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Abstract: We consider a diffusion-wave equation with fractional derivative with respect to the time
variable, defined on infinite interval, and with the starting point at minus infinity. For this equation,
we solve an asympotic boundary value problem without initial conditions, construct a representation

of its solution, find out sufficient conditions providing solvability and solution uniqueness, and give
some applications in fractional electrodynamics.
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1. Introduction

Consider the equation

alX
(E)t‘" - Ax) u(x, t) = f(x, 1), 1)
where % denotes a fractional derivative with respect to t of order « € (0,2), and
noo92
Ar=) —,
! Z 0x?

is the Laplace operator with respect to x = (x1,xp,...,x,) € S C R™.

If « = 1, then Equation (1) coincides with the diffusion equation, and when & tends to 2,
this equation turns to the wave equation. Therefore, in the case under consideration (0 < a < 2),
this equation is usually called the diffusion-wave equation.

In recent decades, fractional diffusion-wave equations are studied very intensively. The first
works in this direction include [1-4]. Any close-to-complete analysis of the multitude of works devoted
to the diffusion-wave equation would require a separate special study. To give an idea of the variety
of problems considered for this type of equations, as well as the multiplicity of approaches to their
solution, we mention [5-30]. A brief overview is provided in [29]. A more detailed survey can be
found in the article [31] and monographs [32-34].

Interest in the study of this equation is caused by numerous applications fractional calculus in
modeling and various fields of natural science. In this regard, we recall the works [35-40].

The overwhelming majority of works devoted to fractional differential equations consider
fractional derivatives that are defined on finite intervals. Starting points of these derivatives, at which
initial conditions are specified, are finite. Equations with fractional derivatives on infinite intervals,
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with starting points at plus or minus infinity (usually associated with the names of Liouville, Weyl,
or Gerasimov), have been studied much less. A feature of such equations is that problems for them
do not require initial conditions. Instead, conditions can be imposed on the asymptotics of the
sought solutions at infinity. For parabolic equations, the study of problems without initial conditions
began after the publication of [41], and to this day, there is a large list of works in this direction.
As for fractional order equations, among works devoted to equations close to (1), we emphasize [42],
in which a fundamental solution of an evolution equation with the Liouville fractional derivative was
constructed, and a boundary value problem in the right half-plane was solved.

In this work, we consider Equation (1) with the Caputo-type fractional derivative with the starting
point at minus infinity. We solve an asympotic boundary value problem for this equation, construct
a representation of its solution, find out sufficient conditions providing solvability and solution
uniqueness, and give some applications in fractional electrodynamics.

2. Fractional Differentiation

The fractional derivatives of order { (0 < { < p, p € N) with respect to t, having a starting
point at t = s (—co < s < 0), in the Riemann-Liouville and Caputo senses, are defined by ([35]

(p- 11), [33] (§82.1))

or

_ of
557 th Pe(t) and

DS,g(t) = sign”(t —s) g (t) = sign’(t = s)D5 " =g (1),

respectively. Here, for ¢ <0, Dgt denotes the Riemann-Liouville fractional integral:

—p|—¢-1
Dig() =sign(t =) [ s Tl —a  @<0,  and  Dhg) =g @

In (1), the fractional differentiation is given by the Caputo-type fractional derivative defined on
infinite interval with the starting point at minus infinity, i.e.

t _ \ym—a—1 oM
ﬁu(x,t) = 0% u(x, t) = /_oo (tl“(riz)—oc) as—mu(x,s)ds (m—1<a<m, me{1,2}). (3)

As was noted in [31], partial differential equations with fractional derivatives of the form (3), apparently
for the first time, were studied by A.N. Gerasimov in [43]. Nowadays, they are increasingly called
Gerasimov—-Caputo derivatives.

3. Domain, Regular Solutions, and Problem

We consider the equation
(0%t = Ax) u(x, t) = f(x,1), (4)

in the domain
Qr =R"Xx (=00, T) ={(x,t): x eR", t € (—o0,T)}.

In what follows, m denotes an integer number equal to 1 or 2, chosen so thatm — 1 < a < m.

Definition 1. We call a function u(x,t) a reqular solution of the Equation (4) if: u(x,t) has continuous
derivatives with respect to t € (—oo, T) up to m-th order for any x € R"; (R — t)"=*~1(9™ /ot™u(x,t), as a
function of t, is integrable on (—oo, R) for any x € R" and R < T; in Qr, u(x, t) has continuous first- and
second-order derivatives with respect to x; (j = 1,n), and satisfies the Equation (4).

