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Abstract: In this paper we propose and compare two methods to optimize the numerical computations
for the diffusion term in a nonlocal formulation for a reaction-diffusion equation. The diffusion term
is particularly computationally intensive due to the integral formulation, and thus finding a better
way of computing its numerical approximation could be of interest, given that the numerical analysis
usually takes place on large input domains having more than one dimension. After introducing the
general reaction-diffusion model, we discuss a numerical approximation scheme for the diffusion
term, based on a finite difference method. In the next sections we propose two algorithms to solve
the numerical approximation scheme, focusing on finding a way to improve the time performance.
While the first algorithm (sequential) is used as a baseline for performance measurement, the second
algorithm (parallel) is implemented using two different memory-sharing parallelization technologies:
Open Multi-Processing (OpenMP) and CUDA. All the results were obtained by using the model in
image processing applications such as image restoration and segmentation.

Keywords: nonlocal reaction-diffusion equation; parallel processing; image processing

1. Introduction

Image processing tasks such as noise filtering, image deblurring and shape extraction (image
segmentation) are often based on partial differential equation (PDE) models; see, e.g., [1–3].

After Perona and Malik introduced an anisotropic diffusion model for image denoising [2],
their PDE-based model became a the starting point for numerous other derived models [3] which aim
to improve it. The nonlocal diffusion model is one of these derived models which in cases of image
restoration tasks aims to eliminate image blurring while preserving the edges and avoiding staircase
effect at the same time.

To introduce the nonlocal form of the reaction-diffusion equation, we consider (1) where v(t, x) is
the unknown function to be solved.

∂

∂t
v(t, x) =

∫
Ω

K(x− y)
[
v(t, y)− v(t, x)

]
dy +

∫
∂Ω

K(x− ys)w(t, ys)dys

+p1∇v(t, x) + p2
[
v(t, x)− v3(t, x)

]
+ f (t, x)

(1)

having the initial condition
v(0, x) = v0(x), (2)

The mathematical notations used in (1) and (2) have the following meanings:
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• T > 0 is the upper limit of time and Ω is the spatial domain in IR2, whose boundary ∂Ω is smooth.
The image being analyzed forms the input domain, Ω, and time is a synthetic variable used to
describe the iterative process;

• x, y ∈ Ω, ys ∈ ∂Ω and t ∈ (0, T];
• v(t, x) is the unknown function used to model the evolution of the image in time (after each

processing step). v0(x) is the initial data which in order to make possible the evolution of the
model in time are set to be equal to the pixel intensities of the input image that is analyzed;

• ∂
∂t v(t, x) is the partial derivative of v(t, x) with respect to t;

• K : IR2 → IR is a continuous nonnegative and symmetric real function, compactly supported in
the unit ball, and such that

∫
IR2

J(z)dz = 1;

• w(t, ys) describe the boundary control conditions;
• f (t, x) represents an external force for the system;
• p1 and p2 are model parameters, their values being tuned accordingly with the task (image

restoration or segmentation).

Equations (1) and (2) were qualitatively and quantitatively analyzed by T. Barbu, A. Miranville
and C. Moroşanu in [1,4]; well-posedness and numerical convergence were covered in [4].

Applications to image restoration were well studied in [1], wherein a local form of a newly
introduced anisotropic diffusion system was used. This model can also be seen applied to image
processing and other domains in [2,3,5,6]. In [7] we described a numerical approximation for a similar
model applied to a 3D input domain but having fewer experimental results.

In this paper we are working on providing a numerical approximation scheme for the diffusion
term and analyzing several implementation methods to achieve better time performance for the
computations required by the numerical approximation.

We are focusing on studying the nonlocal diffusion term, because in our experiments we noticed
it is the one that has the biggest impact on the time complexity of the entire model. We will denote the
nonlocal diffusion term as ND, and its expression is given by (3).

ND(x, t, v) =
∫
Ω

K(x− y)
[
v(t, y)− v(t, x)

]
dy +

∫
∂Ω

K(x− ys)w(t, ys)dys (3)

From the computational point of view, the ND term will most often lead to intense computational
requirements given the two integrals that need to be evaluated and that usually, in practical
applications, Ω is a large domain.

2. Numerical Approximation

To numerically evaluate the expression in (3) we are going to use a finite difference method as
described in [8]. In our evaluation we will also use the initial conditions set in (2).

The space domain, Ω, will be considered to be a rectangle starting at origin having a length
L and width W. Given our specific application to image processing, the space domain represents
the dimensions of the image that would be analyzed. The time domain will be set to an interval
such as [0, T]. Setting the time and space domains to start at 0 is not limiting the theoretical nor
experimental results.

