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Abstract: We consider a probability distribution (p0(x), p1(x), . . .) depending on a real parameter x.
The associated information potential is S(x) := ∑

k
p2

k(x). The Rényi entropy and the Tsallis entropy of

order 2 can be expressed as R(x) = − log S(x) and T(x) = 1− S(x). We establish recurrence relations,
inequalities and bounds for S(x), which lead immediately to similar relations, inequalities and bounds
for the two entropies. We show that some sequences (Rn(x))n≥0 and (Tn(x))n≥0, associated with
sequences of classical positive linear operators, are concave and increasing. Two conjectures are
formulated involving the information potentials associated with the Durrmeyer density of probability,
respectively the Bleimann–Butzer–Hahn probability distribution.

Keywords: probability distribution; Rényi entropy; Tsallis entropy; information potential; functional
equations; inequalities

1. Introduction

Entropies associated with discrete or continuous probability distributions are usually described
by complicated explicit expressions, depending on one or several parameters. Therefore, it is useful to
establish lower and upper bounds for them. Convexity-type properties are also useful: they embody
valuable information on the behavior of the functions representing the entropies.

This is why bounds and convexity-type properties of entropies, expressed by inequalities,
are under an active study: see [1–13] and the references therein. Our paper is concerned with this kind
of inequalities: we give new results and new proofs or improvements of some existing results, in the
framework which is presented below.

Let (p0(x), p1(x), . . .) be a probability distribution depending on a parameter x ∈ I, where I is
a real interval. The associated information potential (also called index of coincidence, for obvious
probabilistic reasons) is defined (see [14]),

S(x) := ∑
k

p2
k(x), x ∈ I. (1)

If p(t, x), t ∈ R, x ∈ I, is a probability density function depending on the parameter x,
the associated information potential is defined as (see [14]),

S(x) :=
∫
R

p2(t, x)dt, x ∈ I. (2)
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The information potential is the core concept of the book [14]. The reader can find properties,
extensions, generalizations of S(x), as well as applications to Information theoretic learning.
Other properties and applications can be found in the recent papers [15,16].

It is important to remark that the Rényi entropy and the Tsallis entropy can be expressed in terms
of S(x) as

R(x) = − log S(x), T(x) = 1− S(x), x ∈ I. (3)

So the properties of S(x) lead immediately to properties of R(x), respectively T(x).
On the other hand, we can consider the discrete positive linear operators

L f (x) := ∑
k

pk(x) f (xk), x ∈ I, (4)

where xk are given points in R, and the integral operators

M f (x) =
∫
R

p(t, x) f (t)dt, x ∈ I. (5)

In both cases, f is a function from a suitable set of functions defined on R. In this paper,
we consider classical operators of this kind, which are used in approximation theory.

Let us mention that the “degree of nonmultiplicativity” of the operator L can be estimated in
terms of the information potential S(x): see [17] and the references therein.

In this paper, we will be concerned with a special family of discrete probability distributions,
described as follows.

Let c ∈ R. Set Ic =
[
0,− 1

c

]
if c < 0, and Ic = [0,+∞) if c ≥ 0. For α ∈ R and k ∈ N0 the binomial

coefficients are defined as usual by(
α

k

)
:=

α(α− 1) . . . (α− k + 1)
k!

if k ∈ N, and
(

α

0

)
:= 1.

Let n > 0 be a real number, k ∈ N0 and x ∈ Ic. Define

p[c]n,k(x) := (−1)k(
− n

c
k )(cx)k(1 + cx)−

n
c−k, if c 6= 0, (6)

p[0]n,k(x) := lim
c→0

p[c]n,k(x) =
(nx)k

k!
e−nx, if c = 0. (7)

Then ∑∞
k=0 p[c]n,k(x) = 1. Suppose that n > c if c ≥ 0, or n = −cl with some l ∈ N if c < 0.

With this notation, we consider the discrete distribution of probability
(

p[c]n,k(x)
)

k=0,1,...
depending

on the parameter x ∈ Ic.
According to (1), the associated information potential, or index of coincidence, is

Sn,c(x) :=
∞

∑
k=0

(
p[c]n,k(x)

)2
, x ∈ Ic. (8)

The Rényi entropy and the Tsallis entropy corresponding to the same distribution of probability
are defined, respectively (see (3))

Rn,c(x) = − log Sn,c(x) (9)

and
Tn,c(x) = 1− Sn,c(x). (10)
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For c = −1 (6) reduces to the binomial distribution and (8) becomes

Sn,−1(x) :=
n

∑
k=0

((
n
k

)
xk(1− x)n−k

)2
, x ∈ [0, 1]. (11)

The case c = 0 corresponds to the Poisson distribution (see (7)), which

Sn,0(x) := e−2nx
∞

∑
k=0

(nx)2k

(k!)2 , x ≥ 0. (12)

For c = 1, we have the negative binomial distribution, with

Sn,1(x) :=
∞

∑
k=0

((
n + k− 1

k

)
xk(1 + x)−n−k

)2
, x ≥ 0. (13)

The binomial, Poisson, respectively negative binomial distributions correspond to the classical
Bernstein, Szász-Mirakyan, respectively Baskakov operators from approximation theory; all of them
are of the form (4). In fact, the distribution

(
p[c]n,k(x)

)
k=0,1,...

is instrumental for the construction of the

family of positive linear operators introduced by Baskakov in [18]; see also [19–23]. As a probability
distribution, the family of functions (p[c]n,k)k=0,1,... was considered in [17,24].