The problem we are going to solve is
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Problem 1. Find a regular solution u(x, t) of the Equation (4) in the domain Qb satisfying

ak
. kY — n — —
tErf‘mt atku(x,t) 0 (x e R", k=0,m—1). (5)
4. Preliminaries
Consider the function [16]
Lon(x,s) = Cnsﬁ(Z*”)*lf}g (\x|s*/3;n -1,B8(2- n)) (x eR", s>0). (6)
From now on N
1-n
‘B = E’ Ci’l = 2 nT[T,
and )
o B
iy R @i o,
fo(zp,0) = 2
¢ (—B,d—2), p=0,
where

o Zk
‘P(ﬂ/b}z):gm (a>-1)

is the Wright function [44,45].
It was proven in [16] that the Function (6) satisfies the inequalities

’Dgsl“a,n(x,s)‘ < Csﬁ(%”)*g*lgp <|x|57ﬁ) E (|x|sfﬁ,p) , (7)
) Bn—r— _ _
‘axjnésra,n(x,@ < Clayls ™ 1g, 0 (1xls™ ) E (Ixls~,p), ®)
and
0? Bn—r— _ _
|ax2Dgsl"a,n(x,s) < CsPn=¢ 1gq (|x|s ﬁ)E(|x|s 5,,0), )
]
where
) on for ¢ e NU{0}, ) n+2, for (eNU{0} or n=1,
P=Y n+2 for ¢ ¢ Nu{o0}, | n+4 for {ZNU{0} and n>2,
and
) 1 for n <3,
E(z,p) = exp (—sz‘), gn(z) =< |Inz|+1 for n=4
24 n for n >5,

C=C(nuap),p<(1- ,B),B%, and (by choosing C) p can be taken arbitrarily close to (1 — /3)[3%
Here and subsequently, the letter C stands for positive constants, different in different cases and,
if necessary, the parameters on which they depend are indicated in brackets: C = C(a, b, ...).
Moreover, assuming s < t, |[x —y| > 0, and { € R, we can assert (see [16] (§5)) that Ty ,(x —y, t —
s), as a function of x and ¢, is a solution of the equation

(D% — Ax) D5Tan(x —y,t —5) = 0; (10)
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and a solution of the equation
(Df — Ay) DETan(x —y,t—s) =0,
as a function of y and s. In addition, it is known that

(t— s)"‘_g_1

DETn(x —y, t — =
/R” st l’é,n(x yft S)dy l—v(a_g)

5. Solution Representation

For a function g(x, t), defined on Qt, we set

(Tr8) (£) = sup {g(x,tn exp (%H) } |

x€R” —t)za
Definition 2. We say that a function g(x, t), defined on Qr, belongs to the class T if
(Tpg) (t) < o0
for some p < (1 — [3)/5%, the same for all t < T. (Here, as elsewhere, = 5.)
Theorem 1. Letw € (0,2), m € {1,2}, « € (m —1,m], f(x, t) be locally integrable on Qr,
f(x,t) € Ty, (Tof) (t) € L(—oo, T —¢)  for any  €>0,

and

k k
%u(x, t) € Ty and tLiIEl tk (770 ;tku> () =0 (k=0m—1, t<T)

If u(x,t) is a regular solution of the problem (4) and (5), then
t
uGet) = [ [ FEmTanlx—gt—n)dedy,  (x) €O,

Proof. Consider the function

0(x,£:8,1) = Tan(x =Gt —mhe([x = PR (Ix=¢) (>0, r>1),

where
-5 (220, )2 :
he(z) = 30 [y s*(e—s)*ds  if z€0¢],
1 else,

and

1 if z<r—1,

W(z)=1 30 [/ (s—r+1)>(r—s)%ds if te[r—1,7],
0 else.

It is easy to check that
he(z), h(z) € C?[0,00); 0 < he(z), h'(z) < 1;

W(z)=h'(z) =0 for z>¢ and W'(z)=hW"(z)=0 if z¢ (r—1,r).

In what follows, we use the notations

Le, = (a"ioo,? - Ag) , Lgﬂ = ( Ry — Ag) , and LE,” = (D‘t",7 - Ag) ;

40f13

(11)

(12)

(13)

(14)
(15)

(16)
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and B} denotes an open ball in R"” with center at point x and radius r,
By={CeR": [x—¢| <r}.