We will divide the space domain (Ω) into a grid with step h, transforming it into a discrete domain
Ωh containing the elements xi,j = (ih, jh) where 0 ≤ i ≤ I and 0 ≤ j ≤ J with I = W/h and J = L/h.

In a similar manner, the time domain ([0, T]) will be divided by a time step ε, transforming it into
a discrete time interval consisting of moments given by: tm = mε where 0 ≤ m ≤ M with M = T/ε.

By setting a specific time moment tm ∈ [0, T] and a space point xi,j ∈ Ωh, (3) becomes (4).

NDm+1(xi,j, tm, vm) =
∫

Ωh

K(xi,j − y)
[
vm(tm, y)− vm(tm, xi,j)

]
dy +

∫
∂Ωh

K(xi,j − ys)wm(tm, ys)dys (4)
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where v computed at moment tm is denoted by vm and v0 is set by initial condition in (2).
We will also denote vm

i,j by v(tm, xi,j) and consider the first integral in (4) as a double integral over
rectangle domain Ωh. By using Riemann sums to approximate the integrals, we get the approximating
expressions for the two integral terms in (4), as seen in (5) and (6).∫

Ωh

K(xi,j − y)
[
vm(tm, y)− vm(t, xi,j)

]
dy =

h2

{ I−1

∑
d1=1

J−1

∑
d2=1

K(xi,j − yd1,d2)
(

vm
d1,d2
− vm

i,j

)

+ 1
2

I−1

∑
d1=1

[
K(xi,j − yd1,0)

(
vm

d1,0 − vm
i,j

)
+ K(xi,j − yd1,J)

(
vm

d1,J − vm
i,j

)]

+ 1
2

J−1

∑
d2=1

[
K(xi,j − y0,d2)

(
vm

0,d2
− vm

i,j

)
+ K(xi,j − yI,d2)

(
vm

I,d2
− vm

i,j

)]

+ 1
4

[
K(xi,j − y0,0)

(
vm

0,0 − vm
i,j

)
+ K(xi,j − yI,0)

(
vm

I,0 − vm
i,j

)
+K(xi,j − y0,J)

(
vm

0,J − vm
i,j

)
+ K(xi,j − yI,J)

(
vm

I,J − vm
i,j

)]}

(5)

The second integral term is computed along the frontier of Ωh.∫
∂Ωh

K(xi,j − ys)w(tm, ys)dys =

h

{ I−1

∑
d1=1

[
K(xi,j − yd1,0)wm

d1,0 + K(xi,j − yd1,J)wm
d1,J

]

+

J−1

∑
d2=1

[
K(xi,j − y0,d2)w

m
0,d2

+ K(xi,j − yI,d2)w
m
I,d2

]

+K(xi,j − y0,0)wm
0,0 + K(xi,j − yI,0)wm

I,0 + K(xi,j − y0,J)wm
0,J + K(xi,j − yI,J)wm

I,J

}
(6)

The integral in (5) is computed as a sum of volumes generated around each Ωh node (see Figure 1)
by multiplying the surface assigned to the respective node with integrated function’s value at the node
(see Figure 2). At the edges of Ωh the nodes are assigned halves or quarters (for corner nodes) of the
area which is regularly assigned to an interior node.

The integral on Ω’s boundary in (6) is computed as a sum of areas generated around each Ωh
frontier node by multiplying the segment (of length h) assigned to the respective frontier node with
the integrated function’s value at the frontier node. All nodes on Ω’s frontier will be matched with
segments of same length, h.
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Figure 1. Example of 2D Ω discretization using a 6× 6 grid with step h.

Figure 2. Computing the integral term in (5) as a sum of volumes.

We used the following kernel function for all our experiments: Kσ(x, y) = 1
σ e−

x2+y2

σ2 , which is
symmetric and even on IR2.

3. Algorithms and Implementations

We propose two methods for accelerating the computations, first by using parallel computation on
multiple CPUs, and secondly by using dedicated hardware, in this case nVidia GPUs, to parallelize the
computations. We also introduce a variation for all computation methods derived from an observation
made about the nature of the kernel function K.
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The sequential algorithm which will be used as a basis to develop the parallel versions is detailed
in Algorithm 1.