The distribution ((
n
k

)
xk(1 + x)−n

)
k=0,1,...,n

, x ∈ [0,+∞), (14)

corresponds to the Bleimann–Butzer–Hahn operators, while((
n + k

k

)
xk(1− x)n+1

)
k=0,1,...

, x ∈ [0, 1), (15)

is connected with the Meyer-König and Zeller operators.
The information potentials and the entropies associated with all these distributions were studied

in [17]; see also [25–27]. It should be mentioned that they satisfy Heun-type differential equations:
see [17]. We continue this study. To keep the same notation as in [17], let us return to (11)–(13)
and denote

Fn(x) := Sn,−1(x), Gn(x) := Sn,1(x), Kn(x) := Sn,0(x).

Moreover, the information potential corresponding to (14) and (15) will be denoted by

Un(x) :=
n
∑

k=0

((
n
k

)
xk(1 + x)−n

)2
, x ∈ [0,+∞), (16)

Jn(x) :=
∞
∑

k=0

((
n + k

k

)
xk(1− x)n+1

)2
, x ∈ [0, 1). (17)

In Section 2, we present several relations between the functions Fn(x), Gn(x), Un(x), Jn(x),
as well as between these functions and the Legendre polynomials. By using the three-terms recurrence
relations involving the Legendre polynomials, we establish recurrence relations involving three
consecutive terms from the sequences (Fn(x)), (Gn(x)) , (Un(x)) , respectively (Jn(x)). We recall also
some explicit expressions of these functions.

Section 3 is devoted to inequalities between consecutive terms of the above sequences; in particular,
we emphasize that for fixed x, the four sequences are logarithmicaly convex and hence convex.
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Other inequalities are presented in Section 4. All the inequalities can be used to get information
about the Rényi entropies and Tsallis entropies connected with the corresponding probability
distributions.

Section 5 contains new properties of the function Un(x) and a problem of its shape.
Section 6 is devoted to some inequalities involving integrals of the form

∫ b
a f ′2(x)dx in relation

with certain combinatorial identities.
The information potential associated with the Durrmeyer density of probability is computed in

Section 7. We recall a conjecture formulated in [24].
As already mentioned, all the results involving the information potential can be used to derive

results about Rényi and Tsallis entropies. For the sake of brevity, we will study usually only the
information potential.

Concerning the applications of Rényi entropies and Tsallis entropies see, e.g., [14,28].

2. Recurrence Relations

Fn(x) is a polynomial, Gn(x), Un(x), Jn(x) are rational functions. On their maximal domains,
these functions are connected by several relations (see [17], Cor. 13, (46), (53), (54)):

Fn(x) = (1− 2x)2n+1Gn+1(−x), (18)

Fn(x) = Un

(
x

1− x

)
, (19)

Fn(x) = −(1− 2x)2n+1 Jn

(
x− 1

x

)
. (20)

Consider the Legendre polynomial (see [29], 22.3.1 )

Pn(t) = 2−n
n
∑

k=0

(
n
k

)2
(x + 1)k(x− 1)n−k. (21)

Then (see [17], (39))
Pn(t) = (1− 2x)−nFn(x), (22)

where

t =
1− 2x + 2x2

1− 2x
, x ∈ [0,

1
2
).

Combining (22) with (18)–(20), we get

Pn(t) = (1− 2x)n+1Gn+1(−x), (23)

Pn(t) = (1− 2x)−nUn

(
x

1− x

)
, (24)

Pn(t) = −(1− 2x)n+1 Jn

(
x− 1

x

)
. (25)

In the theory of special functions recurrence, relations play a crucial role. In particular,
the Legendre polynomials (21) satisfy the important recurrence relation ([29], 22.7.1)

(n + 1)Pn+1(t)− (2n + 1)tPn(t) + nPn−1(t) = 0. (26)

This leads us to
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Theorem 1. The functions Fn(x), Gn(x), Un(x) and Jn(x) satisfy the following three-terms recurrence relations:

2(n + 1)Fn+1(x) = (2n + 1)(1 + (1− 2x)2)Fn(x)− 2n(1− 2x)2Fn−1(x), (27)

n(1 + 2x)2Gn+1(x)=(2n− 1)(1 + 2x + 2x2)Gn(x)−(n− 1)Gn−1(x), (28)

(n + 1)(1 + t)2Un+1(t) = (2n + 1)(t2 + 1)Un(t)− n(1− t)2Un−1(t), (29)

(n + 1)(1 + t)2 Jn+1(t) = (2n + 1)(t2 + 1)Jn(t)− n(1− t)2 Jn−1(t). (30)

Proof. It suffices to use relations (22)–(26).