By the notation (16), we can write

Loyu(@) = L&, + 8] u(@n), (17)

where

JRu(g,n) = 1—'(1711—0() /R (n —S)m_“_l%u(é,s) ds (7 > R).

—00

For r > 0and R < 0, both sufficiently large in absolute value, the formula of fractional integration
by parts (see, for example, [33] (p. 76)), (7), and (17) give

/Rt /Bgv(x,t,é,n) [f(é,n)—]Ru(Cfv)} dédn :/Rf /B;v(x,t,g,;y)Lgﬂu(C,q)dgdU —

! * = A a—k—1
= Jo Jy mEM et gndzay — ¥ [ Sgu@n) Dy o) | de as)

n=R
By (14) and (15), we obtain
t
[, [ n@mLs ot g ndzdy =

t t
= Jo Lo, EmBe gty = [ (@ mAGe- by dedy =

=R t-R
:/0 /‘a«[u(x,t)—u(x%-é‘,t— NA(E n) dédy — u(x,t) / /g| A(E, 1) dédn+

t
oL mE B =tz )

where
n

Z<a€]rmm et <|¢|>+rm<¢n>a§2 <|¢|>) (20)

=1

Z( M@n)ahf<¢|>+rm<¢n>a€2 <f:|>)

The estimates (7) and (8), and the condition (12) yields

t
lim [/ gy BB 8= ) dEdy =0, 1)

r—o JR
t—R
lim [ [ (e gt—n) —u(x ] y) dedy = 0,
e20J5 |g]<e
and
//g‘ A(G, )] dGd < oo,
where ¢ is a sufficiently small positive number. Therefore

“R
t u(x+ 8t — 1) — ulx, DA, ) didy| <

I¢]<e
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<C sup

|u(x+ & t—n)—u(x,t)] + O(e).
|¢]<e,7€(0,6)

The continuity u(x, t) in a neighborhood of (x,t) and an arbitrary choice of J imply that
lim
e—0

t—R
0 /|¢\<s[u(x +¢,t— 1) —u(x, )]A(g, 1) dgdy = 0.
Thus, (19), (21), and (22) give

t
. . % _ . n

lglgrlbngoflz /B§ u(g,m)Lz,o(x,t,¢,n)dddy = —u(x,t) 11_r>n](s) (xeR", R<t<T),
where

t—R
j@=[ [, A€

Let us compute lim,_,( J(¢). For short, we take the notation

t—R
galleh) = [ Tun(@mdn.
(Note that Ty (&, 1) is a function of || and #.) The formulas

9 _ 5
sehellz)

! " -1 !
=g, Aehelal) = n{(E) + S ni (gD,
14 1Y
and (see [16] (§85))
E;Z(jrvc,n(g/ 77) = _zngjrzx,n+2(€/ 77)
allow us rewrite J(¢) as
_ W' L_l

1= [ { [+

It is easy to see that

he (181 | gn(IED) —4ﬂ|€h§(|«§|)gn+z(lé)}d€.

hi(elw]) = ey (Jwl)

and
After a change of variable { = ew, we get

jo=e [ |z [min+®

! (elw]) = &2y ().

-1
S oD g ek = ek B (el gz (el e
The formula .,
2z 1
do = = [ (o) d
Joyo Flb e = o [T o) do
yields

6 of 13

(22)

(23)
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Integrating by parts gives

/01 [ 1)) g (e do = [ i () (e0)] ¢ /0'1 "y (0)g), (¢0) dor

Combining this with equality

gh(e0) = —27E%0 gupaeo),
we get
4£nnl+% 1
J© = "5 || " (018042 (e0) do
By
. n 2Cn+2r(n)
limz"g,12(z) = ————,
z—0 T (nTH)
we obtain . ()7
277" (n)/ 7T
TS e e A P
r(5+3)0(3)

Combining this with (18) and (23) leads to

(e, ) =t i [ [ ox,t,80) (&)~ Pue)] ded

e—0r—00

+ lim lim Z /Br [817 (&n)- Dfﬂ*kflv(x, t/g,n)l ac (xeR", R<t<T).

e—(Qr—ro0
n=R

We can rewrite JRu(&, 1) in the form

_Rmfafl aml maZaml
ful@n) = (Uf(m) ) L)sm 746 ] +/ —tx—l) osm—1 u(,s) ds
By (12), we have
69| < Cex e Y (T am_lu) () (s<R)
ds™— - P P(T —R)T= SJ; P 9sm—1

and consequently

N [k i,
’]RM(CIW)‘ <C(n—R) Lexp (PW> “sup <7;1 asml”> (s). (24)