Algorithm 1: Nonlocal diffusion sequential algorithm.
Input:

• v = {vi,j| 0 ≤ i ≤ I, 0 ≤ j ≤ J} are the values of unknown function v for a specific time

moment, for first iteration the values will be set to intensities of the pixels in the image

to be analyzed
• w = {wi,j| 0 ≤ i ≤ I, 0 ≤ j ≤ J} are the values of control function w at a given time step,

it will be set only for the pixels belonging to Ω’s frontier
• I + 1 is the number of pixels on width (d1 in Figure 1)
• J + 1 is the number of pixels on height (d2 in Figure 1)
• h is the grid step

Output:

• nd is a (I + 1)× (J + 1) matrix containing ND values computed for a specific time step (4)

1 function NDSequential(v, w, I, J, h)
2 for i = 0 to I do
3 for j = 0 to J do
4 for d1 = 0 to I do
5 for d2 = 0 to J do
6 kval ← K((i− d1) ∗ h, (j− d2) ∗ h)
7 vdi f f ← v[d1][d2]− v[i][j]
8 if (d1, d2) is internal pixel then
9 nd[i][j]← nd[i][j] + h2 ∗ kval ∗ vdi f f

10 else if (d1, d2) is edge pixel then
11 nd[i][j]← nd[i][j] + h2

2 ∗ kval ∗ (vdi f f + w[d1][d2] ∗ 2
h )

12 else if (d1, d2) is corner pixel then
13 nd[i][j]← nd[i][j] + h2

4 ∗ kval ∗ (vdi f f + w[d1][d2] ∗ 4
h )

14 return nd

In the first two loops (lines 2 and 3), the algorithm will go over each pixel (i, j) in Ωh and compute
the sum of volumes over entire input space. As (i, j) changes, the function which is integrated changes
as well; this is due to the xi,j parameter under the integrals. The volumes which will be summed over
Ωh will have different values depending on the current (i, j) pair.

The sum of volumes itself is a result of the two inner loops (lines 4 and 5). We need to set apart
the volumes for all internal pixels from the volumes of pixels found on the image margins, which are
computed differently—take into the account the smaller area assigned to them and the conditions at
the frontier represented by the control function w(t, x).

The sequential algorithm has a time complexity order of O(I2 J2); if we consider the image which
is analyzed to be of a square form (where I = J = N), the time complexity order would be O(N4).

The parallel algorithm is obtained by scattering the iterations on lines 2 and 3 in Algorithm 1
between all the processors (see Algorithm 2).
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Algorithm 2: Nonlocal diffusion parallel algorithm.
Input:

• v, w, I, J, h: see Algorithm 1

Output:

• nd: see Algorithm 1

1 function NDParallel(v, w, I, J, h)
2 for each pixel (i, j) in v parallel do
3 for d1 = 0 to I do
4 for d2 = 0 to J do
5 kval ← K((i− d1) ∗ h, (j− d2) ∗ h)
6 vdi f f ← v[d1][d2]− v[i][j]
7 if (d1, d2) is internal pixel then
8 nd[i][j]← nd[i][j] + h2 ∗ kval ∗ vdi f f
9 else if (d1, d2) is edge pixel then

10 nd[i][j]← nd[i][j] + h2

2 ∗ kval ∗ (vdi f f + w[d1][d2] ∗ 2
h )

11 else if (d1, d2) is corner pixel then
12 nd[i][j]← nd[i][j] + h2

4 ∗ kval ∗ (vdi f f + w[d1][d2] ∗ 4
h )

13 return nd

In Algorithm 2, on line 2 (parallel do), the computations done for each pixels are being sent to all
available processors to be evaluated in parallel. We are able to parallelize the computations in this
way due to the independent nature of the computations done in inner loops (lines 3 to 12). In order to
evaluate nd[i][j], the computations do not depend on any other nd[k][l] values, where i 6= k and j 6= l.

To further improve the performance, in both sequential and parallel cases, one can notice that
if kernel function, K, is an even function, meaning K(−x,−y) = K(x, y) for any x, y ∈ IR, we need
to compute K((i − d1) ∗ h, (j − d2) ∗ h) where (i − d1) and (j − d2) vary between 0 and I and 0
and J respectively. This fact allows us to precompute kernel function values and store them in an
(I + 1)× (J + 1) matrix.

To precompute the kernel function values we use Algorithm 3. By introducing the precomputed
K values into sequential Algorithm 1 and parallel Algorithm 2, we can rewrite them to receive a
new input parameter k and use them to replace the kernel function computations on lines 6 and 5
respectively. The updated algorithms are listed in Algorithms 4 and 5 respectively.

