Inequalities for Information Potentials and Entropies
Abstract
:1. Introduction
2. Recurrence Relations
3. Inequalities for Information Potentials
4. Other Inequalities
5. More about
- (i)
- is decreasing on and increasing on
- (ii)
- is logarithmically convex on
6. Inequalities for the Integral of the Squared Derivative
7. Information Potential for the Durrmeyer Density of Probability
8. Concluding Remarks and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harremoës, P.; Topsoe, F. Inequalities between entropy and index of coincidence derived from information diagrams. IEEE Trans. Inf. Theory 2001, 47, 2944–2960. [Google Scholar] [CrossRef]
- Harremoës, P. Binomial and Poisson distribution as maximum entropy distributions. IEEE Trans. Inf. Theory 2001, 47, 2039–2041. [Google Scholar] [CrossRef]
- Hillion, E. Concavity of entropy along binomial convolution. Electron. Commun. Probab. 2012, 17, 1–9. [Google Scholar] [CrossRef]
- Hillion, E.; Johnson, O. A proof of the Shepp-Olkin entropy concavity conjecture. Bernoulli 2017, 23, 3638–3649. [Google Scholar] [CrossRef] [Green Version]
- Knessl, C. Integral representation and asymptotic expansions for Shannon and Renyi entropies. Appl. Math. Lett. 1998, 11, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Adell, J.A.; Lekuona, A.; Yu, Y. Sharp bound on the entropy of the Poisson low and related quantities. IEEE Trans. Inf. Theory 2010, 56, 2299–2306. [Google Scholar] [CrossRef]
- Melbourne, J.; Tkocz, T. Reversals of Rényi entropy inequalities under log-concavity. IEEE Trans. Inf. Theory 2020. [Google Scholar] [CrossRef]
- Shepp, L.A.; Olkin, I. Entropy of the Sum of Independent Bernoulli Random Variables and of the Multinomial Distribution, Contributions to Probability A Collection of Papers Dedicated to Eugene Lukacs; Academic Press: London, UK, 1981; pp. 201–206. [Google Scholar]
- Hillion, E.; Johnson, O. Discrete versions of the transport equation and the Shepp-Olkin conjecture. Ann. Probab. 2016, 44, 276–306. [Google Scholar] [CrossRef]
- Alzer, H. A refinement of the entropy inequality. Ann. Univ. Sci. Bp. 1995, 38, 13–18. [Google Scholar]
- Chang, S.-C.; Weldon, E. Coding for T-user multiple-access channels. IEEE Trans. Inf. Theory 1979, 25, 684–691. [Google Scholar] [CrossRef]
- Xu, D. Energy, Entropy and Information Potential for Neural Computation. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 1999. [Google Scholar]
- Bărar, A.; Mocanu, G.R.; Raşa, I. Bounds for some entropies and special functions. Carpathian J. Math. 2018, 34, 9–15. [Google Scholar]
- Principe, J.C. Information Theoretic Learning: Rényi’s Entropy and Kernel Perspectives; Springer: New York, NY, USA, 2010. [Google Scholar]
- Acu, A.M.; Başcanbaz-Tunca, G.; Raşa, I. Information potential for some probability density functions. Appl. Math. Comput. 2021, 389, 125578. [Google Scholar]
- Acu, A.M.; Başcanbaz-Tunca, G.; Raşa, I. Bounds for indices of coincidence and entropies. submitted.