Remark 1. According to (29) and (30), Un(x) and Jn(x) satisfy the same recurrence relation. In fact,
from ([17], (49), (55)), we have

Un(x) =
n
∑

k=0
cn,k

(
1− x
1 + x

)2k
, (31)

Jn(x) =
n
∑

k=0
cn,k

(
1− x
1 + x

)2k+1
, (32)

where

cn,k := 4−n
(

2(n− k)
n− k

)(
2k
k

)
, k = 0, 1, . . . , n.

From (31) and (32), we see that

Jn(x) =
1− x
1 + x

Un(x). (33)

Remark 2. From ([17], (56)) and ([30], (21)), we know that

Gn+1(x) =
n−1
∑

k=0
cn,k(1 + 2x)−2k−1, (34)

Fn(x) =
n
∑

k=0
cn,k(1− 2x)2k. (35)

So, the recurrence relations (27)–(30) are accompanied by

F0(x) = 1, F1(x) = 1− 2x + 2x2;

G1(x) =
1

2x + 1
, G2(x) =

1 + 2x + 2x2

(2x + 1)3 ;

U0(x) = 1, U1(x) =
1 + x2

(1 + x)2 ;

J0(x) =
1− x
1 + x

, J1(x) =
(1− x)(1 + x2)

(1 + x)3 .

3. Inequalities for Information Potentials

In studying a sequence of special functions, not only are recurrence relations important, but also
inequalities connecting successive terms; in particular, inequalities showing that the sequence is
(logarithmically) convex or concave. This section is devoted to such inequalities involving the
sequences (Fn(x)), (Gn(x)), (Un(x)), and (Jn(x)).

Theorem 2. The function Fn(x) satisfies the inequalities

Fn+1(x) ≤ 1 + (4n− 2)x(1− x)
1 + (4n + 2)x(1− x)

Fn−1(x), (36)
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Fn(x) ≤ 1 + 4nx(1− x)
1 + (4n + 2)x(1− x)

Fn−1(x), (37)

F2
n(x) ≤ Fn−1(x)Fn+1(x); 2Fn(x) ≤ Fn−1(x) + Fn+1(x), (38)

for all n ≥ 1, x ∈ [0, 1].

Proof. We start with the following integral representation (see [17], (29))

Fn(x) =
1
π

∫ 1

0
f n(x, t)

dt√
t(1− t)

, (39)

where f (x, t) := t + (1− t)(1− 2x)2 ∈ [0, 1].
It follows that

Fn+1(x) ≤ Fn(x).

On the other hand,

Fn−1(x) + Fn+1(x)− 2Fn(x) =

=
1
π

∫ 1

0
f n−1(x, t)

[
1 + f 2(x, t)− 2 f (x, t)

] dt√
t(1− t)

,

which entails
2Fn(x) ≤ Fn−1(x) + Fn+1(x). (40)

According to (27), we have

Fn(x) = an(x)Fn−1(x) + bn(x)Fn+1(x), (41)

where

an(x) =
n(1− 2x)2

(2n + 1)(1− 2x + 2x2)
, bn(x) =

n + 1
(2n + 1)(1− 2x + 2x2)

.

Using (40) and (41) we get

2an(x)Fn−1(x) + 2bn(x)Fn+1(x) ≤ Fn−1(x) + Fn+1(x),

which yields
(2bn(x)− 1)Fn+1(x) ≤ (1− 2an(x))Fn−1(x),

and this immediately leads to (36). To prove (37), it suffices to combine (40) and (36). The inequalities (38)
were proven in ([31], (3.2) and (3.3)).

Combining (37) with (9) and (10), we obtain

Corollary 1. The Rényi entropy Rn(x) and the Tsallis entropy Tn(x) corresponding to the binomial distribution
with parameters n and x satisfy the inequalities:

Rn(x)− Rn−1(x) ≥ log
1 + (4n + 2)x(1− x)

1 + 4nx(1− x)
≥ 0, (42)

Tn(x)− Tn−1(x) ≥ 2x(1− x)
1 + 4nx(1− x)

(1− Tn(x)) ≥ 0. (43)
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Theorem 3. The following inequalities hold:

U2
n ≤ Un−1Un+1, 2Un ≤ Un−1 + Un+1, (44)

Un+1(x) ≤ 1 + 4nx + x2

1 + (4n + 4)x + x2 Un−1(x), (45)

Un(x) ≤ 1 + (4n + 2)x + x2

1 + (4n + 4)x + x2 Un−1(x), (46)

G2
n ≤ Gn−1Gn+1, 2Gn ≤ Gn−1 + Gn+1, (47)

Gn+1(x) ≤ 1 + (4n− 2)x(1 + x)
1 + (4n + 2)x(1 + x)