For experiments, we implemented the parallel algorithms using two different technologies,
namely: OpenMP and CUDA. The first technology uses multiple CPUs and threads to implement
parallelism, whereas the second one needs special hardware (GPU) to run tasks in parallel.
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Algorithm 3: Precomputed K function values.
Input:

• I, J, h: see Algorithm 1

Output:

• k is a (I + 1)× (J + 1) matrix containing precomputed K function values

1 function precomputeK(I, J, h)
2 for i = 0 to I do
3 for j = 0 to J do
4 k[i][j]← K(i ∗ h, j ∗ h);

5 return k

Algorithm 4: Nonlocal diffusion sequential algorithm using precomputed K.
Input:

• v, w, I, J, h: see algorithm 1
• k, the precomputed K function values

Output:

• nd: see Algorithm 1

1 function NDSequentialPK(v, w, k, I, J, h)

2 for i = 0 to I do

3 for j = 0 to J do

4 for d1 = 0 to I do

5 for d2 = 0 to J do

6 kval ← k[abs(i− d1), abs(j− d2)]

7 vdi f f ← v[d1][d2]− v[i][j]

8 if (d1, d2) is internal pixel then

9 nd[i][j]← nd[i][j] + h2 ∗ kval ∗ vdi f f

10 else if (d1, d2) is edge pixel then

11 nd[i][j]← nd[i][j] + h2

2 ∗ kval ∗ (vdi f f + w[d1][d2] ∗ 2
h )

12 else if (d1, d2) is corner pixel then

13 nd[i][j]← nd[i][j] + h2

4 ∗ kval ∗ (vdi f f + w[d1][d2] ∗ 4
h )

14 return nd
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Algorithm 5: Nonlocal diffusion parallel algorithm using precomputed K.
Input:

• v, w, I, J, h: see Algorithm 1
• k, the precomputed K function values

Output:

• nd: see Algorithm 1

1 function NDParallelPK(v, w, k, I, J, h)

2 for each pixel (i, j) in v parallel do

3 for d1 = 0 to I do

4 for d2 = 0 to J do

5 kval ← k[abs(i− d1), abs(j− d2)]

6 vdi f f ← v[d1][d2]− v[i][j]

7 if (d1, d2) is internal pixel then

8 nd[i][j]← nd[i][j] + h2 ∗ kval ∗ vdi f f

9 else if (d1, d2) is edge pixel then

10 nd[i][j]← nd[i][j] + h2

2 ∗ kval ∗ (vdi f f + w[d1][d2] ∗ 2
h )

11 else if (d1, d2) is corner pixel then

12 nd[i][j]← nd[i][j] + h2

4 ∗ kval ∗ (vdi f f + w[d1][d2] ∗ 4
h )

13 return nd

3.1. Details on OpenMP Implementation

OpenMP (Open Multi-Processing) is an application program interface implemented by most of the
modern C/C++ compilers which allows for fast development of portable multi-threaded applications
based on shared memory (see [9,10] for more details).

In a shared-memory model all threads have access to the globally shared memory and may have
private memory allocated as well. While shared data are accessible by all threads, the private data are
only visible locally to the threads. Synchronizing threads’ access to shared memory needs to be taken
into account at coding time.

In our implementation we used an OpenMP directive called “parallel for” to parallelize the loop
on line 2 in Algorithm 2. At run time this will result in having multiple threads running different
iterations at the same time. The number of threads used is configurable and in our case was set to
eight to match the number of logical processors we had running for our experiments.

3.2. Details on CUDA Implementation

A graphical processing unit (GPU) provides more processing power than a similarly priced
CPU. We used an nVidia GPU and CUDA programming framework which nVidia describes as being
“a general purpose parallel computing platform and programming model that leverages the parallel
compute engine in nVidia GPUs to solve many complex computational problems in a more efficient
way than on a CPU” (see [11]).

A program written in CUDA, referred as a kernel, is executed by multiple threads on specialized
hardware. A main thread, running on the host CPU, will prepare the input data and load it together
with the kernel onto the GPU. After the loading takes place, the main thread will trigger the massive
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parallel execution of the kernel on the GPU. Massive parallel execution means thousands of threads
running the kernel at the same time.

While OpenMP has a flat thread model, in CUDA there is a logical hierarchy for threads
organization in blocks of threads and grids. The blocks of threads are logically organized to have up to
three dimensions. For our specific implementation, because the model is defined on a 2D domain and
we were analyzing images, we chose to define 2D thread blocks of size 32× 32 to use the maximum
size of 1024 threads per block.

Just like in the OpenMP case, CUDA implements a shared memory model too. In CUDA there
are more levels of memory that threads can use: private memory to every thread (local to thread),
shared memory between threads (local to a block) and global shared memory accessible by all threads
in all blocks. The access time decreases going from private to global shared memory.

Physically, GPU memory is separate from the host memory, used by the CPU, and it is called
device memory. Before starting the parallel execution of code on the GPU, the input data are copied
from host memory to device memory. Computations’ results are also copied from device memory to
host memory in order to be accessible by the main host thread. This is a performance overhead which
is included in our experimental results in next section.