This implies that

:/Rt /R Ton(x —&t—1) [f(éw)—]Ru(C,v)} d¢dn+

m—1 , ak
+ Z /n [aﬂku((,’,ﬂ) . Df‘n_k_ll"a,n(x — & t— 17)] d¢ (xeR", R<t<T).
k=0 " n=R

The proof is completed by showing that

t
fim / / Tan(x— &t — 1) - JRu(g,n)dédy =0 (25)

R——c JR JR
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and
Jim [ [aa;ku(m) DS (- & n)] L dE=0 (k=0m—1). (26
By (7) and (24) we get
/ t [ [Fan e =&t =) - Ru(@, )| dedy < €t = R)"sup (7; 5";1114) (s)
R JRr s<R S
and

e

These two inequalities and (12) prove (25) and (26). O

ok e
aiﬂku(é’n) : th k lrzx,n(x -G, t— ’7)

dé < C(t— R)F (TP aa:ku> (R)  (k=0,m—1).
=R

Remark 1. It should be noted that the conditions (12) combine (5) and the condition that restricts the growth
of a sought solution as |x| — oo, which is analogous of Tychonoff’s condition [41]. Thus, a function u(x,t)
satisfying (12) certainly satisfies (5), but the converse is not true.

6. Solution Uniqueness

Theorem 1 allows us to prove the uniqueness of the solution to the problem under consideration.

Theorem 2. Let o € (0,2). There is at most one regular solution of the problem (4) and (5) in the class of
functions that satisfy (12).

Proof. Let u1(x,t) and up(x,t) be two solutions of the Equation (4) corresponding to the same f(x,t),
and satisfy (12) (as well as (5) consequently). Then, one can conclude that the function v(x,t) =
up(x, t) — up(x, t) satisfies (12) and the homogeneous equation

(0% oot — Ax) v(x,t) = 0.
By Theorem 1, this means that v(x, t) = 0, i.e. ui(x,t) = up(x,t). O

7. Existence Theorem

It is worth noting that Theorem 1 does not state that any function of the form (13) is an a priori
solution to Problem 1. Here, we find out conditions for the right-hand side f(x, t), ensuring that (13) is
a solution to (4) and (5), and thereby proves the existence of the solution.

Theorem 3. Let a € (0,2), m € {1,2}, « € (m —1,m], f(x,t) be presentable in the form
f(x,t) = D=%,g(x,t) (6>m—u), (27)

where
g(x,t) € T,NC(Qr), (Tog) (1) <C(T—1t)7" (v>d+a), (28)

and f(x, t) be a locally Holder continuous in x € R" for any fixed t < T, namely, f(x,t) satisfy

e t) = fE D <CT—)" Vx =g (u>0). (29)

Then a function u(x,t) defined by (13) is a reqular solution to the problem (4) and (5).
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Proof. The formula of fractional integration by parts (see, e.g., [33] (p. 76)), (13) and (27) give

t
uet) = [ [ (&) Dy Tan(x =&t =) dzdy.

By (7) and (28), we have

L 8@ @ /0D Tl = &t = )| dE < CT = )~ =gyt (k=)

Hence

o g
St = [ [ g(@m) Dl Tau(x =t —n)dcdn, (30)

@ /ot )u(x,t) € C(Qr)  and ‘(ak/atk)u( )] < C(T—t)*0v=k  (k=0,m).
In particular, this proves that u(x, t) satisfies (5), and (R — t)"~*~1(3™ /9t")u(x, t) is integrable on
(—oo,R) as a function of t, R < T.

Thus, it remains to be proven that u(x,t), given by (13), satisfies (4). Using (11) and (30), we
can write

Pt 0) = D () = [ [, 8 1) Dl T = &t = ) dzdy =

)0‘—1

t _
—/ / 8(&,m) — g Cx, )] Dy ‘SI’a,n(xC,tn)dﬁdwfmg(x,n)%dﬂ~
Combining this with (2), (7), (27), and (29), we obtain
t
Pttt = [ [ FEm) = Fm] DyTan(x =&t =) dzdy + f(xe). (D
Now, let us consider the function
t—e
weot) = [ [ FEmTontx—gt—mdidy  (e>0).
By (9) and (29), we have

t—e
Meue(e, ) = [ [ @) ATz~ 8t — ) dzdy =

t—e

_/t € angﬂ) ( )]AXFM( —glt_ )dgdﬂ+

It follows from (10) and (11) that

fxq/ ATan(x — &t — 1) dedy.