Gn−1(x), (48)

Gn(x) ≤ 1 + 4nx(x + 1)
1 + (4n + 2)x(x + 1)

Gn−1(x), (49)

J2
n ≤ Jn−1 Jn+1, 2Jn ≤ Jn−1 + Jn+1, (50)

Jn+1(x) ≤ 1 + 4nx + x2

1 + (4n + 4)x + x2 Jn−1(x), (51)

Jn(x) ≤ 1 + (4n + 2)x + x2

1 + (4n + 4)x + x2 Jn−1(x). (52)

Proof. The proof is similar to that of Theorem 2, starting from (see ([17], (48), (58), (63))):

Un(x) =
1
π

∫ 1

0

(
t + (1− t)

(
1− x
1 + x

)2
)n

dt√
t(1− t)

,

Gn(x) =
1
π

∫ 1

0

(
t + (1− t)(1 + 2x)2

)−n dt√
t(1− t)

,

Jn(x) =
1
π

∫ 1

0

(
t + (1− t)

(
1 + x
1− x

)2
)−n−1

dt√
t(1− t)

.

These integral representations, together with the representation of Fn(x) given by (39),
are consequences of the important results of Elena Berdysheva ([19], Theorem 1).

From (44)–(52), we can derive inequalities similar to (42) and (43), for the entropies associated
with the probability distributions corresponding to Un(x), Gn(x), and Jn(x).

Remark 3. Let us remark that the inequalities (38), (44), (47), (50) show that for each x, the sequences
(Fn(x))n≥0, (Un(x))n≥0, (Gn(x))n≥0, (Jn(x))n≥0, are logarithmically convex, and so convex; the other
inequalities from Theorems 2 and 3 show that the same sequences are decreasing. It immediately follows that
the associated sequences of entropies (Rn(x))n≥0 and (Tn(x))n≥0 are concave and increasing; see also (42)
and (43).

4. Other Inequalities

Besides their own interest, the next Theorems 4 and 6 will be instrumental in establishing
new lower and upper bounds for the information potentials (Fn(x))n≥0, (Un(x))n≥0, (Gn(x))n≥0,
(Jn(x))n≥0, and consequently for the associated Rényi and Tsallis entropies.

Let us return to the information potential (8). According to ([17], (10)) we have for c 6= 0,

Sn,c(x) =
1
π

∫ 1

0

[
t + (1− t)(1 + 2cx)2

]− n
c dt√

t(1− t)
. (53)
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Let c < 0. Using (53) and Chebyshev’s inequality for synchronous functions, we can write

Sn−c,c(x) =
1
π

∫ 1

0

[
t+(1−t)(1+2cx)2

]− n
c
[
t+(1−t)(1+2cx)2

] dt√
t(1−t)

≥ 1
π

∫ 1

0

[
t + (1− t)(1 + 2cx)2

]− n
c dt√

t(1− t)

· 1
π

∫ 1

0

[
t + (1− t)(1 + 2cx)2

] dt√
t(1− t)

= Sn,c(x)(1 + 2cx + 2c2x2).

For c > 0, we use Chebyshev’s inequality for asynchronous functions and obtain the reverse
inequality. So we have

Theorem 4. If c < 0, then
Sn−c,c(x) ≥ (1 + 2cx(1 + cx))Sn,c(x). (54)

If c > 0, the inequality is reversed.

Corollary 2. For c = −1, (54) and (37) yield

(1− 2x(1− x))Fn(x) ≤ Fn+1(x) ≤ 1 + (4n + 4)x(1− x)
1 + (4n + 6)x(1− x)

Fn(x). (55)

For c = 1, we obtain

1
1 + 2x(1 + x)

Gn(x) ≤ Gn+1(x) ≤ 1 + (4n + 4)x(1 + x)
1 + (4n + 6)x(1 + x)

Gn(x). (56)

Now, using [17, (48)], we have

Un+1(x) =
1
π

∫ 1

0

((
1− x
1 + x

)2
+

4x
(1 + x)2 t

)n

·

·
((

1− x
1 + x

)2
+

4x
(1 + x)2 t

)
dt√

t(1− t)

≥ Un(x)
1
π

∫ 1

0

((
1− x
1 + x

)2
+

4x
(1 + x)2 t

)
dt√

t(1− t)

=
1 + x2

(1 + x)2 Un(x).

