: At the 50% level | ||||||
0.05 | 0.048 | 0.052 | 0.061 | 0.065 | 0.063 | 0.049 |
(0.019) | (0.021) | (0.026) | (0.022) | (0.021) | (0.019) | |
0.20 | 0.163 | 0.176 | 0.186 | 0.197 | 0.198 | 0.160 |
(0.040) | (0.040) | (0.042) | (0.037) | (0.035) | (0.036) | |
0.50 | 0.258 | 0.271 | 0.245 | 0.248 | 0.264 | 0.236 |
(0.020) | (0.021) | (0.027) | (0.024) | (0.022) | (0.017) | |
0.80 | 0.164 | 0.166 | 0.135 | 0.128 | 0.139 | 0.142 |
(0.041) | (0.039) | (0.043) | (0.036) | (0.032) | (0.037) | |
0.95 | 0.049 | 0.047 | 0.038 | 0.035 | 0.037 | 0.041 |
(0.019) | (0.016) | (0.017) | (0.015) | (0.011) | (0.016) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, F.; Trabelsi, N.; Samargandi, N.; Shahzad, S.J.H. Tail Dependence and Risk Spillover from the US to GCC Banking Sectors. Mathematics 2020, 8, 2055. https://doi.org/10.3390/math8112055
Alqahtani F, Trabelsi N, Samargandi N, Shahzad SJH. Tail Dependence and Risk Spillover from the US to GCC Banking Sectors. Mathematics. 2020; 8(11):2055. https://doi.org/10.3390/math8112055
Chicago/Turabian StyleAlqahtani, Faisal, Nader Trabelsi, Nahla Samargandi, and Syed Jawad Hussain Shahzad. 2020. "Tail Dependence and Risk Spillover from the US to GCC Banking Sectors" Mathematics 8, no. 11: 2055. https://doi.org/10.3390/math8112055
APA StyleAlqahtani, F., Trabelsi, N., Samargandi, N., & Shahzad, S. J. H. (2020). Tail Dependence and Risk Spillover from the US to GCC Banking Sectors. Mathematics, 8(11), 2055. https://doi.org/10.3390/math8112055