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Abstract: This study investigates the structure of the tail dependence between the United States
(US) and Gulf Cooperation Council (GCC) banking sectors for the period February 2010 to July 2017.
Conditional value at risk and conditional diversification benefits are calculated. The GCC banking
sectors show lower tail dependence with the US banking sector. This is confirmed by the fact that
GCC banking sectors receive higher downside risk spillover from the US banking system during
downside market movements compared to upside risk spillover effects. Interestingly, an equally
weighted portfolio of US and GCC banking stocks can provide relatively higher diversification benefits.
These findings have implications for portfolio diversification, asset allocation and hedging strategies.
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1. Introduction

Since the 2008 global financial crisis (GFC), financial integration has been of growing interest to
researchers, economists, policymakers, investors and bankers [1–10]. The GFC originated in the United
States (US) financial sector and quickly spread worldwide, reflecting the increased interconnection of
world markets arising from intensive globalization since the 1980s.

Empirical studies have explored the nexus between the US financial market and numerous
international and regional financial markets. For example, Ref. [5,6,11] focused on spillover effects
between the US market and some Asian markets; Ref. [9,12] examined spillover effects between the
US stock market and various Islamic developing markets; and [1] studied the impact of the US stock
market on Pacific Rim stock markets.

The interaction between the US banking sector and the banking sectors of other countries has
recently emerged as an important research direction. According to [13], major international banks
worldwide and in the European Union represent important channels for spillovers through the
international financial system. In addition to highlighting relationships in the international financial
system, Ref. [14] tests for the presence of volatility and return spillovers from the US banking sector to
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eight other international banking sectors (i.e., Canada, the United Kingdom, Germany, France, Italy,
Belgium, Switzerland and Sweden). To extend this, we map spillover risks between banking sectors of
the US and GCC countries.

An International Monetary Fund report entitled Monetary Policy Transmission in the GCC
Countries [15] states that US monetary policy has a strong and statistically significant effect on
broad money, nonoil activities and inflation in the GCC region. Ref. [16] also finds a significant and
symmetrical relationship between US economic policy uncertainty and the stock markets of GCC
countries. This means that stock market volatility in the GCC region may be partly driven by volatility
in the US stock market, and vice versa.

The objective of the current work is to investigate downside and upside risk spillover effects from
the US banking sector to GCC banking sectors. The investigation contributes to the theory of finance in
relation to various issues, including volatility, portfolio management and international investment.
The findings are pertinent to global portfolio diversification and trading and hedging strategies [17–19].

Our current work makes several contributions to the existing body of literature. First,
methodologically, we use a novel conditional value at risk (CoVaR) approach, which was developed
during the GFC as a systemic risk model by [20] in response to the limitations of traditional methods.
It also quantifies the possible spillover of systemic risk between two markets by providing information
on a market’s value at risk (VaR) conditional on the other market being under financial stress.
Our CoVaR estimates are calculated using a [21] copula approach. Some analysts prefer quantile
regression [20] or generalized autoregressive conditional heteroscedasticity (GARCH) [22].

Second, the banking sector of the GCC accounts for the majority of its gross domestic product
(ranging from 66% in Oman to 25.8% in Bahrain in 2008) and is the most developed sector in the Middle
East and North Africa, with banks dominating investment and commercial banking asset management
and insurance services. The financial sector in the GCC region is predominantly a banking-based sector,
which is dominated by a small number of domestic banks. Further, nonbank financial institutions are
mostly either subsidiaries of existing banks or obtain the bulk of their finances from them. This shows
that the stability of the GCC financial system is largely dependent on that of the banking sector,
motivating us to focus on the banking sector rather than on aggregate market indices in the GCC.

Third, we chose the GCC for several reasons. First, GCC stock markets have received increased
attention from international investors because four of the six GCC countries—Kingdom of Saudi
Arabia (KSA), Kuwait, Qatar and United Arab Emirates (UAE)—are included in the FTSE Russell
Emerging Markets Index (2018), while three—KSA, Qatar and UAE—are listed in the MSCI Emerging
Markets Index. Second, the GCC is a significant economic bloc, having a gross domestic product of
US$1.36 trillion in 2016 and 39% of the world’s total crude oil reserves and being the world’s largest
exporter of crude oil. Finally, in terms of monetary policy, the US banking sector is crucial for the GCC
financial sector because all GCC currencies are pegged to the US dollar, linking their monetary policies
directly to US monetary policy.

We find that GCC banking sectors weakly comove with their US counterpart. The time-varying
rotated Gumbel copula is an effective compromise for efficiently modelling the dependence structure.
Further, GCC banking sectors receive downside spillover effects from the US banking system. Finally,
there are higher diversification benefits by investing in both the US and GCC banking industries.

The rest of this paper is organized as follows: Section 2 presents the literature review; Section 3
presents the econometric modelling framework; Section 4 presents the empirical analysis; and Section 5
presents the implications for portfolios and concludes the paper.

2. Literature Review

Our study is motived by the importance of, and the increasing number of studies modelling
and investigating, the spillover effects between financial markets. Previous empirical studies have
investigated the nexus between the US financial sector and numerous international and regional
markets using a variety of methodologies.
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Initially, we focus on previous studies using GARCH techniques. In general, these studies found
the presence of spillover effects between a wide range of markets. Internationally, Ref. [2] studied
the spillover effects from three major industrialized economies (Europe, the US and Japan) to the
financial markets of developing economies in the Middle East, North Africa and Asia. In this study,
the authors applied a simple GARCH (1,1), trend regression, variance ratios and cross-sectional
analysis to evaluate spillover. In general, the findings supported spillover effects from industrialized
to developing economies and, more specifically, documented the domination of US shocks on all
developing markets. Ref. [1] studied the causal effects of the US stock market on Pacific Rim stock
markets, finding a significant causal relationship between returns and volatility at multiple points in
the conditional distribution of returns from the US to these stock markets. To capture the asymmetric
volatility phenomenon, Ref. [5] investigated the transmission of volatility and returns spillover between
the US and South Korean stock markets using an asymmetric Baba−Engle−Kraft−Kroner (BEKK)
GARCH model. Importantly, they found a stronger association for size than for intensity of cojumps
between the US and Korean stock markets, particularly during the recent financial crisis.