Therefore, using also (46), we get

1 + x2

(1 + x)2 Un(x) ≤ Un+1(x) ≤ 1 + (4n + 6)x + x2

1 + (4n + 8)x + x2 Un(x). (57)

Now (57) and (33) yield

1 + x2

(1 + x)2 Jn(x) ≤ Jn+1(x) ≤ 1 + (4n + 6)x + x2

1 + (4n + 8)x + x2 Jn(x). (58)
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Theorem 5. The following inequalities are satisfied:

(1− 2x(1− x))n ≤ Fn(x) ≤

√
1 + 4x(1− x)

1 + (4n + 4)x(1− x)
, n ≥ 0, x ∈ [0, 1], (59)

(
1

1 + 2x(1 + x)

)n−1
≤ (1 + 2x)Gn(x) ≤

√
1 + 8x(1 + x)

1 + (4n + 4)x(1 + x)
, n ≥ 1, x ≥ 0, (60)

(
1 + x2

(1 + x)2

)n

≤ Un(x) ≤

√
1 + 6x + x2

1 + (4n + 6)x + x2 , n ≥ 0, x ≥ 0, (61)

1− x
1 + x

(
1 + x2

(1 + x)2

)n

≤ Jn(x) ≤ 1− x
1 + x

√
1 + 6x + x2

1 + (4n + 6)x + x2 , n ≥ 0, x ∈ [0, 1]. (62)

Proof. Writing (55) for n = 0, 1, . . . , m− 1, and multiplying term by term, we get

(1− 2x(1− x))m ≤ Fm(x) ≤ 1 + 4x(1− x)
1 + 6x(1− x)

1 + 8x(1− x)
1 + 10x(1− x)

· · · 1 + 4mx(1− x)
1 + (4m + 2)x(1− x)

.

Using
1 + tx(1− x)

1 + (t + 2)x(1− x)
≤ 1 + (t + 2)x(1− x)

1 + (t + 4)x(1− x)
, t ≥ 0,

it follows that

F2
m(x) ≤ 1 + 4x(1− x)

1 + (4m + 4)x(1− x)
,

and so (59) is proven. The other three relations can be proved similarly, using (56)–(58).

Remark 4. The inequalities (59)–(62) in Theorem 5 provide lower and upper bounds for the information
potentials Fn, Gn, Un, Jn, and consequently for the associated entropies. They can be compared with other bounds
existing in the literature, obtained with other methods. For the moment, let us prove the inequality

(1− 4x(1− x))n/2 ≤ Fn(x), n ≥ 0, x ∈ [0, 1], (63)

and compare it with the first inequality in (59).
According to ([17], (4.6), (4.2)),

Fn(x) =
n

∑
j=0

cn,j(1− 2x)2j,

where (see also (87) and (84))

cn,j := 4−n
(

2j
j

)(
2n− 2j

n− j

)
,

n

∑
j=0

cn,j = 1,
n

∑
j=0

jcn,j =
n
2

.

Using the weighted arithmetic mean-geometric mean inequality, we have

Fn(x) ≥
n

∏
j=0

(1− 2x)2jcn,j = (1− 2x)2 ∑n
j=0 jcn,j = (1− 4x(1− x))n/2,

and this is (63). Clearly, the first inequality in (59) provides a lower bound for Fn(x), which is better than the
lower bound provided by (63).
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Theorem 6. The information potential satisfies the following inequality for all c ∈ R:

Sm+n,c(x) ≥ Sm,c(x)Sn,c(x). (64)

Proof. If c 6= 0, we can use (53) to get

Sm+n,c(x) =
1
π

∫ 1

0

[
t + (1− t)(1 + 2cx)2

]−m
c ·

·
[
t + (1− t)(1 + 2cx)2

]− n
c dt√

t(1− t)
.

Applying Chebyshev’s inequality for synchronous functions, we obtain

Sm+n,c(x) ≥ 1
π

∫ 1

0

[
t + (1− t)(1 + 2cx)2

]−m
c dt√

t(1− t)
·

· 1
π

∫ 1

0

[
t + (1− t)(1 + 2cx)2

]− n
c dt√

t(1− t)

= Sm,c(x)Sn,c(x).

For c = 0, we have (see [17], (13))

Sn,0(x) =
1
π

∫ 1

−1
e−2nx(1+t) dt√

1− t2
.

With the same Chebyshev inequality, one obtains (64).

From Theorem 6, we derive

Corollary 3. For the Rényi entropy Rn,c(x) and the Tsallis entropy Tn,c(x), we have

Rm+n,c(x) ≤ Rm,c(x) + Rn,c(x), (65)

Tm+n,c(x) ≤ Tm,c(x) + Tn,c(x)− Tm,c(x)Tn,c(x). (66)

Remark 5. The inequalities (65) and (66) express the subadditivity of the sequences (Rn(x))n≥0 and
(Tn(x))n≥0.

Remark 6. From (64) with c = −1, we obtain

Fm+n(x) ≥ Fm(x)Fn(x), x ∈ [0, 1]. (67)

Here is a probabilistic proof of this inequality.
Let Xm, Xn, Ym, Yn be independent binomial random variables with the same parameter x ∈ [0, 1]. Then

Fn(x) =
n

∑
k=0

P (Xn = Yn = k) = P(Xn = Yn),

and consequently

Fm+n(x) = P (Xm+n = Ym+n) = P (Xm + Xn = Ym + Yn) ≥
≥ P (Xm = Ym and Xn = Yn) = P (Xm = Ym) P (Xn = Yn)

= Fm(x)Fn(x),
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and this proves (67). It would be useful to have purely probabilistic proofs of other inequalities in this specific
framework; they would facilitate a deeper understanding of the interplay between analytic proofs/results and
probabilistic proofs/results.