/Rn AxTan(x — &t —1)dé = /R DETan(x — &t — 1) dE = 0,

Inequlities (8) and (29) also yield

L.

This allows us to conclude that

(@ m) = f(x,m)] (9% /9xF )T (x — &t — Tl)‘ dg < C(T — )"~V (t— )P,

Ayu(x,t) —hmAxuS (x,t) / /H (& n) )] AL an(x — &t —n)dédy.
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This and (31) prove that (13) satisfies (4). O

Remark 2. It is easy to see that if f(x,t) = 0fort < a(a < T), then u(x,t), defined by (13), is also equal to 0
for t < a. In this case, u(x, t) is a solution of the equation

(9ar — Ax) u(x, t) = f(x, 1)
in the layer R" x (a, T), and satisfies the zero initial conditions (3% /9t)u(x,a) = 0 (k = 0,m — 1).

8. Application in Electrodynamics

It is known that solutions of wave equations encountered in classical electrodynamics are usually
expressed in terms of retarded potentials (see, e.g., [46]). For diffusion-wave equation with fractional
derivative defined on a finite interval, an analogue of retarded potential was constructed in [47]. Here,
we give an approach based on an equation of the form (1).

Consider the Equation

( ® var) u(r,t) = f(r1), (32)

where r is the position vector, r € R3, t denotes the dimensionless time, and v is a constant with
the dimension of length. By u(r, f), we mean a scalar or vector potential, and f(r, t) is given by the
volumetric charge or current density.

The Formula (13) and an easy computation give the solution of (32), which has the form

r —

1 f !4l r/ / ! 34/
u(r,t):?/ioo R3f(r,t)1",¥,3 JE—t ) dedt.

(%

One can check that

1 24 o
r H=-——¢(—=,0—|r]t"2).
3 (I‘, ) 47T‘I'|t¢( 2/0/ |1“ )
This gives
1 , dr’
u(r/t)_47_[v2 ./Rsl:lx(rrr/t)m/ (33)
where

ot f(r’,t') Q 1 L
Fa(r,r’,t):/ioo o ¢<—2,0;—U\r—r’(t—t’) 2>dt'—

I VAT SN
= [T 2 (<50t vl E ) as

gives the distributed (non-local, blurred in time) delay.
The relation (33) is an analogue of the Kirchhoff formula for retarded potentials. It follows from
the properties of the Wright function (see [16] (Lemma 27)) that

/
lim E ///t — /,t—M ,
lim (', = f

[%

and, consequently,

_ 1 7 lr — 1| dr’
1 1) = 't — : 34
“1_>rr5u(r ) 47102.Raf<r v [r—r/| (4)

This means that the potential (33) takes the form of the classical retarded potential (see, e.g., [46] (§. 62)).




Mathematics 2020, 8, 2086 11 of 13

The Formula (33) gives a general form for retarded potentials in fractional electrodynamics based
on the Equation (32). It should be noted that in the stationary case (when charge or current density
does not depend on time), the potentials (33) and (34) coincide up to the factor

©1 (a1, e\, 1
‘/0 S(P<—2,0, Z]|I' r\s 2>ds_r(0(/2)

According to Remark 2, the Formula (33) is completely consistent with the results of [47]. Thus,
we can conclude that the use of fractional time derivatives is equivalent to a special time averaging
of the charge density or current, which allows us to take into account the influence of the external
environment.

9. Conclusions

In this paper, we construct a representation of solutions to an asympotic boundary value problem
for a diffusion-wave equation with fractional derivative with respect to the time variable. For fractional
differentiation, we use the Gerasimov—Caputo type fractional derivative, which is defined on an infinite
interval and has the starting point at minus infinity. The problems do not require initial conditions.
Instead, conditions are imposed on the asymptotics of the sought solutions at minus infinity. We prove
the uniqueness theorem and find out sufficient conditions ensuring the existence of solutions, including
smoothness properties and asymptotic behavior of the right-hand side function. It is shown that for the
uniqueness of the solution, additional conditions are required for the growth of the desired solution at
infinity. As applications, we discuss some questions of fractional electrodynamics.
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