Majdoub and Mansour [9] examined the interaction between the US market and various developing
Islamic markets in Pakistan, Turkey, Qatar, Malaysia and Indonesia. Three models were used:
multivariate GARCH BEKK, constant conditional correlation and dynamic conditional correlation
(DCC). The estimated results from the three models showed no significant spillover effect from
the US stock market to the aforementioned five Islamic economies. These models were also used
by [12] to study return spillover effects of the Saudi and US stock markets on five GCC stock markets.
They documented a significant return spillover effect on GCC stock markets from the global market,
proxied by the US, as well as the regional market, proxied by KSA. However, compared with the
overall GCC stock market, the GCC banking sector has received less attention. More recently, Ref. [23]
used a dynamic conditional multivariate GARCH to study the influence of the GFC on spillovers
between conventional and Islamic banks in the GCC banking sector from 2005 to 2015. They found that
a strong bidirectional returns spillover existed between US and GCC conventional banks. However,
empirical analysis of the role that the mixed bank market played in financial stability was lacking.

Tsuji [14] recently explored the international nexuses between the US and other banking
sector stocks by employing a new DCC model that retrofits spillovers, multivariate exponential
GARCH-in-mean and Student’s t or skewed t errors. The results showed evidence of returns
transmission from the US to other banking sectors, while volatility spillovers between the US and
other banking sectors were asymmetric and bidirectional. In sum, this banking sector literature review
showed that the evidence for spillover effects in the international banking industry was somewhat
mixed, suggesting the need for a more careful and rigorous study of spillovers in the international
banking sector.

With respect to CoVaR methodology, some researchers have attempted to measure CoVaR between
different markets. For example, Ref. [24] used VaR, CoVaR and ∆CoVaR to study the dependence
between oil price and several advanced stock markets. Their main findings showed a short- and
long-run tail dependence between oil price and all stocks. By implementing a robust modelling
framework consisting of VaR, CoVaR, ∆CoVaR, canonical vine conditional VaR and time-varying,
static bivariate and vine copula models, Ref. [25] analyzed the upside and downside spillovers,
systemic risk and tail dependence risk from the Dow Jones Islamic Market World Index to indices of
Islamic equity dispersed across the world and various regions. The estimated results showed a greater
downside spillover and systemic risk for the US Islamic indices and Islamic financial sector indices,
whereas Japan Islamic indices and the Dow Jones Islamic Market World Index were highly exposed to
upside spillover risk. Similarly, Ref. [26] studied the exposure of Islamic stock indices to systemic tail
risk in several developed and developing markets, finding that systemic risk had a modest contrary
effect on Islamic indices, with the lowest level found in the GCC region.

Focusing on the European sovereign debt markets during the debt crisis in Greece, Ref. [21]
investigated systemic risk using a CoVaR copula approach, finding that following the Greek crisis,



Mathematics 2020, 8, 2055 4 of 18

systemic risk spillover effects increased marginally in European economies that were not directly
exposed to sovereign debt. Moreover, economies that experienced sovereign debt problems during the
crisis suffered from minor spillover effects. Further, the Portuguese economy experienced the highest
spillover effect from the Greek economy during the crisis.

3. Materials and Methods

3.1. Data and Descriptive Statistics

This paper examines the tail risk spillover and dependence dynamics between the banking sectors
of the US and the six GCC countries (Bahrain, Oman, Kuwait, Saudi Arabia, Qatar and UAE) using daily
data. The GCC states share common economic, cultural and political characteristics [26]. The period
under study is from February 2010 to July 2017, comprising a total of 11,532 observations. We opted
for 2010 as the starting point for the following two reasons:

1. To avoid the impacts of the GFC and its consequences, which might introduce multiple regimes
(which is highly likely to occur during periods of financial crisis).

2. We originally used local GCC banking indices, but preliminary outcomes were found to be highly
affected by differences in the methodologies used for calculating the banking indices in each
country. Consequently, we used S&P banking price indices for the six GCC banking sectors
and the S&P 500 Banks Index for the US banking sector, providing a uniform methodology.
Additionally, the S&P GCC banking indices were launched in 2010.

All data used in this present work were sourced from Thomson Reuters Datastream database.
Figure 1 displays the index dynamics for the entire sample.
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Figure 1. Time series plots for daily GCC and S&P 500 banking sector price indices for the period
February 2010 to June 2017 (S&P 500 banking sector prices indicated on the right axis).

Figure 1 shows three subperiods related to the movement of bank stock prices. The first subperiod
(2010–2012) was characterized by relatively stable prices. This period was strongly influenced by
post-GFC turbulence and tentative recovery. In considering this context, it should be noted that the
GFC itself originated in the US banking sector. During the second subperiod (2012 to mid-2014),
bank stock prices showed a steep upward trend. The third subperiod was characterized by a decreasing
trend, with a distinct trough in late 2015. This situation was mainly caused by a sharp fall in oil prices.
Indeed, the Arab Gulf countries are highly vulnerable to oil price shocks because of their complete
dependence on oil export revenue. Table 1 shows the basic statistics for the daily return series.
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Table 1. Stochastic properties of the banking sector return and the unconditional correlation matrix.

S&P 500 UAE Bahrain Qatar Oman Kuwait KSA

Mean 0.0440 0.0406 0.0202 0.0272 −0.0107 −0.0061 0.0014
Minimum −9.7612 −7.5447 −7.0469 −7.3751 −8.1635 −5.5086 −11.6809
Maximum 6.8171 10.2567 6.5565 7.5161 10.7943 6.5367 13.5331
Std. Dev. 1.4893 1.1966 0.9328 1.0177 0.8717 0.8579 1.1941
Skewness −0.2585 0.0422 −0.0791 0.1332 −0.0817 −0.0572 0.4060
Kurtosis 7.0390 12.1542 14.2917 11.0782 26.4986 9.8303 22.6199

J-B 1327.16 *** 6708.01 *** 10,207.46 *** 5228.93 *** 44,199.98 *** 3735.27 *** 30,864.09 ***
Q (20) 74.49 *** 52.14 *** 43.349 *** 39.29 *** 61.84 *** 27.29 31.48 **
Q2(20) 1100.15 *** 639.04 *** 264.64 *** 224.46 *** 383.59 *** 172.21 *** 165.29 ***

