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Abstract: In the present work, we extend, to the setting of reflexive smooth Banach spaces, the class
of primal lower nice functions, which was proposed, for the first time, in finite dimensional spaces
in [Nonlinear Anal. 1991, 17, 385–398] and enlarged to Hilbert spaces in [Trans. Am. Math. Soc.
1995, 347, 1269–1294]. Our principal target is to extend some existing characterisations of this class
to our Banach space setting and to study the relationship between this concept and the generalised
V-prox-regularity of the epigraphs in the sense proposed recently by the authors in [J. Math. Anal.
Appl. 2019, 475, 699–29].
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1. Introduction and Preliminaries

In all the paper, X will denote a reflexive smooth Banach space, unless otherwise specified.
We quote from [1] the definition of the V-proximalsubdifferential (called in [1] the analytic
proximal subdifferential).

Definition 1 ([1]). Let f : X → R∪ {+∞} be a lower semi-continuous function (l.s.c.), and x ∈ X with f (x)
is finite. We recall that the V-proximal subdifferential of f at x is defined as x∗ ∈ ∂π f (x) if and only if there
exists σ > 0 such that:

〈x∗; x′ − x〉 ≤ f (x′)− f (x) + σV(J(x), x′)), ∀x′ near x.

Here, J is the normalised duality mapping on X and V is the functional defined from X∗ × X to [0, ∞) by:

V(x∗, x) = ‖x∗‖2 − 2〈x∗; x〉+ ‖x‖2, for any (x∗, x) ∈ X∗ × X.

The V-proximal normal cone of a non-empty closed subset S in X at x ∈ S is defined as the V-proximal
subdifferential of the indicator function of S, that is Nπ(S; x) = ∂πψS(x). The limiting V-proximal normal
cone is defined as:

NLπ(S; x̄) = lim sup
x→x̄

Nπ(S; x) := {w− lim
n

x∗n : x∗n ∈ Nπ(S; xn) with xn →S x̄}.

Another proximal subdifferential ∂π
G f (x) is defined geometrically, in [1], via the V-proximal

normal cone of the epigraph as follows:

∂π
G f (x) = {x∗ ∈ X∗ : (x∗;−1) ∈ Nπ(epi f ; (x, f (x)))},
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where epi f := {(x, r) ∈ X × R such that f (x) ≤ r}. It was proven in [1] that we always have
∂π f (x) ⊂ ∂π

G f (x). In [1], ∂π
G was called the geometric proximal subdifferential.

Using the functional V, Alber in [2] introduced the generalised projection on closed convex sets S
as follows: x̄ ∈ πS(x∗) if and only if V(x∗, x̄) = infx∈S V(x∗, x). In [3], the first author extended the
concept to nonconvex closed sets. It was proven in [1] that the V-proximal normal cone is characterised
in terms of the generalised projection as follows:

x∗ ∈ Nπ(S; x̄) ⇔ ∃ρ > 0, such that x̄ ∈ πS(J(x̄) + ρx∗);

⇔ ∃σ > 0, such that 〈x∗; x− x̄〉 ≤ σV(J(x̄), x), ∀x ∈ S;

⇔ ∃δ, σ > 0, such that 〈x∗; x− x̄〉 ≤ σV(J(x̄), x), ∀x ∈ S ∩ (x̄ + δB). (1)

Here, B denotes the closed unit ball in X.

We also recall (see, for instance, [4]) the definition of the Fréchet subdifferential as follows:
x∗ ∈ ∂F f (x̄) if and only if for all ε > 0, there exists δ > 0 such that:

〈x∗; x− x̄〉 ≤ f (x)− f (x̄) + ε‖x− x̄‖, ∀x ∈ x̄ + δB.

The Fréchet normal cone NF(S; x) of a non-empty closed subset S in X at x̄ ∈ S is defined as
NF(S; x̄) = ∂FψS(x̄).

2. V-Proximal Trustworthy Spaces

In [5], we introduced and studied the class of V-proximal trustworthy spaces as follows:

Definition 2 ([5]). We will say that a Banach space X is V-proximal trustworthy provided that for any ε > 0,
any two functions f1, f2 : X → R ∪ {∞}, and any u ∈ X such that f1 is lower semicontinuous and f2 is
Lipschitz around u, the following fuzzy sum rule holds:

∂π( f1 + f2)(u) ⊂
⋃
{∂π f1(u1) + ∂π f2(u2) : ui ∈ U fi

(u, ε), i = 1, 2}+ εB∗.

Here, U fi
(u, ε) := {x ∈ u + εB such that | fi(x)− fi(u)| < ε}, and B∗ denotes the closed unit ball in X∗.

We proved in [5] that all the integral spaces Lp (1 < p < ∞), as well as the sequence spaces
lp(1 < p < ∞), the Sobolev spaces Wp,n(1 < p < ∞), and the Schatten trace ideals Cp(1 < p < ∞),
are V-proximal trustworthy. The following results were proven in [6] for a particular class of a
V-proximal trustworthy space, but their proofs are still valid for any V-proximal trustworthy space.
We state them here without proofs.

Proposition 1 ([6]). Let X be a q-uniformly convex and p-uniformly smooth Banach space. Let S be a closed
subset of X with x ∈ S, and let x∗ ∈ NF(S; x). Assume that X is a V-proximal trustworthy space. Then,
for any ε > 0, there exists xε ∈ (x̄ + εB) ∩ S such that x∗ ∈ Nπ(S; xε) + εB∗.

Proposition 2 ([6]). Let X be a V-proximal trustworthy space, and let f : X → R ∪ {∞} be a proper l.s.c.
function around x̄ ∈ dom f . Then, for any x∗ ∈ X∗ with (x∗; 0) ∈ Nπ(epi f ; (x̄, f (x̄))), there exist sequences
xk → x̄ with f (xk)→ f (x̄), λk → 0+, and x∗k ∈ λk∂π f (xk) such that ‖x∗k − x∗‖∗ → 0.

3. On Generalised V-Prox-Regular Sets

We recall from [7] the following definition of the generalised V-prox-regularity for sets.

Definition 3 ([7]). Let S be a non-empty closed set in a reflexive Banach space X, and let x̄ ∈ S. We will
say that S is generalised V-prox-regular at x̄ if and only if there exist r > 0 and ε > 0 such that for all
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x ∈ S ∩ (x̄ + εB) and for any x∗ ∈ Nπ(S; x) ∩ εB∗, the point x is a generalised projection of Jx + rx∗ on
S ∩ (x̄ + εB), that is x ∈ πS∩(x̄+εB)(Jx + rx∗).