- Raşa, I. Entropies and Heun functions associated with positive linear operators. Appl. Math. Comput. 2015, 268, 422–431. [Google Scholar] [CrossRef]
- Baskakov, V.A. An instance of a sequence of positive linear operators in the space of continuous functions. Doklady Akademii Nauk SSSR 1957, 113, 249–251. [Google Scholar]
- Berdysheva, E. Studying Baskakov–Durrmeyer operators and quasi-interpolants via special functions. J. Approx. Theory 2007, 149, 131–150. [Google Scholar] [CrossRef] [Green Version]
- Heilmann, M. Erhohung der Konvergenzgeschwindigkeit bei der Approximation von Funktionen mit Hilfe von Linearkombinationen Spezieller Positiver Linearer Operatoren; Habilitationschrift Universitat Dortmund: Dortmund, Germany, 1992. [Google Scholar]
- Wagner, M. Quasi-Interpolaten zu genuinen Baskakov-Durrmeyer-Typ Operatoren; Shaker: Aachen, Germany, 2013. [Google Scholar]
- Acu, A.M.; Heilmann, M.; Rasa, I. Linking Baskakov Type Operators, Constructive theory of functions, Sozopol 2019; Draganov, B., Ivanov, K., Nikolov, G., Uluchev, R., Eds.; Prof. Marin Drinov Publishing House of BAS: Sofia, Bulgaria, 2020; pp. 23–38. [Google Scholar]
- Heilmann, M.; Raşa, I. A nice representation for a link between Baskakov and Szász-Mirakjan-Durrmeyer operators and their Kantorovich variants. Results Math. 2019, 74, 9. [Google Scholar] [CrossRef] [Green Version]
- Raşa, I. Rényi entropy and Tsallis entropy associated with positive linear operators. arXiv 2014, arXiv:1412.4971v.1. [Google Scholar]
- Nikolov, G. Inequalities for ultraspherical polynomials. Proof of a conjecture of I. Raşa. J. Math. Anal. Appl. 2014, 418, 852–860. [Google Scholar] [CrossRef]
- Gavrea, I.; Ivan, M. On a conjecture concerning the sum of the squared Bernstein polynomials. Appl. Math. Comput. 2014, 241, 70–74. [Google Scholar] [CrossRef]
- Alzer, H. Remarks on a convexity theorem of Raşa. Results Math. 2020, 75, 29. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover Publications, Inc.: New York, NY, USA, 1970. [Google Scholar]
- Bărar, A.; Mocanu, G.; Raşa, I. Heun functions related to entropies. RACSAM 2019, 113, 819–830. [Google Scholar] [CrossRef] [Green Version]
- Raşa, I. Convexity properties of some entropies (II). Results Math. 2019, 74, 154. [Google Scholar] [CrossRef]
- Raşa, I. Convexity properties of some entropies. Results Math. 2018, 73, 105. [Google Scholar] [CrossRef]
- Cloud, M.J.; Drachman, B.C. Inequalities: With Applications to Engineering; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Abel, U.; Gawronski, W.; Neuschel, T. Complete monotonicity and zeros of sums of squared Baskakov functions. Appl. Math. Comput. 2015, 258, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Gould, H.W. Combinatorial Identities—A Standardized Set of Tables Listing 500 Binomial Coefficient Summations; West Virginia University Press: Morgantown, VA, USA, 1972. [Google Scholar]
- Altomare, F.; Campiti, M. Korovkin-Type Approximation Theory and Its Applications; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 1994. [Google Scholar]
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | |||||||||||||
2 | |||||||||||||
3 | |||||||||||||
4 | |||||||||||||
5 | |||||||||||||
6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acu, A.M.; Măduţa, A.; Otrocol, D.; Raşa, I. Inequalities for Information Potentials and Entropies. Mathematics 2020, 8, 2056. https://doi.org/10.3390/math8112056
Acu AM, Măduţa A, Otrocol D, Raşa I. Inequalities for Information Potentials and Entropies. Mathematics. 2020; 8(11):2056. https://doi.org/10.3390/math8112056
Chicago/Turabian StyleAcu, Ana Maria, Alexandra Măduţa, Diana Otrocol, and Ioan Raşa. 2020. "Inequalities for Information Potentials and Entropies" Mathematics 8, no. 11: 2056. https://doi.org/10.3390/math8112056
APA StyleAcu, A. M., Măduţa, A., Otrocol, D., & Raşa, I. (2020). Inequalities for Information Potentials and Entropies. Mathematics, 8(11), 2056. https://doi.org/10.3390/math8112056