ARCH (20) 359.29 *** 356.36 *** 187.79 *** 149.53 *** 278.13 *** 130.90 *** 122.83 ***
ADF −22.19 *** −40.51 *** −43.93 *** −42.21 *** −27.43 *** −45.42 *** −41.32 ***
PP −48.11 *** −40.48 *** −44.01 *** −42.25 *** −41.66 *** −45.43 *** −41.27 ***

KPSS 0.0451 0.2112 0.1112 0.3156 0.0289 0.2206 0.0632
S&P 500 1.000

UAE 0.098 *** 1.000
(4.319)

Bahrain 0.021 0.159 *** 1.000
(0.925) (7.043)

Qatar 0.095 *** 0.450 *** 0.139 *** 1.000
(4.180) (22.09) (6.158)

Oman 0.080 *** 0.382 *** 0.135 *** 0.341 *** 1.000
(3.510) (18.13) (5.965) (15.88)

Kuwait 0.050 ** 0.235 *** 0.149 *** 0.207 *** 0.251 *** 1.000
(2.182) (10.59) (6.587) (9.285) (11.37)

KSA 0.140 *** 0.396 *** 0.154 *** 0.298 *** 0.262 *** 0.166 *** 1.000
(6.209) (18.90) (6.826) (13.69) (11.91) (7.366)

Notes: Q (20) and Q2(20) refer to the empirical statistics of Ljung−Box test for autocorrelation of returns and squared
returns series, respectively. ADF, PP and KPSS are empirical statistics of the augmented Dickey−Fuller (1979),
and the Phillips−Perron (1988) unit root tests, and the Kwiatkowski et al., (1992) stationarity test, respectively.
The ARCH-LM (20) test of Engle (1982) checks the presence of the ARCH effects. J−B stands of the Jarque−Bera
test of normality. ***, and ** denote the rejection of the null hypotheses of normality, no autocorrelation, unit root,
stationarity, and conditional homoscedasticity at the 1% and 5% significance level.

Table 1 shows that the US and GCC banking sectors yielded considerable risk−return differences,
with the closest coupling attributed to US banks. There were also significant differences between the
paired mean risk−returns among GCC bank sectors. In fact, the lowest risk was attributed to Oman
and Kuwait, whereas the highest was realized by UAE banks. Saudi banks were well positioned with
regard to achieving moderate mean risk-returns over the period.

The skewness values showed a fat tail on the left of the return’s distribution for the banking
indices of the US, Bahrain, Kuwait and Oman. UAE, Qatar and Saudi Arabia did not share this
feature because their skewness was positive. Further, all our time series had leptokurtic shapes arising
from higher excess kurtosis. This higher peak suggested that the times-series distributions were
non-normal, which essentially meant that extreme events occurred more frequently over our sample
periods. Under the null hypothesis of a Gaussian distribution, the Jarque−Bera statistic rejected the
null hypothesis of all series at the 5% significance level. Overall, all index returns did not follow a
normal distribution.

The Lagrange multiplier test for autoregressive conditional heteroscedasticity effects and the
Ljung−Box test confirmed the presence of a significant conditional heteroscedasticity and serial
correlations in the data, which justified the application of the more complex GARCH family of models
to the data. Additionally, the results of the two unit root tests (i.e., augmented Dickey−Fuller and
Phillips−Perron tests) and the Kwiatkowski−Phillips−Schmidt−Shin test of stationarity showed that
the examined return series were stationary.

To initially explore the dependence pattern in our dataset, we first used the Pearson correlation
coefficient, as shown at the bottom of Table 1. It was apparent that all correlations between the US and
the six GCC banking sectors were significantly close to zero. Among the GCC banking stock market
indices, UAE and Qatar had the highest codependence levels. Excluding this relationship, the other
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participants had positive but relatively weak correlations with each other, signifying the presence of a
certain degree of heterogeneity between GCC participants in terms of their banking system structures
(i.e., conventional banks, Islamic banks, Islamic branches/windows of conventional banks, etc.).

These differences between GCC participants motivated us to study each country individually
instead of the group as a whole. In contrast, it is known that the strength of the relationships
between assets varies over time. In addition, numerous studies have shown that financial asset returns
tend to be more closely correlated during downside market movements than during upside market
movements see, e.g., Ref. [24]. Consequently, our analysis was subsequently focused on dependence
models with static and time-varying parameters, specifically considering upturn and downturn stock
market conditions.

3.2. Methods

3.2.1. Marginal Model Estimates

To construct the VaR-CoVaR method using copulas, we first needed to specify the marginal
distribution for the single series. Among the immense number of GARCH models, we proposed
a combined autoregressive moving average (ARMA) model with a Glosten−Jagannathan−Runkle
(GJR)-GARCH model and assumed that innovations follow a skewed t-distribution rather than
a Gaussian distribution to better account for the existence of heteroscedasticity, asymmetry and
leverage effects.

We started by specifying the best ARMA model for each individual stock return series before fitting
GJR-GARCH models to their residuals. This is formulated for each return series xt, where t = 1, . . . , T, as:

xt = µ+
∑u

i=1
φixt−i +

∑v

j=1
ζjεt−i + εt, εt
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σ୲
ଶ  =  ω + ∑ ൫α୨ε୲-୨

ଶ + γ୨I୲-୨ε୲-୨
ଶ ൯ + ∑ β୨σ୲-୨

ଶ୮
୨ ୀ ଵ

୯
୨ ୀ ଵ , (2) 
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whereφi and ζj are the autoregressive and moving average parameters with u and v orders, respectively.
The GJR-GARCH model is expressed as:

σ2
t = ω+

∑q

j=1

(
αjε

2
t−j + γjIt−jε

2
t−j

)
+

∑p

j=1
βjσ

2
t−j, (2)

where γj parameter captures the leverage term, and I is an indicator function that takes a value of 1
for ε < 0 and 0 otherwise. The parameters have the same restrictions as those of the GARCH model,
with the addition of γ > 0 Note that the selection of p, q, u and v of each return series is based on the
minimum Akaike information criterion (AIC) for more details see [27].