Inequalities similar to (67) hold for Gn(x) (apply (64) with c = 1) and for Un(x) and Jn(x). Indeed,
according to (19),

Um+n

(
x

1− x

)
= Fm+n(x) ≥ Fm(x)Fn(x) = Um

(
x

1− x

)
Un

(
x

1− x

)
,

for all x ∈ [0, 1), which implies

Um+n (t) ≥ Um(t)Un(t), t ∈ [0,+∞). (68)

From (68), by multiplication with
(

1− t
1 + t

)2
and using (33), we get

Jm+n (t) ≥
1− t
1 + t

Jm+n (t) ≥ Jm(t)Jn(t), t ∈ [0, 1). (69)

Let us remark that the inequality (69) is stronger than the similar inequalities for Fn, Gn and Un.

Corollary 4. For m ≥ 0, n ≥ 0, k ≥ 0, we have

Fm+kn(x) ≥ Fm(x)Fn
k (x), x ∈ [0, 1].

In particular,
Fkn(x) ≥ Fn

k (x); Fn(x) ≥ Fn
1 (x). (70)

Proof. Starting from (67), it suffices to use induction on n.

Similar results hold for Gn(x), Un(x), Jn(x), but we omit the details. However, let us remark that
F1(x) = 1− 2x(1− x) and so the second inequality in (70) is the first inequality in (59).

Remark 7. Convexity properties of the information potentials and the associated entropies were presented
in [31,32], but the hypothesis an−k = ak, k = 0, 1, . . . , n was inadvertently omitted in ([31], Conjecture 6.1).

5. More about Un(t)

This section contains some additional properties of the function Un defined initially by (16).
Using the simple relation (33) connecting Jn and Un, one can easily derive new properties of the
function Jn given by (17).

Theorem 7.

(i) Un is decreasing on [0, 1] and increasing on [1, ∞).
(ii) Un is logarithmically convex on [0, 1].

Proof. It was proved (see [27,31,32]) that Fn is a logarithmically convex function on [0, 1], i.e.,

F′′n (x)Fn(x)− F′2n (x) ≥ 0, x ∈ [0, 1]. (71)

Let x =
t

t + 1
, t ∈ [0, ∞), x ∈ [0, 1). Then t =

x
1− x

and (19) shows that Un(t) =

Fn(x). Consequently,

U′n(t) = F′n(x)
dx
dt

= F′n(x)(t + 1)−2. (72)
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It is known (see [17]) that F′n(x) ≤ 0, x ∈ [0, 1
2 ], and F′n(x) ≥ 0, x ∈ [ 1

2 , 1]. It follows that
U′n(t) ≤ 0, t ∈ [0, 1], and U′n(t) ≥ 0, t ∈ [1, ∞). This proves (i).

To prove (ii), let us remark that

U′′n (t) = F′′n (x)(t + 1)−4 − 2F′n(x)(t + 1)−3.

Combined with (72), this yields

U′′n (t)Un(t)−U′2n (t) =
(

F′′n (x)Fn(x)− F′2n (t)
)
(t + 1)−4−

− 2F′n(x)Fn(x)(t + 1)−3.

Using (71) and F′n(x) ≤ 0, x ∈ [0, 1
2 ], we obtain

U′′n (t)Un(t)−U′2n (t) ≥ 0, t ∈ [0, 1],

which proves (ii).

Remark 8. Un(0) = lim
t→+∞

Un(t) = 1, (see (31)). These equalities, Theorem 7, and graphical experiments

(see Figure 1) suggest that Un is convex on [0, tn] and concave on [tn,+∞), for a suitable tn > 1. It would be
interesting to have a proof for this shape of Un(t), and to find the value of tn.

Figure 1. Graphics of Un for n = 10, 20, 30, 40.

In order to compute Un(x), we have the explicit expressions (16) and (31), and the three terms of
recurrence relation (29). In what follows, we provide two terms of recurrence relation.

According to ([31], (2.3)),

x(1− x)F′n(x) = n(1− 2x)(Fn(x)− Fn−1(x)), n ≥ 1, x ∈ [0, 1].

Setting again x =
t

t + 1
, t ∈ [0, ∞), and Un(t) = Fn(x),, we obtain, after some computation,

t(t + 1)U′(t) = n(1− t) (Un(t)−Un−1(t)) , t ∈ [0, ∞). (73)
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Multiplying (73) by (t + 1)2n−1/tn+1, we obtain(
(t + 1)2n

tn Un(t)
)′

=

(
(t + 1)2n

tn

)′
Un−1(t), t ≥ 1. (74)

Let s(t) :=
(t + 1)2

t
, t ≥ 1, and

Vn(t) := sn(t)Un(t), t ≥ 1.