We start with the following characterisation of generalised prox-regular sets.

Theorem 1. Let S be a closed subset in a reflexive smooth Banach space X, and let x̄ ∈ S. The two following
assertions are equivalent:

1. S is generalised V-prox-regular at x̄;
2. There exist r > 0 and ε > 0 such that for all x ∈ S ∩ (x̄ + εB) and all x∗ ∈ Nπ(S; x) ∩ εB, we have:

〈x∗; y− x〉 ≤ 4(‖x̄‖+ ε) + r
2r

dS(y) +
1
2r

V(Jx; y), ∀y ∈ x̄ +
ε

2
B.

Proof. (1)⇒ (2). Assume that S is generalised V-prox-regular at x̄. Then, there exist some ε ∈ (0, 1)
and r > 0 such that ∀x ∈ (x̄ + εB) ∩ S and any x∗ ∈ Nπ(S; x) ∩ εB, we have x ∈ πS∩(x̄+εB)(Jx + rx∗),
that is,

V(Jx + rx∗; x) ≤ V(Jx + rx∗; y), ∀y ∈ (x̄ + εB) ∩ S.

We can easily check that the function y 7→ V(Jx + rx∗; y) is Lipschitz with ratio K := 4(‖x̄‖+ ε) + r
on (x̄ + εB) ∩ S. Then, the Clarke penalisation ensures:

V(Jx + rx∗; x) ≤ V(Jx + rx∗; y) + Kd(x̄+εB)∩S(y), for all y ∈ X. (2)

Observe that:

V(Jx + rx∗; x)−V(Jx + rx∗; y) = ‖x‖2 − ‖y‖2 − 2〈Jx + rx∗; x− y〉

= −‖y‖2 − ‖x‖2 + 2〈Jx; y〉 − 2r〈x∗; x− y〉

= −V(Jx; y)− 2r〈x∗; x− y〉. (3)

Thus, the inequality (2) becomes:

−V(Jx; y)− 2r〈x∗; x− y〉 ≤ Kd(x̄+εB)∩S(y), for all y ∈ X.

On the other hand, we can easily prove the following equality:

d(x̄+εB)∩S(y) = dS(y), for all y ∈ x̄ +
ε

2
B.

Thus, we obtain:

〈x∗; y− x〉 ≤ K
2r

dS(y) +
1
2r

V(Jx; y), ∀y ∈ x̄ +
ε

2
B,

and hence, the proof of (1)⇒ (2) is complete.
(2) ⇒ (1). Assume now that there exist r > 0 and ε1 > 0 such that (2) holds. Then, for all

x ∈ (x̄ + ε1B) ∩ S and all x∗ ∈ Nπ(S; x) ∩ ε1B, we have:

〈x∗; y− x〉 ≤ 4(‖x̄‖+ ε1) + r
2r

dS(y) +
1
2r

V(Jx; y), ∀y ∈ x̄ +
ε1

2
B.

Then:
〈x∗; y− x〉 ≤ 1

2r
V(Jx; y), ∀y ∈ (x̄ +

ε1

2
B) ∩ S.
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Using (3), we obtain:

V(Jx + rx∗; x) ≤ V(Jx + rx∗; y), ∀y ∈ (x̄ +
ε1

2
B) ∩ S,

that is, x ∈ πS∩(x̄+ ε1
2 B)(Jx + rx∗). Set ε := ε1

2 . Therefore, for all x ∈ S ∩ (x̄ + εB) and all x∗ ∈
Nπ(S; x) ∩ εB, we have x ∈ πS∩(x̄+εB)(Jx + rx∗). This means by definition that S is generalised
V-prox-regular at x̄, and hence, the proof is finished.

We present the first consequence of the previous theorem, in which we prove the closedness of
the V-proximal normal cone, as a set-valued mapping, for the class of generalised V-prox-regular sets.
We point out that this kind of property is very important in applications such as nonconvex sweeping
processes and variational problems (see [4] in the Hilbert space setting).

Theorem 2. Let S be a closed subset in a reflexive smooth Banach space, and let x̄ ∈ S. Assume that S is
generalised V-prox-regular at x̄. Then, Nπ(S; x̄) = NLπ(S; x̄).

Proof. Since, obviously, the inclusion Nπ(S; x̄) ⊂ NLπ(S; x̄) is always true, we have to prove the
reverse inclusion NLπ(S; x̄) ⊂ Nπ(S; x̄). Assume that S is generalised V-prox-regular at x̄. Then,
by Theorem 1, there exist r > 0 and ε > 0 such that for all x ∈ S∩ (x̄ + εB) and any x∗ ∈ Nπ(S; x)∩ εB,
we have:

〈x∗; y− x〉 ≤ 4(‖x̄‖+ ε) + r
2r

dS(y) +
1
2r

V(Jx; y), ∀y ∈ x̄ +
ε

2
B.

Fix now any z∗ ∈ NLπ(S; x̄). There exist xn → x̄ with xn ∈ S, and z∗n weakly converges to z∗ with
z∗n ∈ Nπ(S; xn). For n sufficiently large, we have xn ∈ S ∩ (x̄ + εB), and so, for any y ∈ x̄ + ε

2B,
the above inequality ensures:

〈 εz∗n
‖z∗n‖+ 1

; y− xn〉 ≤
4(‖x̄‖+ ε) + r

2r
dS(y) +

1
2r

V(Jxn; y).

This ensures that:

〈z∗n; y− xn〉 ≤
(4(‖x̄‖+ ε) + r)(‖z∗n‖+ 1)

2rε
dS(y) +

(‖z∗n‖+ 1)
2εr

V(Jxn; y), ∀y ∈ x̄ +
ε

2
B.

Thus, for any y ∈ S ∩ (x̄ + ε
2B), we have:

〈z∗n; y− xn〉 ≤
(‖z∗n‖+ 1)

2εr
V(Jxn; y).

The weak convergence of z∗n to z∗ ensures its boundedness, that is, for some L > 0, we have
‖z∗n‖ ≤ L, ∀n. Therefore,

〈z∗n; y− xn〉 ≤
(L + 1)

2εr
V(Jxn; y), ∀y ∈ S ∩ (x̄ +

ε

2
B).

Now, by passing to the limit in the last inequality when n→ ∞, and by taking into account the fact
that V and J are continuous, we obtain:

〈z∗; y− x̄〉 ≤ (L + 1)
2εr

V(Jx̄; y), ∀y ∈ S ∩ (x̄ +
ε

2
B).

This ensures by (1) that z∗ ∈ Nπ(S; x̄), and hence, the proof is complete.