3.2.2. Tail Dependence Using the Copula Approach

In this paper, we combine copula theory with VaR-CoVaR measures to investigate upside and
downside risk spillover and the general dependence structure between the US and GCC banking
sectors. We now present a brief overview of basic copula theory. For a complete review of copulas and
their fundamental properties, see, for example, Ref. [28].

According to Skalar’s theorem, given two random variables (x1, x2) with marginal distribution F1

and F2 and joint distribution H, there exists a unique copula C : [0, 1]2 → [0, 1] , such that:

H(X1, X2) = C(F1(x1), F2(x2)), (3)

Given that F1 and F2 are absolutely continuous, we can then rephrase Equation (4) as:

C(u, v) = H(F−1
1 (u), F−1

2 (v)), (4)

where u = F1(x1) and u = F1(x1) are uniformly distributed across [0,1], and F−1
1 (u) and F−1

2 (v) are the
generalised inverse distribution functions of marginal F1 and F2, respectively. The inversion method
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may be used to obtain the copulas by replacing the joint density function with marginal probability
functions. This replacement is essential for analyzing tail or extreme dependence.

The concept of tail dependence describes the dependence in the extreme parts of the bivariate
distribution. It allows us to evaluate the tendency of markets to crash or boom simultaneously [28–30]
formally define the upper and lower tail dependence coefficients as follows:

τU = lim
u↑1

Pr
(
x1 > F−1

1 (u)|x2 >F−1
2 (u)

)
= lim

u↑1

1− 2u + C(u, u)
1− u

, (5)

τL = lim
u↓0

Pr
(
x1 ≤ F−1

1 (u)
∣∣∣x2 ≤ F−1

2 (u)
)
= lim

u↓0

C(u, u)
u

, (6)

where τU, τL
∈ [0, 1]. For τU = τL = 0 there is no tail dependence.

There are numerous different copula functions, five of which are used in this study:
elliptical Gaussian and Student’s t copulas and asymmetric (Archimedean) Gumbel, rotated Gumbel
and symmetrized Joe-Clayton copulas. The elliptical copulas allow us to analyze potential symmetric
tail dependence, while the Archimedean copulas allow us to analyze the asymmetry of upper and
lower tail dependence coefficients. This is especially relevant for the computation of CoVaR.

Besides the static modelling of all the above copula functions, we also focus on dynamic dependence
by allowing the copula parameters to be time varying according to an evolution equation. Let ρt be
the linear dependence parameter of the Gaussian and Student’s t copulas, evolving in ARMA (1, q)
fashion as follows [31]:

ρt = Λ

Ψ0 + Ψ1ρt−1 + Ψ2
1
q

q∑
j=1

Φ−1
(
ut−j

)
.Φ−1

(
vt−j

), (7)

where Ψ0 is a constant, Ψ1 is an autoregressive term and Ψ2 is the average product over the last
q observations of the transformed variables. Λ(x) = (1− e−x)(1 + e−x)−1 is the modified logistic
transformation to retain the value ρt in the range (−1, 1). By replacing the expression Φ−1(x) with the
expression t−1

υ (x), Equation (8) can be used for the dynamic Student’s t-distribution. For dynamic
(rotated) Gumbel copulas, we use the following ARMA (1, q) process:

δt = ω+ πδt−1 + κ
1
q

q∑
j=1

∣∣∣ut−j − vt−j
∣∣∣, (8)

Finally, we apply Equations (9) and (10) to express the dynamic tail dependence parameters of the
symmetrized Joe-Clayton copula:

λU
t = ∆

ωU + πUρt−j + κU
1
q

q∑
j=1

∣∣∣ut−j − vt−j
∣∣∣, (9)

λU
t = ∆

ωU + πUρt−j + κU
1
q

q∑
j=1

∣∣∣ut−j − vt−j
∣∣∣, (10)

where ∆(x) = (1 + e−x)−1 denotes the logical transformation.

3.3. Systemic Risk Measure

As defined by [20], the downside VaR computes the risk of index i at the qth quantile:

Pr
(
xi,t ≤ VaRi

q,t

)
= q, , (11)
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where xi,t denotes the daily return of index i at time t. VaRi
q,t is typically a negative number, which can

be defined by the marginal models as VaRi
q,t = µt + t−1

ν,η(q)σi
t, where VaRi

q,t = µt + t−1
ν,η(q)σi

t and σi
t

are the conditional mean and standard deviation computed using Equations (1) and (2), and t−1
ν,η is

designed to capture the qth quantile of the data from the skewed t-distribution.
Likewise, upside VaR computes the risk of index i at the (1 − q) quantile as follows:

Pr
(
xi,t ≥ VaRi

q,t

)
= 1− q. It can be also defined by VaRi

1−q,t = µt + t−1
ν,η(1− q)σi

t.

In this study, xi indicates the return of an individual GCC banking sector index, and xj indicates
the return of the Standard & Poor (S&P) 500 banking sector index. The CoVaR for an individual GCC
banking sector index i at a level of significance (1 − q) can be formally expressed for a specific time
horizon with respect to the S&P 500 banking index j being in a state of distress or as its xj value [20,22]
as follows:

Pr (xi,t ≤ CoVaRi|j
q,t

∣∣∣∣x j, t ≤ VaRj
p,t) = q, (12)

Given that Pr (xj,t ≤ VaRj
p,t) = p, CoVaR in Equation (13) can then be shown as:

Pr (xi,t ≤ CoVaRi|j
q,t, xj,t ≤ VaRj

p,t) = pq, (13)

likewise, the upside CoVaRi|j
q,t for extreme upward return movements in index j or in its VaRj

1−p value
can be formally expressed for a specific time horizon as:

Pr (xi,t ≥ CoVaRi|j
q,t

∣∣∣∣xj,t ≥ VaRj
1−p,t) = q, (14)

To compute downside and upside CoVaRi|j
q,t using copulas, Equations (13) and (14), respectively,

can be used with regard to the joint distribution functions, defined as:

Pr (xi,t ≥ CoVaRi|j
q,t

∣∣∣∣xj,t ≥ VaRj
1−p,t) = q, (15)

H(CoVari|j
q,t, VaRj

1−p,t) = pq, (16)

According to [30] theorem, the joint density of two continuous random variables can be described
as a function of the copula function. Hence, Equations (15) and (16) can be rephrased as:

C
(
F1

(
CoVaRi|j

q,t

)
, F2

(
VaRj

p,t

))
= pq, (17)

1− F1
(
CoVaRi|j

q,t

)
− F2

(
VaRj

1−p,t

)
+ C

(
F1

(
CoVaRi|j

q,t

)
, F2

(
VaRj

1−p,t

))
= pq, (18)

Following [21], CoVaR can be calculated from Equations (17) and (18) using the copula function
in two steps. First, through the selected copula specifications and for the given values of p, q and

F2

(
VaRj

1−p

)
= p, one can solve Equations (17) and (18) to determine the value of u = F1

(
CoVaRi|j

q

)
.