Theorem 8. The sequence (Vn(t))n≥0 satisfies the recurrence relation

Vn(t) =
(

2n
n

)
+ n

∫ t

1

x2 − 1
x2 Vn−1(x)dx, n ≥ 1, (75)

with V0(t) = 1, t ≥ 1.

Proof. From (74), we obtain

(sn(x)Un(x))′ = (sn(x))′Un−1(x), x ≥ 1,

i.e.,

V′n(x) = nsn−1(x)s′(x)
Vn−1(x)
sn−1(x)

.

This reduces to
V′n(x) = ns′(x)Vn−1(x),

and therefore

Vn(t)−Vn(1) = n
∫ t

1

x2 − 1
x2 Vn−1(x)dx. (76)

Now Vn(1) = sn(1)Un(1), and (31) shows that Vn(1) = 4n 1
4n (

2n
n ) = (2n

n ). Together with (76) this
proves (75). We have also V0(t) = U0(t) = 1 (see Remark 2).

Example 1. From (75), we deduce

V1(t) = 2 +
∫ t

1

(
1− 1

x2

)
dx = t +

1
t

,

and consequently

U1(t) =
V1(t)
s(t)

=
t2 + 1
(t + 1)2 .

Moreover,

V2(t) = 6 + 2
∫ t

1

(
1− 1

x2

)(
x +

1
x

)
dx = 4 + t2 +

1
t2 ,

i.e., U2(t) =
t4 + 4t2 + 1
(t + 1)4 , and so on.

Remark 9. A recurrence relation similar to (75) and defining a sequence of Appell polynomials was instrumental
in ([31], Section 5) for studying the function Fn.

Remark 10. According to (61), lim
n→+∞

Un(x) = 0, x > 0, i.e., the sequence of functions (Un)n≥0 is pointwise

convergent to zero on (0, ∞). The convergence is not uniform, because Un(0) = lim
x→∞

Un(x) = 1 for all n ≥ 0.
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6. Inequalities for the Integral of the Squared Derivative

Integrals of the form
∫ b

a f ′2(x)dx are important for several applications; see, e.g., ([33], Section 3.10).
In this section, we present bounds for such integrals using the logarithmic convexity of the functions
Fn, Gn, Kn. The results involve some combinatorial identities.

Theorem 9. The following inequalities are valid for n = 0, 1, . . .:∫ 1
0 F′2n (x)dx ≤ 2n, (77)∫ ∞

0 G′2n+1(x)dx ≤ n + 1, (78)∫ ∞
0 K′2n (x)dx ≤ n. (79)

Proof. Let us return to (71). Integrating by parts, we obtain

∫ 1
0 F′2n (x)dx ≤ 1

2
(

F′n(1)Fn(1)− F′n(0)Fn(0)
)

. (80)

Remembering that Fn(x) = Sn,−1(x) and using (11), we obtain

F′n(0) = −2n, F′n(1) = 2n, Fn(0) = Fn(1) = 1. (81)

Now (77) is a consequence of (80) and (81).
The logarithmic convexity of the functions Gn+1 and Kn on [0, ∞) was proven in [34].

Using Gn(x) = Sn,1(x) and (13), it is easy to derive

Gn+1(0) = 1, G′n+1(0) = −2(n + 1) (82)

lim
x→∞

Gn+1(x) = lim
x→∞

G′n+1(x) = 0, (83)

and from ∫ ∞
0 G′2n+1(x)dx ≤ 1

2
(
Gn+1(∞)G′n+1(∞)− Gn+1(0)G′n+1(0)

)
combined with (82) and (83), we obtain (78).

The proof of (79) is similar and we omit it.

Remark 11. If we compute F′n(1) starting from (35), we obtain

F′n(1) = 4
n
∑

k=1
kcn,k.

Combined with (81), this yields

n
∑

k=1
k
(

2(n− k)
n− k

)(
2k
k

)
= n4n/2. (84)

On the other hand, (34) leads to

G′n+1(0) = −2
n
∑

k=0
(2k + 1)cn,k. (85)

Now (82) and (85) produce

n
∑

k=0
(2k + 1)

(
2(n− k)

n− k

)(
2k
k

)
= (n + 1)4n. (86)
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From (84) and (86), we obtain
n
∑

k=0

(
2(n− k)

n− k

)(
2k
k

)
= 4n, (87)

which is (3.90) in Gould [35].