Now, we recall the definition of uniformly generalised V-prox-regular sets, which is the uniform
concept of the one given in Definition 3.
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Definition 4 ([7]). Let S be a non-empty closed set in a reflexive Banach space X. We will say that S is uniformly
generalised V-prox-regular if and only if there exist r > 0 such that for all x ∈ S and for any x∗ ∈ Nπ(S; x)
with ‖x∗‖ < 1, the point x is a generalised projection of Jx + rx∗ on S, that is x ∈ πS(Jx + rx∗).

Obviously, if S is a uniformly generalised V-prox-regular set, then it is generalised V-prox-regular
at any point x ∈ S, and hence, by Theorem 2, we have for any x ∈ S the equality Nπ(S; x) = NLπ(S; x).
We prove an analogous characterisation to the one proven in Theorem 1 for uniformly generalised
V-prox-regular sets.

Theorem 3. Let S be a closed non-empty subset in a reflexive smooth Banach space X. Then, the following
assertions are equivalent:

1. S is uniformly generalised V-prox-regular;
2. There exist r > 0 and α0 > 0 such that for all α ≥ α0, for all x ∈ S, and any x∗ ∈ Nπ(S; x) with

‖x∗‖ < 1, we have:

〈x∗; y− x〉 ≤ ‖x‖+ r + 3α

r
dS(y) +

1
2r

V(Jx; y), ∀y ∈ αB. (4)

3. There exist r > 0 and α0 > 0 such that for all α ≥ α0, for all x ∈ S, and any x∗ ∈ NLπ(S; x) with
‖x∗‖ < 1, we have that (4) holds.

Proof. We start with the implication (1)⇒ (2). Assume that S is uniformly generalised V-prox-regular.
Let r > 0 be given as in Definition 4. Fix any x ∈ S and any x∗ ∈ Nπ(S; x) with ‖x∗‖ < 1 such that:

V(Jx + rx∗; x) ≤ V(Jx + rx∗; s), for all s ∈ S.

Then, by using (3), we obtain:

〈x∗; s− x〉 ≤ 1
2r

V(Jx; s), for all s ∈ S. (5)

Let α0 > 0 such that S ∩ α0B 6= ∅ (α0 exists since S 6= ∅). Let α ≥ α0 so that S ∩ αB 6= ∅. Let h(s) :=
〈x∗; s− x〉 − 1

2r V(Jx; s), for all s ∈ X. We can show easily that h is Lipschitz on S ∩ 3αB with ratio

K := r+3α+‖x‖
r . Therefore, using Clarke penalisation, the inequality (5) becomes:

〈x∗; y− x〉 ≤ 1
2r

V(Jx; y) + KdS∩3αB(y), for all y ∈ X.

Since we can easily show that dS∩3αB(y) = dS(y), for all y ∈ αB, we obtain:

〈x∗; y− x〉 ≤ 1
2r

V(Jx; y) + KdS(y), for all y ∈ αB,

and hence, the proof of (1)⇒ (2) is complete. We prove the reverse implication (2)⇒ (1). Assume that
there exist r > 0, α0 > 0 with S ∩ α0B 6= ∅ such that ∀α ≥ α0, ∀x ∈ S, ∀x∗ ∈ Nπ(S; x) with ‖x∗‖ < 1,
we have:

〈x∗; y− x〉 ≤ 1
2r

V(Jx; y) +
r + 3α + ‖x‖

r
dS(y), for all y ∈ αB.

Then:
〈x∗; y− x〉 ≤ 1

2r
V(Jx; y), for all y ∈ αB∩ S,

and so, by (3), once again, we obtain:

V(Jx + rx∗; x) ≤ V(Jx + rx∗; y), for all y ∈ αB∩ S. (6)
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Let y∗ := Jx + rx∗ and M := max{‖x‖+ r; α0}. Clearly, we have ‖y∗‖ ≤ M and S ∩MB 6= ∅ (since
M ≥ α0 and S ∩ α0B 6= ∅). Therefore, by Lemma 2.12 in [7], we obtain:

inf
y∈S

V(y∗; y) = inf
y∈S∩3MB

V(y∗; y).

Take x ∈ S ∩ 3MB and α = 3M in (6); we get:

V(Jx + rx∗; x) = inf
y∈S∩αB

V(Jx + rx∗; y) = inf
y∈S

V(Jx + rx∗; y).

This means that x ∈ πS(Jx + rx∗). Since this relation holds ∀x ∈ S, ∀x∗ ∈ Nπ(S; x) with ‖x∗‖ < 1,
we deduce that S is uniformly generalised V-prox-regular with ratio r > 0. The proof of (2)⇐⇒ (3)
follows from the fact that Nπ(S; x) = NLπ(S; x), proven in Theorem 2.

The case of bounded sets is treated in the following corollary, and its proof is simpler than the
proof of Theorem 3.

Corollary 1. Let S be a closed bounded subset in a reflexive smooth Banach space X with S ⊂ MB. Then,
the following assertions are equivalent:

1. S is uniformly generalised V-prox-regular;
2. There exists r > 0 such that for any x ∈ S and any x∗ ∈ Nπ(S; x) with ‖x∗‖ < 1, we have:

〈x∗; y− x〉 ≤ 2M + r
r

dS(y) +
1
2r

V(Jx; y), ∀y ∈ X. (7)

3. There exists r > 0 such that for any x ∈ S and any x∗ ∈ Nπ(S; x) with ‖x∗‖ < 1, we have that (7) holds.

Proof. As in the proof of Theorem 3, the equivalence (2)⇐⇒ (3) follows from Theorem 2. Therefore,
we have only to prove that (1) ⇐⇒ (2). Assume that S is uniformly generalised V-prox-regular.
Let r > 0 be given as in Definition 4. Fix any x ∈ S and any x∗ ∈ Nπ(S; x) with ‖x∗‖ < 1 such that:

V(Jx + rx∗; x) ≤ V(Jx + rx∗; s), for all s ∈ S.

Then, by (3), we obtain:

〈x∗; s− x〉 ≤ 1
2r

V(Jx; s), for all s ∈ S. (8)

Let h(s) := 〈x∗; s− x〉 − 1
2r V(Jx; s), for all s ∈ X. Clearly, h is Lipschitz on S with ratio K := 2M+r

r .
Therefore, using Clarke penalisation, the inequality (8) becomes:

〈x∗; y− x〉 ≤ 1
2r

V(Jx; y) + KdS(y), for all y ∈ X,

and hence, the proof of (1) ⇒ (2) is achieved. We prove the reverse implication (2) ⇒ (1).
Assume that (7) holds. Then, there exists r > 0 such that ∀x ∈ S, ∀x∗ ∈ Nπ(S; x) with ‖x∗‖ < 1,
we have:

〈x∗; y− x〉 ≤ 1
2r

V(Jx; y) +
2M + r

r
dS(y), for all y ∈ X.