Second, taking u, we can assess the CoVaR of x1 with a cumulative probability equal to F1
(
CoVaRi|j

q

)
by inversing F1: CoVaRi|j

q = F−1
1 (u). Hence, the copula-based CoVaR needs information only from the

cumulative distribution function of the VaR rather than from the VaR itself.

4. Discussion

4.1. Marginal Model Estimates

All parameter estimates of marginal distribution functions are reported by Table 2, which also
summarizes the suitable model for the marginal distributions of the S&P 500 and GCC banking sector
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series. For instance, for the marginal distributions of Kuwait and KSA, we used ARMA (0,0)–GJR
(1,1) and ARMA (2,0)–GJR (1,1), respectively. For the mean and variance parameters, we manipulated
different parameter combinations. The minimum AIC value was used as the model selection criterion.
Moreover, only one lag was used to filter the time series (to eliminate serial dependence).

Table 2. Marginal model estimates of the ARMA-GJR (1,1) with skew-t distribution.

S&P 500 UAE Bahrain Qatar Oman Kuwait KSA

Cst (M) 0.041 0.046 0.017 0.021 0.001 −0.023 −0.016
(0.025) (0.029) (0.017) (0.068) (0.020) (0.019) (0.021)

AR (1) −0.907 *** −0.984 *** −0.249 *** −0.786 *** 0.690 *** 0.029
(0.060) (0.002) (0.009) (0.083) (0.244) (0.019)

AR (2) −0.946 *** 0.042 ***
(0.008) (0.015)

MA (1) 0.888 *** 1.019 *** 0.259 *** 0.817 *** −0.626 **
(0.066) (0.000) (0.008) (0.085) (0.243)

MA (2) 0.033 *** 0.943 *** −0.028
(0.001) (0.008) (0.026)

Cst (V) 0.054 ** 0.129 * 0.057 0.034 0.054 *** 0.058 * 0.080
(0.025) (0.073) (0.053) (0.237) (0.019) (0.030) (0.174)

ARCH 0.039 ** 0.053 * 0.031 *** 0.092 0.051 ** 0.081 ** 0.028
(0.018) (0.029) (0.021) (0.086) (0.024) (0.036) (0.045)

GARCH 0.878 *** 0.838 *** 0.934 *** 0.880 *** 0.863 *** 0.868 *** 0.865 ***
(0.041) (0.062) (0.048) (0.406) (0.037) (0.035) (0.222)

Gamma 0.128 ** 0.212 *** −0.074 0.053 0.171 *** 0.070 0.214 **
(0.053) (0.074) (0.058) (0.171) (0.047) (0.057) (0.105)

Asymmetry 0.981 *** 1.022 *** 1.024 *** 1.006 *** 0.992 *** 0.979 *** 0.992 ***
(0.030) (0.023) (0.020) (0.070) (0.024) (0.021) (0.021)

Tail 5.304 *** 2.469 *** 2.174 *** 2.589 *** 2.325 *** 2.690 *** 2.277 ***
(0.692) (0.081) (0.033) (0.311) (0.050) (0.241) (0.135)

LL −3179.81 −2590.91 −1941.46 −2255.22 −1725.55 −2148.4 −2288.28
AIC 3.3199 2.7079 2.0328 2.3584 1.8069 2.244 2.3907

Q (20) [0.8735] [0.9084] [0.4950] [0.5734] [0.4346] [0.9083] [0.7676]
Q2(20) [0.8439] [0.4894] [0.9953] [0.4971] [0.7319] [0.5916] [0.5058]

ARCH (20) [0.3821] [0.6045] [0.7990] [0.3040] [0.8038] [0.2042] [0.2372]
K-S test [0.3603] [0.3530] [0.9274] [0.9908] [0.7535] [0.7251] [0.3471]

C-vM test [0.2549] [0.6081] [0.1071] [0.1603] [0.5874] [0.7016] [0.1175]
A-D test [0.3127] [0.2398] [0.0823] [0.1127] [0.7106] [0.4976] [0.9378]

Notes: This table reports the ML estimates and the standard deviations in parentheses for the parameters of
the marginal distribution model defined in Equations (1) and (2). The lags p, q, r and m are selected using the
AIC for different combinations of values ranging from 0 to 2. Q (20) and Q2(20) are the Ljung−Box statistics for
serial correlation in the model residuals and squared residuals (respectively), computed with 20 lags. ARCH is
the Engle LM test for the ARCH effect in the residuals up to the 20th order. K-S, C-vM and A-D denote the
Kolmogorov−Smirnov, Cramér−von Mises and Anderson Darling tests, respectively, with p values (reported in
square brackets) below 0.05 indicating the rejection of the null hypothesis that the model distribution is correctly
specified. The asterisks (***), (**) and (*) represent significance at the 1, 5 and 10% levels, respectively.

For the mean equation, all parameters were significant at the 1% level, except for Kuwait and
KSA. Note that this bad estimation could bias our subsequent results. For the volatility equation,
most parameters were significant at the 1% or 5% levels. In addition, one can see that the parameters
α+ β+ γ > 1 (except for the Bahrain banking sector index) suggested a high degree persistence and
slow decay of conditional volatility shocks. Moreover, the significant γ parameter implied that levered
effects were found in the sample data (except for the Bahrain series), which was consistent with the
sample sign bias test for the series.