7. Information Potential for the Durrmeyer Density of Probability

Consider the Durrmeyer operators

Ln f (x) :=
∫ 1

0
(n + 1)

(
n

∑
i=0

bni(x)bni(t)

)
f (t)dt,

f ∈ C[0, 1], x ∈ [0, 1]; see, e.g., [36]. They are of the form (5).
Here, bni(x) = (n

i )xi(1− x)n−i. The kernel is

Kn(x, t) := (n + 1)
n

∑
i=0

bni(x)bni(t),

and according to (2), the associated information potential is

Sn(x) := (n + 1)2
∫ 1

0

(
n

∑
i,j=0

bni(x)bnj(x)bni(t)bnj(t)

)
dt

= (n + 1)2
n

∑
i,j=0

bni(x)bnj(x)
(

n
i

)(
n
j

)(
2n

i + j

)−1 ∫ 1

0
b2n,i+j(t)dt

=
(n + 1)2

2n + 1

n

∑
i,j=0

(
n
i

)2(n
j

)2( 2n
i + j

)−1
xi+j(1− x)2n−i−j

=
(n + 1)2

2n + 1

n

∑
i,j=0

((
n
i

)(
n
j

)(
2n

i + j

)−1
)2

b2n,i+j(x).

Setting i + j = k, we obtain

Sn(x) =
2n

∑
k=0

qn,kb2n,k(x), x ∈ [0, 1],

where

qn,k :=
(n + 1)2

2n + 1

(
2n
k

)−2 k

∑
l=0

(
n
l

)2( n
k− l

)2

= (n + 1)
(

2n
n

)−1(2n + 1
n

)−1 k

∑
l=0

(
k
l

)2(2n− k
n− l

)2
, k = 0, 1, . . . , 2n,

with (n
m) = 0 if m > n.

It is easy to see that q2n−k = qn,k, k = 0, 1, . . . , 2n.
We recall here Conjecture 4.6 from [24].

Conjecture 1. ([24]) The sequence (qn,k)k=0,1,...,2n is convex and, consequently, the function Sn is convex
on [0, 1].

The following numerical and graphical experiments support this conjecture (see Table 1 and
Figure 2).
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Table 1. Values of the coefficients qn,k.

nk 0 1 2 3 4 5 6 7 8 9 10 11 12

1
4
3

2
3

4
3

2
9
5

9
10

9
10

9
10

9
5

3
16
7

8
7

176
175

164
175

176
175

8
7

16
7

4
25
9

25
18

1025
882

925
882

905
882

925
882

1025
882

25
18

25
9

5
36
11

18
11

4
3

13
11

86
77

23
21

86
77

13
11

4
3

18
11

36
11

6
49
13

49
26

4753
3146

4165
3146

17395
14157

66787
56628

7329
6292

66787
56628

17395
14157

4165
3146

4753
3146

49
26

49
13

Figure 2. Graphics of Sn for n = 1, 2, 3, 4, 5, 6

8. Concluding Remarks and Future Work

Bounds and convexity type properties of entropies are important and useful, especially when the
entropies are expressed as complicated functions depending on one or several variables. Of course,
bounds and convexity properties are presented in terms of inequalities; therefore, their study is a
branch of the theory of inequalities, under active research. Our paper contains some contributions in
this framework. We have obtained analytic inequalities, with analytic methods, but involving certain
information potentials and their associated Rényi and Tsallis entropies. The probabilistic flavor is
underlined by the purely probabilistic proof of the inequality (67). Finding such probabilistic proofs
for other inequalities in this context will be a topic for future research. For example, is there a purely
probabilistic proof of the subadditivity property (65) of the Rényi entropy Rn,c(x)?

The area in which our results can be placed is delineated by the papers [1–13] and the references
therein: the titles are expressive by themselves.

Basically, we are concerned with the family of probability distributions (p[c]n,k(x))k=0,1,···,
strongly related with the family of generalized Baskakov positive linear operators. The interplay
between the theory of positive linear operators and probability theory is still a rich source of
important results. Besides the binomial distribution, Poisson distribution, and negative binomial
distribution (corresponding, respectively to c = −1, c = 0, c = 1) and associated with the Bernstein,
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Szász-Mirakyan, respectively classical Baskakov operators, we consider in our paper, from an analytic
point of view, the distributions associated with the Bleimann–Butzer–Hahn, Meyer-König and Zeller,
and Durrmeyer operators. Their study in a probabilistic perspective is deferred to a future paper.
Another possible direction of further research is to investigate with our methods the distributions
associated with other classical or more recent sequences of positive linear operators.

The information potential Fn, Gn, Un, and Jn have strong relations with the Legendre polynomials.
Quite naturally, the recurrence relations satisfied by these polynomials yield similar relations for
the information potentials. It should be mentioned that the differential equation characterizing the
Legendre polynomials was used in [17], in order to show that Fn, Gn, Un and Jn satisfy Heun-type
differential equations and consequently to obtain bounds for them. Other bounds are obtained in this
paper, starting from the important integral representations given in [19]. They can be compared with
other bounds from the literature, and this is another possible topic for further research.

For a fixed n, the convexity and even the logarithmic convexity of the function Fn(x) were
established in [17,27,31,32,34]. In this paper, we prove that for a fixed x, the sequence (Fn(x))n≥0

is logarithmically convex. Similar results hold for the other information potentials, and they have
consequences concerning the associated entropies. However, we think that this direction of research
can be continued and developed.

Two conjectures, accompanied by graphical experiments supporting them, are mentioned in
our paper.
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