Then:
〈x∗; y− x〉 ≤ 1

2r
V(Jx; y), for all y ∈ S,

and so, by (3), we obtain:

V(Jx + rx∗; x) ≤ V(Jx + rx∗; y), for all y ∈ S.
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This means x ∈ πS(Jx + rx∗), ∀x ∈ S, ∀x∗ ∈ Nπ(S; x) with ‖x∗‖ < 1. Thus, S is uniformly generalised
V-prox-regular with ratio r > 0, and hence, the proof is complete.

4. V-Primal Lower Nice Functions

In this section, we start by adapting the definition of primal lower nice functions given in [8].
We use the functional V instead of the norm square and the geometric V-prox-subdifferential ∂π

G
instead of the usual proximal subdifferential.

Definition 5. Let f : X → R∪ {∞} be an l.s.c. function. We will say that f is V-primal lower nice (V-p.l.n.)
at x̄ ∈ dom f , if there exist λ1, λ2 > 0, c > 0, T > 0 such that:

f (y) ≥ f (x) + 〈x∗; y− x〉 − t
2

V(Jx, y) (9)

whenever t ≥ T, x ∈ NV(x̄, λ1, λ2), y ∈ x̄ + λ1B, x∗ ∈ ∂π
G f (x), and ‖x∗‖ ≤ ct. Here:

NV(x̄, λ1, λ2) := {x ∈ x̄ + λ1B with V(Jx̄, x) ≤ λ2
2}.

We notice that this definition extends, to reflexive smooth Banach spaces, the definition of primal
lower nice functions defined in Hilbert spaces in [8] and in finite dimension spaces in [9]. In the
following proposition, we start by proving an important property of the class of V-primal lower nice
functions, which is the J-hypomonotonicity of the geometric V-prox-subdifferential ∂π

G in the sense
of [7]. We point out that a different extension to Banach spaces was given in [8] and in [10] (see
also [11,12]).

Proposition 3. Assume that X is a reflexive smooth Banach space, and let f : X → R ∪ {∞} be an l.s.c.
function. For any V-p.l.n. function f at x̄ ∈ dom f , there exist λ > 0, c > 0, T > 0 such that the set-valued
mapping x 7→ ∂π

G f (x) ∩ ctB is J-hypomonotone with any ratio t ≥ T over x̄ + λB, that is for any t ≥ T,
any x1, x2 ∈ x̄ + λB, x∗i ∈ ∂π

G f (xi), i = 1, 2, with max{‖x∗1‖, ‖x∗2‖} ≤ ct, we have:

〈x∗1 − x∗2 ; x1 − x2〉 ≥ −t〈Jx1 − Jx2; x1 − x2〉. (10)

Proof. Observe that for any ε1, ε2 > 0, there exists ε > 0 such that:

x̄ + εB ⊂ NV(x̄, ε1, ε2).

Assume that f is V-p.l.n. at x̄ ∈ dom f . Then, there are λ > 0, c > 0, T > 0 such that (9) holds for any
t ≥ T, x1, x2 ∈ x̄ + λB, x∗i ∈ ∂π

G f (xi), i = 1, 2, and max{‖x∗1‖, ‖x∗2‖} ≤ ct. Thus:

f (x1) ≥ f (x2) + 〈x∗2 ; x1 − x2〉 −
t
2

V(Jx2, x1)

and:
f (x2) ≥ f (x1) + 〈x∗1 ; x2 − x1〉 −

t
2

V(Jx1, x2).

Adding these two inequalities gives:

0 ≥ 〈x∗1 − x∗2 ; x2 − x1〉 −
t
2

V(Jx1, x2)−
t
2

V(Jx2, x1). (11)

On the other hand, we have:

V(Jx1, x2) + V(Jx2, x1) = 2‖x1‖2 − 2[〈Jx1; x2〉+ 〈Jx2; x1〉] + 2‖x2‖2

= 2[〈Jx1; x1〉 − 〈Jx1; x2〉 − 〈Jx2; x1〉+ 〈Jx2; x2〉]
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= 2〈Jx1 − Jx2; x1 − x2〉.

Therefore, (11) becomes:
〈x∗1 − x∗2 ; x1 − x2〉 ≥ −t〈Jx1 − Jx2; x1 − x2〉

and hence, the proof is complete.

In the next theorem, we prove that the reverse implication of the previous proposition also holds
in q-uniformly convex and p-uniformly smooth Banach spaces, which is V-proximal trustworthy.
We state the following proposition from [7], which is needed in our next proof.

Proposition 4 ([7]). If X is q-uniformly convex and p-uniformly smooth, then ∀α > 0, ∃K1, K2, K3 > 0 such
that for all x, y ∈ αB:

〈Jx− Jy; x− y〉 ≥ K1‖x− y‖q, ‖Jx− Jy‖ ≤ K2‖x− y‖p−1, and V(Jx, y) ≥ K3‖x− y‖q.

In the proof of the following theorem, we use techniques and ideas from [10].

Theorem 4. Assume that X is q-uniformly convex and p-uniformly smooth, admitting which is V-proximal
trustworthy. The function f is V-p.l.n. at x0 ∈ dom f if and only if (10) holds.

Proof. We prove only the reverse implication. First, we prove the following claim. Assume that there
are λ > 0, c > 0, T > 0 such that (10) holds. Set M := ‖x̄‖+ 4λ. Then, by Proposition 4, there exist
K1, K2, K3 > 0 such that for all x, y ∈ MB:

〈Jx− Jy; x− y〉 ≥ K1‖x− y‖q (12)

‖Jx− Jy‖ ≤ K2‖x− y‖p−1 (13)

V(Jx, y) ≥ K3‖x− y‖q. (14)

The constants K1, K2, and K3 depend only on the space X and the constant M > 0.