The use of asymmetric tail models appeared to be justified, with all coefficients being significant.
According to the diagnostic tests (see the bottom of Table 2), the Ljung−Box test statistics were all
nonsignificant. Thus, all models appeared adequate to characterize dynamic first and second moments.
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All p-values related to standard Cramer−von Mises, Kolmogorov−Smirnov and Anderson−Darling
(except Bahrain) tests rejected the null hypothesis, confirming that the models were correctly specified.

4.2. Best-Fit Copula

Table 3 reports the estimated time-invariant (Panel A) and time-varying (Panel B) parameters for
the copula between the S&P 500 Banking Index and the GCC banking sector indices. From Panel A,
the use of AIC allowed us to select the rotated Gumbel copula as the best-fitting model for describing
the extreme relationship between the US and banking sectors of four GCC countries, namely UAE,
Bahrain, Qatar and Oman. Although the parameters of the rotated Gumbel copulas captured the weak
dependence structure of the pairs, they were significant. In contrast, a ρ of 1.048 indicated a persistence
in the correlation between the US and UAE banking sectors. Note that the estimated coefficients for
Bahrain, Oman and Qatar were close to that of UAE, meaning that all these copulas indicated a strong
persistent correlation for tail dependence.

For the US−Kuwait and US−KSA pairs, the Student’s t and Gaussian copulas had the smallest AIC.
For Kuwait, the selected copula also reflected a significant persistence in the estimation of correlation
coefficients, with the estimated ρ equal to 1.045. It was also possible that there was no persistence of
features in the estimate of the correlation coefficient between the US and KSA because estimated ρ was
close to zero.

Panel B shows that, according to AIC, the dynamic rotated Gumbel copula was more appropriate
to measure the dependent time dynamics between the US and GCC banking sectors. Moreover,
the performance of these dynamic copulas exceeded that of the time-invariant rotated Gumbel
copula based on AIC. In fact, for the invariant copula, one might be interested in such measures as
rank autocorrelation.

Table 3. Parameter estimates for the copula between the GCC and S&P 500 banking sector markets.

Panel A: Parameter estimates for time-invariant copulas.

UAE Bahrain Qatar Oman Kuwait KSA

Gaussian copula
ρ 0.073 0.033 0.085 0.071 0.037 0.145

(0.023) (0.023) (0.023) (0.023) (0.023) (0.022)
AIC −10.307 −2.036 −14.036 −9.710 −2.667 −40.768

Student-T copula
ρ 0.073 0.032 0.084 0.071 0.041 0.146

(0.362) (0.358) (0.254) (1.000) (0.185) (1.000)
υ 0.024 0.024 0.024 0.026 0.024 0.023

(0.303) (0.370) (0.169) (0.861) (0.088) (0.990)
AIC −11.620 −3.261 −16.469 −9.716 −7.780 −40.055

Gumbel copula
δ 1.031 1.015 1.043 1.030 1.020 1.070

(0.015) (0.013) (0.015) (0.014) (0.014) (0.017)
AIC −4.830 −1.456 −9.501 −4.891 −2.381 −21.759

Rotated Gumbel copula
δ 1.048 1.022 1.054 1.035 1.024 1.084

(0.014) (0.013) (0.014) (0.013) (0.013) (0.016)
AIC −18.064 −3.645 −20.522 −10.427 −4.012 −38.864

SJC copula
θ 0.000 0.000 0.000 0.000 0.000 0.002

(0.000) (0.678) (1.400) (0.001) (1.743) (0.006)
δ 0.004 0.000 0.019 0.001 0.000 0.040

(0.000) (5.624) (0.440) (0.005) (1.609) (0.023)
AIC −14.565 −2.983 −19.472 −10.340 −3.272 −40.584
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Table 3. Cont.

Panel B: Parameter estimates for time-varying copulas.

UAE Bahrain Qatar Oman Kuwait KSA

TVP Gaussian copula
ψ0 0.278 0.008 0.042 0.039 0.165 0.035

(0.098) (0.010) (0.036) (0.046) (0.086) (0.058)
ψ1 −0.085 0.043 −0.049 −0.055 −0.296 −0.024

(0.218) (0.041) (0.049) (0.063) (0.188) (0.035)
ψ2 −1.779 1.673 1.560 1.539 −1.692 1.803

(0.532) (0.265) (0.373) (0.559) (0.311) (0.372)
AIC −10.459 −3.770 −15.705 −11.338 −5.028 −41.601

TVP Student-t copula
ψ0 0.138 0.076 0.277 0.080 0.182 0.042

(0.138) (0.115) (0.174) (0.212) (0.098) (0.155)
ψ1 −0.066 0.120 −0.027 −0.083 −0.093 −0.010

(0.098) (0.079) (0.115) (0.194) (0.113) (0.027)
ψ2 0.012 −1.980 −1.664 0.833 −1.808 1.718

(1.902) (0.038) (2.349) (3.183) (0.447) (1.125)
υ 5.000 5.000 5.000 5.000 5.000 5.000

(0.441) (0.530) (1.205) (0.433) (0.464) (0.401)
AIC 26.415 30.870 15.734 41.068 19.119 23.068

TVP Gumbel copula
ω −0.293 0.015 −1.443 −1.067 2.463 2.353

(1.007) (11.456) (0.203) (0.734) (0.707) (0.135)
β −0.498 0.237 1.542 0.997 −2.693 −1.582

(0.878) (10.792) (0.061) (0.843) (0.627) (0.196)
α 2.566 −0.445 0.142 0.619 1.360 −1.285

(1.007) (11.456) (0.203) (0.734) (0.707) (0.135)
AIC −13.022 −1.701 −11.867 −7.035 −5.796 −26.722

TVP Rotated Gumbel copula
ω 2.000 1.077 −1.350 1.545 2.029 2.239

(0.785) (0.105) (4.322) (1.379) (0.510) (0.128)
β −1.882 −0.930 1.447 −1.598 −2.262 −1.486

(0.776) (0.103) (0.300) (1.265) (0.431) (0.168)
α 0.575 0.072 0.168 0.903 1.493 −1.101

(0.785) (0.105) (4.322) (1.379) (0.510) (0.128)
AIC −18.735 −3.865 −23.446 −11.794 −12.406 −45.238

TVP SJC copula
ω −0.192 −0.176 −0.170 −0.161 −0.174 −0.080

(8.549) (2.325) (2.895) (2.124) (2.911) (0.740)
β −0.023 −0.005 −0.009 −0.013 −0.017 0.031