Claim 1. Take λ′ ∈ (0, min{ c
2 , 1

4

(
c

16K2

) 1
p−1 , λ

4 }). Take λ2 ∈ (0,
√

2q−1λ′qK3). Fix c′ and T′ in a such
way that:

0 < c′ < min
{

K3(2λ′)q−1

32
,

λ′

8

}
(15)

and:

T′ > max
{

2T,
2[1 + f (x̄)− K]

K3λ′q

}
. (16)

We claim that for arbitrary x0 ∈ NV(x̄, λ′, λ2) and x∗ ∈ ∂π
G f (x0) such that ‖x∗‖ ≤ c′t and t ≥ T′ and

arbitrary y0 ∈ x̄ + 4λ′B such that:

f (y0)− 1 + 〈x∗; x0 − y0〉+
t
2

V(Jx0, y0) < inf
y∈x̄+4λ′B

{
f (y) + 〈x∗; x0 − y〉+ t

2
V(Jx0, y)

}
,

it follows that y0 ∈ x̄ + 3λ′B.

Proof of Claim 1. Assume the contrary, that is there are some x′ ∈ NV(x̄, λ′, λ2), v∗ ∈ ∂π
G f (x′) with

‖v∗‖ ≤ c′t, for some t ≥ T′ and y′ ∈ [x̄ + 4λ′B] \ [x̄ + 3λ′B] such that:

f (y′) + 〈v∗; x′ − y′〉+ t
2

V(Jx′, y′) < f (x̄) + 〈v∗; x′ − x̄〉+ t
2

V(Jx′, x̄) + 1.
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Therefore,

1 + f (x̄)− K > 〈v∗; x̄− y′〉+ t
2
[V(Jx′, y′)−V(Jx′, x̄)].

Since x′ ∈ x̄ + λ′B and y′ ∈ x̄ + 4λ′B, we have ‖y′‖ ≤ ‖x̄‖+ 4λ′ < M and ‖x′‖ < M, and hence,
we can write by (14):

V(Jx′, y′) ≥ K3‖x′ − y′‖q ≥ K3
(
‖y′ − x̄‖ − ‖x′ − x̄‖

)q ≥ K3
(
3λ′ − λ′

)q
= K32qλ′q

Therefore:
V(Jx′, y′)−V(Jx′, x̄) ≥ K32qλ′q − λ2

2 ≥
1
2

K3(2λ′)q.

Furthermore, we have:

〈v∗; x̄− y′〉 ≥ −‖v∗‖ · ‖y′ − x̄‖ ≥ −4λ′‖v∗‖ ≥ −4λ′c′t.

Thus:

1 + f (x̄)− K > −4λ′c′t +
t
2
[
1
2

K3(2λ′)q] = tλ′[−4c′ +
(2λ)q−1K3

2
].

From the choice of c′ in (15), we have:

−4c′ > −K3(2λ′)q−1

8
.

Hence, by (16), we obtain:

1 + f (x̄)− K > tλ′[
(2λ′)q−1K3

4
] > T′λ′[

(2λ′)q−1K3

4
]

> λ′
[
(2λ′)q−1K3

4

]
2[1 + f (x̄)− K]

K3λ′q
> 1 + f (x̄)− K.

This is a contradiction. Therefore, the proof of the claim is achieved.

Let us prove now the opposite direction of the theorem. Assume that (9) holds for some λ >

0, c > 0, T > 0. Let λ′, c′, T′, and λ2 be fixed as in Claim 1. Assume that the function f is not V-p.l.n. at
x̄. Then, by definition, there are x0 ∈ NV(x̄, λ′, λ2), x∗ ∈ ∂π

G f (x0) with ‖x∗‖ ≤ c′t such that t ≥ T′ and
some y0 ∈ x0 + λ′B such that:

f (y0) < f (x0) + 〈x∗; y0 − x0〉 −
t
2

V(Jx0, y0).

Therefore,

f (x0) > f (y0) + 〈x∗; x0 − y0〉+
t
2

V(Jx0, y0)

> inf
y∈x̄+4λ′B

{
f (y) + 〈x∗; x0 − y〉+ t

2
V(Jx0, y)

}
. (17)

Define now the function h on X as:

h(y) := f (y) + 〈x∗; x0 − y〉+ t
2

V(Jx0, y) + ψ[x̄+4λ′B](y).

Clearly, the inequality (17) gives:
f (x0) > inf

y∈X
h(y),
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and so, by the definition of the infimum, we can find a sequence yn ∈ x̄ + 4λ′B such that:

h(yn) < inf
y∈X

h(y) +
1
n

.

Obviously, (17) ensures that ‖yn − x0‖ does not converge to zero, that is there exists some positive
number α > 0 such that ‖yn − x0‖ > α, for n sufficiently large. Clearly, yn satisfies Claim 1, that is,

f (yn) + 〈x∗; x0 − yn〉+
t
2

V(Jx0, yn) < inf
y∈x̄+4λ′B

h(y) +
1
n

< inf
y∈x̄+4λ′B

h(y) + 1 (18)

with x0 ∈ NV(x̄, λ′, λ2), x∗ ∈ ∂π
G f (x0), ‖x∗‖ < c′t, t ≥ T′, yn ∈ x̄ + 4λ′B.

Therefore, we have yn ∈ x̄+ 3λ′B. Since yn satisfies the inequality (18), we can choose by the variational
principle a sequence xn ∈ X with ‖xn − yn‖ ≤ 1√

n , and xn is the minimum of the function h + 1√
n‖ ·

−xn‖. Therefore, 0 ∈ ∂π
[

h + 1√
n‖ · −xn‖

]
(xn). By the fuzzy sum rule for the ∂π in trustworthy spaces

in Definition 2, we get two sequences un, vn ∈ xn +
1√
nB with |h(un)− h(xn)| < 1√

n such that:

0 ∈ ∂πh(un) +
1√
n

∂π [‖ · −xn‖] (vn) +
1√
n
B∗,

that is, there exist p∗n ∈ ∂πh(un), q∗n ∈ 1√
n ∂π [‖ · −xn‖] (vn) such that ‖p∗n + q∗n‖ < 1√

n . Using now
Proposition 3.16 in [1], we get some x∗n ∈ ∂π f (un) such that p∗n = x∗n − x∗ + t[Jun − Jx0] (i.e., x∗n =

p∗n + x∗ − t[Jun − Jx0]). Let y∗n := q∗n − x∗ + t[Jun − Jx0]. Clearly,
∣∣‖x∗n‖ − ‖y∗n‖∣∣ → 0. We need to

estimate ‖x∗n‖. Observe that ‖q∗n‖ ≤ 1√
n . We consider:

‖y∗n‖ = ‖x∗ − q∗n − t[Jun − Jx0]‖

≤ ‖x∗‖+ t‖Jun − Jx0‖+ ‖q∗n‖

≤ c′t + t‖Jun − Jx0‖+
1√
n

.

Observe that:

‖un‖ ≤ ‖un − xn‖+ ‖xn − yn‖+ ‖yn − x̄‖+ ‖x̄‖ ≤ 2√
n
+ 3λ′ + ‖x̄‖ < M,

and so, both x0, un ∈ MB; so, by (13), we obtain:

‖Jun − Jx0‖ ≤ K2‖un − x0‖p−1 ≤ K2[
2√
n
+ 3λ′]p−1 ≤ K2[4λ′]p−1

for n large enough. Thus:

‖y∗n‖ ≤ c′t + tK2[4λ′]p−1 +
1√
n
= t

[
c′ + K2[4λ′]p−1 +

1
t
√

n

]
.

Clearly, for n sufficiently large, we have 1
t
√

n < c
16 . Furthermore, we have c′ < λ′

8 and K2[4λ′]p−1 < c
16 .

Therefore:

‖y∗n‖ ≤ t
[

λ′

8
+

c
16

+
c

16

]
≤ tc

4
.
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and hence:

‖x∗n‖ ≤ ‖y∗n‖+ ‖x∗n + y∗n‖ ≤ ‖y∗n‖+ ‖p∗n + q∗n‖ ≤
tc
4
+

1√
n
≤ tc

4
+

tc
8

<
tc
2

,

for n large enough. Finally, we summarise: we obtained x∗n ∈ ∂π f (un) ⊂ ∂π
G f (un) with ‖x∗n‖ < ct

2 and
for n sufficiently large:

un ∈ xn +
1√
n
B ⊂ yn +

2√
n
B ⊂ x̄ +

[
3λ′ +

2√
n

]
B ⊂ x̄ +

[
3
4

λ +
1√
n

]
B ⊂ x̄ + λB.

Furthermore, we have x∗ ∈ ∂π
G f (x0), ‖x∗‖ ≤ c′t < λ′

8 t < c
16 t < c t

2 , x0 ∈ x̄ + λ′B ⊂ x̄ + λB,
and t

2 ≥
T′
2 > T. Using (10), we obtain:

〈x∗n − x∗; un − x0〉 ≥ −
t
2
〈Jun − Jx0; un − x0〉. (19)

We estimate the left-hand side:

〈x∗n − x∗; un − x0〉 = 〈x∗ + y∗n; x0 − un〉 − 〈y∗n + x∗n; x0 − un〉

≤ 〈x∗ + y∗n; x0 − un〉+ ‖y∗n + x∗n‖‖x0 − un‖

≤ 〈q∗n; x0 − un〉 − t〈Jun − Jx0; un − x0〉+ ‖y∗n + x∗n‖‖x0 − un‖

≤ 2√
n
‖x0 − un‖ − t〈Jun − Jx0; un − x0〉

Combining this inequality with (19), we obtain:

− t
2
〈Jun − Jx0; un − x0〉 ≤ −t〈Jun − Jx0; un − x0〉+

2√
n
‖x0 − un‖,

and hence:
t
2
〈Jun − Jx0;

un − x0

‖x0 − un‖
〉 ≤ 2√

n
. (20)

Set αn := 〈Jun − Jx0; un−x0
‖x0−un‖ 〉. The sequence (αn)n is a bounded positive sequence, so there exists

some subsequence still labelled (αn)n such that lim
n

αn = ᾱ. Since un, x0 ∈ MB, we have by (12):

αn ≥ K1‖un − x0‖q−1.

If ᾱ = 0, then un → x0, and so, yn → x0, which is a contradiction with ‖yn − x0‖ > α > 0. Therefore,
by taking the limit on both sides in (20), we get t

2 ≤ 0. This contradicts the fact that t ≥ T > 0,
thus completing the proof of the theorem.

In the next theorem, we use Theorem 4 to prove that both V-prox-subdifferentials ∂π f and ∂π
G f

coincide with their limit-subdifferentials for any V-primal lower nice function.

Theorem 5. Assume that X is q-uniformly convex and p-uniformly smooth, which is V-proximal trustworthy.
For any V-p.l.n. function at x̄, we have:

∂LP f (x̄) = ∂LF f (x̄) = ∂F f (x̄) = ∂Lπ
G f (x̄) = ∂Lπ f (x̄) = ∂π f (x̄) = ∂π

G f (x̄).

Here, ∂LF f (x̄) (resp. ∂LP f (x̄)) denotes the limiting proximal (resp. Fréchet) subdifferential (for their definitions,
we refer to [12]).
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Proof. The proof of the equalities ∂LP f (x̄) = ∂LF f (x̄) = ∂Lπ f (x̄) for any l.s.c. functions was given in
Theorem 5.1 in [6]. We assume that f is V-p.l.n. at x̄, and we prove the inclusion ∂Lπ

G f (x̄) ⊂ ∂π f (x̄).
Let x∗0 ∈ ∂Lπ

G f (x̄). Then, there exist xn → f x̄ and x∗n →w x∗0 with x∗n ∈ ∂π
G f (xn). By the definition of

V-p.l.n. functions, there are λ1, λ2 > 0, c > 0, T > 0 such that for any t ≥ T, any x ∈ NV(x̄, λ1, λ2),
and any x∗ ∈ ∂π

G f (x) ∩ ctB∗, we have:

〈x∗; y− x〉 ≤ f (y)− f (x) +
t
2

V(Jx, y), ∀y ∈ x̄ + λ1B.

For n sufficiently large, we have ‖x∗n‖ ≤ M and xn ∈ NV(x̄, λ1, λ2). Let t := max{M
c ; T}. Obviously,

‖x∗n‖ ≤ ct and t ≥ T. Thus, for n sufficiently large and any y ∈ x̄ + λ1B, we have:

〈x∗n; y− xn〉 ≤ f (y)− f (xn) +
t
2

V(Jxn, y), ∀y ∈ x̄ + λ1B.

By taking n→ ∞, we obtain:

〈x∗0 ; y− x̄〉 ≤ f (y)− f (x̄) +
t
2

V(Jx̄, y), ∀y ∈ x̄ + λ1B,

which means by definition that x∗0 ∈ ∂π f (x̄). Thus, ∂Lπ
G f (x̄) ⊂ ∂π f (x̄). Since the inclusions ∂π f (x̄) ⊂

∂π
G f (x̄) ⊂ ∂Lπ

G f (x̄) are always true, we deduce the desired equality ∂Lπ
G f (x) = ∂Lπ f (x) = ∂π f (x) =

∂π
G f (x). Furthermore, we always have ∂π f (x̄) ⊂ ∂π

G f (x̄) ⊂ ∂F f (x̄) ⊂ ∂LF f (x̄). Thus, ∂LP f (x̄) =

∂LF f (x̄) = ∂F f (x̄) = ∂Lπ
G f (x̄) = ∂Lπ f (x̄) = ∂π f (x̄) = ∂π

G f (x̄), and the proof is complete.