(3.085) (0.810) (1.081) (0.360) (0.936) (2.329)
α 0.000 0.000 0.000 0.000 0.000 0.250

(0.013) (0.010) (0.010) (0.010) (0.011) (38.353)
ω −0.118 −0.214 −0.117 −0.154 −0.225 0.023

(0.066) (30.488) (0.063) (3.582) (10.385) (0.018)
β 0.173 −0.033 0.205 −0.023 −0.028 −0.164

(0.115) (9.565) (0.142) (0.748) (2.015) (0.081)
α 0.053 0.000 −0.076 0.000 0.000 −0.123

(0.026) (0.033) (0.099) (0.012) (0.013) (0.049)
AIC −16.077 0.319 −20.184 −10.083 −0.661 −44.131

Notes: The table reports the ML estimates for the different dynamic bivariate copulas. The standard error values
are given in parentheses (.) and the AIC values adjusted for the small-sample bias are provided for these different
models. The minimum AIC value (in bold) indicates the best fitted copula fit. For the TVP Gaussian and Student-t
copulas, q in Equation (7) is set to 10.

The rotated Gumbel copula had significant lower tail dependence and zero upper tail dependence.
One important event pertinent to the selection of this model was that the GFC was characterized by an
immense bank failure in the US in 2008 and contemporaneously in many other countries; therefore,
there was an implicit contagion effect from US banks to GCC banks. These results may have serious
implications for risk management. For instance, the presence of lower tail dependence reflects a much
higher risk than in the case of no tail dependence. Further, the range of tail dependence is important to
risk-averse investors, who avoid high risk and prefer conservative investments [32].
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4.3. Downside and Upside Risk Spillover

Following the results of the best copula model and the two-step procedure described above,
we estimated the upside and downside CoVaR at the 95% confidence level (p = 0.05) for the GCC
banking sector indices, conditional on the VaR of the US banking sector index at the 95% confidence
level (p = 0.05). Figure 2 shows a comparison between the VaR and CoVaR results.
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Figure 2. Downside and upside price spillovers from S&P 500 banking sector to the GCC banking
sector markets: (a) UAE; (b) Bahrain; (c) Qatar; (d) Oman; (e) Kuwait; (f) KSA.

It can be seen that VaR and CoVaR measures may vary over time. In addition, there was an
asymmetric dependence structure, with a greater lower tail than upper tail dependence. More precisely,
we found that both risk measures differed in that downside CoVaRs fell more abruptly than downside
VaRs, while upside CoVaRs were closer to upside VaRs, implying that the US banking sector had an
asymmetric impact on GCC banking sectors. This also meant that the US and GCC banking indices
tended to be more dependent when their returns dropped (i.e., bearish market conditions) than when
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they appreciated (bullish market conditions). This graphical evidence of the comovement between left
tails was in line with our time-varying copula results from the rotated Gumbel copula.

Over the whole sample period, the CoVaR dynamics indicated that the dependence structure
changed drastically at the onset of the European debt crisis (from the end of 2010 to the beginning of
2011) and during the mid-2014 oil crisis. During these periods, CoVaR plummeted in value, reflecting an
increased systemic risk among the studied countries. Comparing VaR and CoVaR risk measures,
we detected the presence of the same systemic risk trend for all countries, but with smaller differences
for larger countries. This was consistent with the presence of spillover effects between the banks in US
and GCC countries during crisis periods.

These results are partly in line with [23], who found a strong bidirectional return spillover between
US and GCC conventional banks. Concerning the high level of resilience detected by Islamic banks,
it was important to note that our study cannot accept or reject this conclusion because our results
were based on S&P 500 indices determined by banks trading between GCC countries. In addition,
even though GCC banks are dominated by domestic and traditional banks, we find that they are
sensitive to the losses of US banks. They depend not only on the relationship between both financial
channels but are also vulnerable to the behaviors of investors in the region who use indicators of US
economic conditions (bad information) to adjust their views.

4.4. Conditional Diversification Analysis

As presented in Table 1, the results for the unconditional correlation coefficients showed that the
GCC banking sector index returns were low but positive in relation to the S&P 500 Banks Index returns.
Given these findings, it is apparent that investors in the US can achieve diversified portfolios with
GCC banking sector indices.

According to [33], the DCC model can be used to model time-varying dependence. The present
study adopted the [34] DCC model using GJR-GARCH to deal with heteroscedasticity effects.

Figure 3 displays the DCC results for the Student’s t copula, indicating that the relationship
computed in the overall sample was weak, with mixed signs for most GCC countries, particularly the
Kuwaiti banking sector. The only exception was the positive and moderate DCC observed for the KSA
banking sector index. Hence, our findings based on unconditional correlations and DCC support the
diversification possibilities between US and most GCC banking sectors.

In line with [35,36], we assessed diversification benefits for portfolios composed of the S&P 500
and GCC banking sector stock markets using conditional diversification benefits (CDB). At time t,
the CDB of a portfolio (P) is defined according to the expected shortfall (ES) at q% level as:

CDBt(ωt, q) =
ωtESi,t(q) + (1−ωt)ESj,t(q) − ESp,t(ωt, q)

ωtESi,t(q) + (1−ωt)ESj,t(q) −VaRt(q)
, (19)

whereωt is the weight of the GCC banking sector indices at time t, andωt is the q% VaR measure of
the portfolio returns. This measure can take values over the interval [0,1]. ωtESi,t(q) + (1−ωt)ESj,t(q)
is the upper bound of the expected shortfall ωtESi,t(q) + (1−ωt)ESj,t(q). For χ = i,j, with F−1

χ,t(q) as
the inverse density function, the expression of the expected shortfall is as follows:

ESχ,t = −E
[
rχ,t

∣∣∣rχ,t ≤ F−1
χ,t(q)

]
, (20)

Given that diversification benefits may vary because of readjustments, we evaluate the CDBs of
different portfolio compositions for q values of 50% and 5%, which are related to the middle and left
extreme values of data distribution, respectively. In this case, we assume that investors want to hold
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portfolios with unchanged weights over time. Given our Student’s t assumption, the expected shortfall
can be formulated using:

ESz,t(q) = −θχ,t +
σχ,t

q
k

Γ−1(q)
ν+ K−1(q)2

ν− 1

, , (21)

where Γ and K denote the cumulative distribution and the standard Student’s t density functions with
ν degrees of freedom, respectively. VaR is specified by:

VaRt(q) = −θα,t − σα,tK−1(ε) (22)
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Figure 3. Time-varying correlations of GCC with S&P 500 for the student-t copula: (a) UAE; (b) Bahrain;
(c) Qatar; (d) Oman; (e) Kuwait; (f) KSA.