Our next theorem shows the generalised V-prox-regularity of the epigraph for V-primal lower nice
functions defined on q-uniformly convex and p-uniformly smooth, which is V-proximal trustworthy.
First, we need to prove the following lemma.

Lemma 1. Let X be a reflexive Banach space and f : X → R ∪ {∞}. For any x ∈ dom f and any (x, α) ∈
epi f (i.e., f (x) ≤ α), we have:

(x∗, 0) ∈ Nπ(epi f ; (x, α)) =⇒ (x∗, 0) ∈ Nπ(epi f ; (x, f (x))).

Proof. Let (x∗, 0) ∈ Nπ(epi f ; (x, α)). If f (x) = α, then we are done. Assume now that f (x) < α. Then,
by (1), there exists ρ > 0 such that:

(x, α) = πepi f (Jx + ρx∗; α + ρ× 0) = πepi f (Jx + ρx∗; α),

that is,
VX×R((Jx + ρx∗, α); (x, α)) = inf

(y,α′)∈epi f
VX×R((Jx + ρx∗, α); (y, α′)).

Hence,

V(Jx + ρx∗; x) = V(Jx + ρx∗; x) + (α− α)2 = VX×R((Jx + ρx∗, α); (x, α))

= inf
(y,α′)∈epi f

VX×R((Jx + ρx∗, α); (y, α′))

= inf
(y,α′)∈epi f

[V(Jx + ρx∗; y) + (α′ − α)2]

≤ V(Jx + ρx∗; y) + (α′ − α)2, ∀(y, α′) ∈ epi f . (21)
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Choose any δ ∈ (0, α− f (x)). Fix now any (x′, α′) ∈ epi f with (x′, α′) ∈ (x, f (x)) + δBX×R, that is
‖x′ − x‖ < δ and |α′ − f (x)| < δ. We have:

−δ + α′ < f (x) < α′ + δ =⇒ α′ < f (x) + δ < α =⇒ f (x′) < α′ < α,

that is (x′, α) ∈ epi f . From (21), we have:

V(Jx + ρx∗; x) ≤ V(Jx + ρx∗; x′) + (α− α)2 = V(Jx + ρx∗; x′).

Thus, for any (x′, α′) ∈ epi f ∩ [(x, f (x)) + δBX×R], we have:

V(Jx + ρx∗; x)−V(Jx + ρx∗; x′) ≤ 0.

On the other hand, we have by (3):

V(Jx + ρx∗; x)−V(Jx + ρx∗; x′) = −V(Jx; x′)− 2ρ〈x∗; x− x′〉.

Therefore, for any (x′, α′) ∈ epi f ∩ [(x, f (x)) + δBX×R], we obtain:

〈x∗; x′ − x〉 ≤ 1
2ρ

V(Jx; x′),

which ensures that:

〈(x∗, 0); (x′, α′)− (x, f (x)))〉 ≤ 1
2ρ

[
V(Jx; x′) + [ f (x)− α′]2

]
=

1
2ρ

VX×R((JX×R(x, f (x)); (x′, α′)).

This ensures by (1) that (x∗, 0) ∈ Nπ(epi f ; (x, f (x))), and hence, the proof is complete.

Theorem 6. Let X be a q-uniformly convex and p-uniformly smooth, which is V-proximal trustworthy. If f is
V-primal lower nice at x̄ ∈ dom f , then epi f is generalised V-prox-regular at (x̄, f (x̄)).

Proof. By the definition of V-p.l.n. at x̄, we have positive numbers ε1 ∈ (0, 1), ε2 > 0, r > 0, T > 0
such that for any t ≥ T, any x ∈ NV(x̄, ε1, ε2), and any x∗ ∈ ∂π

G f (x) ∩ rtB∗, we have:

〈x∗; y− x〉 ≤ f (y)− f (x) +
t
2

V(Jx, y), ∀y ∈ x̄ + ε1B. (22)

Choose ε0 ∈ (0, ε1
2 ) such that for any z ∈ x̄ + ε0B, we have V(Jx̄, z) < ε2. This ensures the inclusion

x̄ + ε0B ⊂ NV(x̄; ε1, ε2). Take (x, α) ∈ epi f and (x∗,−λ) ∈ Nπ(epi f ; (x, α)) ∩ ε0BX∗×R and x ∈
x̄ + ε0

2 B with | f (x̄)− α| < ε0
2 . Fix now any (x′, α′) ∈ epi f with ‖x′ − x̄‖ < ε0 and |α′ − f (x̄)| < ε0.

Clearly, x′ ∈ NV(x̄; ε1, ε2).

Case 01: λ > 0.

In this case, we necessarily have α = f (x). Then, ( x∗
λ ,−1) ∈ Nπ(epi f ; (x, f (x)))∩ ε0BX∗×R, so by

definition of the geometric V-proximal subdifferential, we get x∗
λ ∈ ∂π

G f (x). Furthermore, we have
‖ x∗

λ ‖ ≤
ε0
λ ≤ rt for every t ≥ max{T, 1

rλ}. Hence, by (22), we obtain:

〈λ−1x∗; x′ − x〉 ≤ f (x′)− f (x) +
t
2

V(Jx, x′),
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which entails:

〈x∗; x′ − x〉 ≤ λ[ f (x′)− f (x)] +
tλ
2

V(Jx, x′)

≤ λ[ f (x′)− f (x)] +
tλ
2

V(Jx, x′) +
tλ
2
[α′ − α]2 (23)

Since f (x′) ≤ α′, we have ∀t′ ≥ max{ T
2 , 1

2r}, and the following two inequalities hold:

2λ−1t′ ≥ 1
rλ

and 2λ−1t′ ≥ T
λ
≥ T;

hence, (23) entails with t = 2λ−1t′:

〈x∗; x′ − x〉 ≤ λ[ f (x′)− f (x)] + (2λ−1t′)
λ

2
V(Jx, x′) + (2λ−1t′)

λ

2
[α′ − α]2

≤ λ[ f (x′)− f (x)] + t′V(Jx, x′) + t′[α′ − α]2

≤ t′‖x‖2 + t′‖x′‖2 − 2t′〈Jx; x′ − x〉+ λ[α′ − α] + t′[α′ − α]2.