Figure 4 depicts a time series plot for the CDB of an equally weighted portfolio. We show that
diversification benefits are less stable over time and are higher at the 5th percentile than at the 50th
percentile of the distribution. More precisely, Figure 4 suggests that CDBs evolve over time, following a
path that oscillates around the constant values estimated at the 5% and 50% of data distribution
(i.e., 0.65 and 0.25, respectively) along the sample. In other words, our evidence shows that over
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time, GCC banking sector indices have substantial diversification benefits on US banking stocks,
particularly in the 5% extreme left side of the distribution.
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Table 4 shows the CDB for portfolios included in the S&P 500 and GCC banking sector stock
markets, as shown in columns 2–6. The first column includes only the portfolio weights for the S&P
500 banking sector. We calculate the diversification benefits of seeing expected shortfall values at 5%
(Panel A) and 50% (Panel B) levels.

The results corroborate the graphical evidence (Figure 4). It can be seen that 5% portfolios have
a greater average CDB than do 50% portfolios. Precisely, the CDB of 50% portfolios is negligible,
with average values close to zero. Hence, diversification adds no particular value to investor portfolios
because it basically involves substitution. However, 5% portfolios increase in size with the weight of
US banks in the portfolio. This increase of benefits is concave in shape. Overall, our empirical evidence
confirms that a portfolio incorporating US and GCC bank stocks can offer diversification benefits (or a
risk reduction) for investors.
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Table 4. Diversification benefits of GCCs for different portfolio compositions and probabilities.

UAE Bahrain Qatar Oman Kuwait KSA

Panel A: At the 5% level
0.05 0.196 0.210 0.237 0.251 0.245 0.199

(0.062) (0.064) (0.077) (0.066) (0.061) (0.062)
0.20 0.484 0.507 0.523 0.542 0.545 0.478

(0.075) (0.069) (0.073) (0.062) (0.053) (0.069)
0.50 0.631 0.647 0.614 0.618 0.638 0.603

(0.026) (0.026) (0.037) (0.033) (0.029) (0.024)
0.80 0.485 0.488 0.425 0.414 0.438 0.443

(0.077) (0.076) (0.090) (0.076) (0.068) (0.076)
0.95 0.198 0.194 0.158 0.148 0.159 0.171

(0.063) (0.054) (0.060) (0.051) (0.041) (0.054)

Panel B: At the 50% level
0.05 0.048 0.052 0.061 0.065 0.063 0.049

(0.019) (0.021) (0.026) (0.022) (0.021) (0.019)
0.20 0.163 0.176 0.186 0.197 0.198 0.160

(0.040) (0.040) (0.042) (0.037) (0.035) (0.036)
0.50 0.258 0.271 0.245 0.248 0.264 0.236

(0.020) (0.021) (0.027) (0.024) (0.022) (0.017)
0.80 0.164 0.166 0.135 0.128 0.139 0.142

(0.041) (0.039) (0.043) (0.036) (0.032) (0.037)
0.95 0.049 0.047 0.038 0.035 0.037 0.041

(0.019) (0.016) (0.017) (0.015) (0.011) (0.016)

Notes: The table reports the conditional diversification benefit in Equation (20) for portfolios composed of the S&P
500 and GCC banking sector stock markets indicated in columns 2–6. Portfolio weights for the S&P 500 banking
sector market are indicated in the first column. The diversification benefit is computed by considering expected
shortfall values at the 5% (Panel A) and 50% (Panel B) probability levels. For each portfolio, the table reports the
time-average of the conditional diversification benefit and, in brackets, the standard deviation.

5. Conclusions

This paper examines tail risk spillover effects from the US banking sector to the GCC banking
sectors, paying special attention to upside and downside stock market conditions. Understanding these
tail relationships and risk spillover effects can help fund managers and investors create sound portfolios
and make effective asset-allocation decisions when formulating trading and hedging strategies.

We find that the time-varying rotated Gumbel copula is a suitable candidate for effectively
modelling this dependence structure. Further, GCC banking sectors receive substantial spillover effects
from the US banking sector during downside market movements. Specifically, we find that both risk
measures vary in that downside CoVaRs abruptly fell more than downside VaRs, while upside CoVaRs
are closer to upside VaRs for all markets (over the period under consideration), indicating that the US
banking sector has an asymmetric effect on GCC banking sectors. The results of CDB analysis show
significant diversification possibilities for both US and GCC investors.

These findings have at least two important implications for portfolio diversification and hedging
decisions. First, the presence of lower tail dependence between US and GCC banking sectors should
be considered important by investors and policymakers because both markets could simultaneously
crash during crisis periods. Second, the GCC banking sector offers considerable diversification benefits,
which are higher in an equally weighted portfolio of US and GCC banking stocks. There is a high
diversification benefit or risk reduction for investors who create a diversified portfolio of US and GCC
bank stocks, verified by taking into account the tails of their joint distribution. Policymakers in the
GCC should remain observant of the impact of extreme downside movements in the US banking sector
on GCC banking sectors and intervene when necessary to ensure financial stability.

The results of this study are limited in a sense that we use sector level indices for spillover and
diversification analysis without considering the trading cost. Another limitation of this study is the
sample period which spans from 2010 and thus does not include the global financial crisis period.
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Although, we focus on tail dependence and risk spillover during bearish market states, this does not
explicitly deal with the issue of financial crisis. Future research on this topic can utilize the data of
exchange traded funds and index futures instead of spot prices. Methodological improvement such
as combining wavelets and nonparametric test of causality in quantiles [37] could provide a time
frequency based relationship for several quantiles.
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