Hence:

〈x∗ + 2t′ Jx; x′ − x〉 ≤ t′‖x′‖2 − t′‖x‖2 + λ[α′ − α] + t′[α′ − α]2.

Therefore,

t′‖x‖2 − 2t′〈Jx +
x∗

2t′
; x〉 ≤ t′‖x′‖2 − 2t′〈Jx +

x∗

2t′
; x′〉+ λ[α′ − α] + t′[α′ − α]2.

Dividing by t′ > 0 yields:

V(Jx +
x∗

2t′
; x) ≤ V(Jx +

x∗

2t′
; x′〉+ λ

t′
[α′ − α] + [α′ − α]2. (24)

On the other hand, we have:[
α′ − α +

1
2t′

λ

]2
= [α′ − α]2 +

λ

t′
(α′ − α) +

λ2

4t′2

=
1
t′

[
t′[α′ − α]2 + λ(α′ − α) +

λ2

4t′

]
.

Therefore,

t′
[

α′ − α +
1

2t′
λ

]2
− λ2

4t′
= t′[α′ − α]2 + λ(α′ − α).

Thus, (24) becomes:

V(Jx +
x∗

2t′
; x) ≤ V(Jx +

x∗

2t′
; x′〉+ 1

t′
[
t′[α′ − α]2 + λ[α′ − α]

]
≤ V(Jx +

x∗

2t′
; x′〉+

[
α′ − α +

1
2t′

λ

]2
− λ2

4t′2
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and so:

V(Jx +
x∗

2t′
; x) +

λ2

4t′2
≤ V(Jx +

x∗

2t′
; x′〉+

[
α′ − α +

1
2t′

λ

]2
.

Observe that:

VX×R((Jx +
x∗

2t′
, (α +

1
2t′

(−λ))); (x, α)) = V(Jx +
x∗

2t′
; x) +

λ2

4t′2
, and

VX×R((Jx +
x∗

2t′
, (α +

1
2t′

(−λ))); (x′, α′)) = V(Jx +
x∗

2t′
; x′〉+

[
α′ − α +

1
2t′

λ

]2
.

Therefore,

VX×R((Jx +
x∗

2t′
, (α +

1
2t′

(−λ))); (x, α)) ≤ VX×R((Jx +
x∗

2t′
, (α +

1
2t′

(−λ))); (x′, α′)),

for any (x′, α′) ∈ epi f ∩ [(x̄, f (x̄)) + ε0BX×R] , that is,

(x, α) ∈ πepi f∩[(x̄, f (x̄))+ε0BX×R]
(Jx +

x∗

2t′
, (α +

1
2t′

(−λ))))

Case 02: λ = 0.

In this case, we have (x∗; 0) ∈ Nπ(epi f ; (x, α)), and so, by Lemma 1, we obtain (x∗, 0) ∈
Nπ(epi f ; (x, f (x))). Using Proposition 2, there exist sequences xn → x with f (xn)→ f (x), µn → 0+,
and y∗n ∈ µn∂π f (xn) such that ‖y∗n − x∗‖∗ → 0. Let x∗n := µ−1

n y∗n. Then, ‖µnx∗n − x∗‖ = ‖y∗n − x∗‖ →
0 as n→ ∞, that is µnx∗n → x∗. For n large enough (i.e., ∀n ≥ N0), we have ‖xn − x‖ < ε0

2 and µn < 1.

Assume for a moment x∗ 6= 0. Let tn := max{ T
2µn

, ‖x
∗
n‖

2r‖x∗‖}, ∀n ≥ N0, and we see that:

2tn ≥ max{T,
‖x∗n‖

r
}, (since

1
µn

> 1 and
1
‖x∗‖ > 1)

and hence, by (22) with y := x′, x := xn, and t := 2tn, we obtain:

〈x∗n; x′ − xn〉 ≤ f (x′)− f (xn) + tnV(Jxn, x′).

Multiplying this inequality by µn, we get:

〈µnx∗n; x′ − xn〉 ≤ µn[ f (x′)− f (xn)] + µntnV(Jxn, x′).

Let ρn := max
{

T
2 , µn‖x∗n‖

2r‖x∗‖

}
. Clearly, ρn → ρ := max

{
T
2 , 1

2r

}
, and tnµn = ρn. Therefore, for any

n ≥ N0, we have:
〈y∗n; x′ − xn〉 ≤ µn[ f (x′)− f (xn)] + ρnV(Jxn, x′).

Now, taking the limit as n→ ∞ yields by the continuity of V and J:

〈x∗; x′ − x〉 ≤ ρV(Jx, x′) ≤ ρV(Jx, x′) + ρ[α′ − α]2

Therefore:
〈x∗; x′〉 ≤ 〈x∗; x〉+ ρ‖x‖2 + ρ‖x′‖2 − 2ρ〈Jx; x′〉+ ρ[α′ − α]2.

Thus,
ρ‖x‖2 − 〈x∗ + 2ρJx; x〉 ≤ ρ‖x′‖2 − 〈x∗ + 2ρJx; x′〉+ ρ[α′ − α]2.
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Dividing by ρ > 0 gives:

‖x‖2 − 2〈Jx +
1

2ρ
x∗; x〉 ≤ ‖x′‖2 − 2〈Jx +

1
2ρ

x∗; x′〉+ [α′ − α]2

Therefore:
V(Jx +

1
2ρ

x∗, x) ≤ V(Jx +
1

2ρ
x∗, x′) + [α′ − α]2.

This ensures for λ = 0:

VX×R((Jx +
x∗

2ρ
, (α +

1
2ρ

(−λ))); (x, α)) ≤ VX×R((Jx +
x∗

2ρ
, (α +

1
2ρ

(−λ))); (x′, α′)),

for any (x′, α′) ∈ epi f ∩ [(x̄, f (x̄)) + ε0BX×R] , that is,

(x, α) ∈ πepi f∩[(x̄, f (x̄))+ε0BX×R]
(Jx +

x∗

2ρ
, (α +

1
2ρ

(−λ))))

Finally, we obtain from Case 01 and Case 02 two positive numbers ε0 and r0 := 1
2ρ such that for any

(x, α) ∈ epi f and (x∗,−λ) ∈ Nπ(epi f ; (x, α)) ∩ ε0BX×R and any x ∈ x̄ + ε0B, and | f (x̄) − α| < ε0,
we have:

(x, α) ∈ πepi f∩[(x̄, f (x̄))+ε0BX×R]
((Jx, α) + r0(x∗,−λ))).

This means by Definition 3 that the epigraph epi f is generalised V-prox-regular at (x̄, f (x̄)), and hence,
the proof is complete.
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