According to Algorithm 2, the diffusion implementation in CUDA will have a thread assigned to
each input image pixel. A specific thread will do all the necessary computations to complete a parallel
block (see Algorithm 2, lines 3 to 12).

4. Experiments

For experimenting we implemented the sequential algorithm in C++ using the GCC compiler
(version 9.3.0) and the parallel algorithms using both OpenMP on the same GCC compiler and CUDA
using NVCC compiler (version V10.1.243).

For testing we used grayscale images of sizes: 128 × 128, 256 × 256, 512 × 512 and
1024× 1024 pixels.

The sequential experiments were run on an Intel i7-7700 CPU at 3.60 GHz, using only one logical
processor. Parallel CPU experiments (implemented in OpenMP) were run on the same CPU, only we
used eight logical processors for the task. The third type of experiment consisted of using an nVidia
GPU: Tesla P100-PCIE-16GB. In this case we implemented the parallel algorithm in CUDA using single
precision (see [12,13] for image processing using CUDA).

The calculations to precompute kernel function were done on a CPU for all testing scenarios.
We experienced short computational times for this task (under 1 second) and did not consider it to
need any improvement by implementing it on a GPU.

Simulation results are presented in Tables 1–4. In the first table for relatively small images
(128 × 128 pixels) the parallel GPU implementation results are comparable to parallel CPU ones,
while the sequential implementation results are already a few orders of magnitude worse than parallel
ones.

In Table 2 the performance gap starts to be bigger as we increase the input domain size
(256× 256 pixels). This trend is even more accentuated if we look at the results in Tables 3 and 4
where the input domain size increased to 512× 512 and 1024× 1024 respectively.

We can see a plot of the data in Tables 1–4 in Figure 3. As expected, the GPU implementation
performed very well, obtaining better results by a factor of up to 103 (see Figure 4).

Precomputing kernel function values led to some performance improvements—although not
decisive ones—especially for bigger input domain sizes.

Looking at the performance improvement factors in Figure 4 we see that the parallel
GPU implementation is clearly superior to both sequential and parallel CPU implementations.
The improvement that parallel CPU implementation brings over sequential implementation is
negligible compared to the improvement that parallel GPU implementation brings over any of the
other two implementations.
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Table 1. Time comparison for the three diffusion algorithm types running on a 128× 128 image.

NDSequential NDParallel NDParallelGPU

Regular implementation
running duration (in sec) 5.29 1.16 0.03

Using precomputed K values
running duration (in sec) 2.23 0.52 0.02

Table 2. Time comparison for the three diffusion algorithm types running on a 256× 256 image.

NDSequential NDParallel NDParallelGPU

Regular implementation
running duration (in sec) 89.62 20.19 0.21

Using precomputed K values
running duration (in sec) 36.60 8.31 0.09

Table 3. Time comparison for the three diffusion algorithm types running on a 512× 512 image.

NDSequential NDParallel NDParallelGPU

Regular implementation
running duration (in sec) 1683.06 354.09 1.77

Using precomputed K values
running duration (in sec) 771.79 169.53 1.22

Table 4. Time comparison for the three diffusion algorithm types running on a 1024× 1024 image.

NDSequential NDParallel NDParallelGPU

Regular implementation
running duration (in sec) 26917.50 5954.42 25.54

Using precomputed K values
running duration (in sec) 14812.90 3148.71 19.11
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Figure 3. Running durations for all algorithms.
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Figure 4. Improvement factors for the three algorithm types.

5. Conclusions

We introduced a discretization method for a nonlocal reaction-diffusion model applied to
a 2D input domain. We also studied three ways of improving the performance for numerical
approximation computation compared to a basic sequential implementation.

The experiments show that better performance was obtained using massive parallelization given
by the CUDA implementation. While this was in fact what we expected to see, the factor of 103 times
better results compared to the best result we could obtain with a CPU sequential implementation,
demonstrates that GPU implementations in numerical simulations in general, and for computing
integrals in particular, are highly recommended. At the same time, our results show that in cases in
which GPU implementations cannot be used, for different reasons, CPU parallel implementations can
bring decisive performance improvements as well.

We choose to use shared-memory parallelization standards (OpenMP and CUDA) due to the
fine granularity of the calculations involved in our discretization model. In the parallel algorithms
we compute numerical values attached to the pixels in a given input image. Should we choose to
use a message passing standard (like MPI) to parallelize the computations on distributed multi-core
systems, in this case the data transfer between nodes would be an important penalty to performance.
This is because the computed values for each pixel depend on values computed for all other pixels in
the image at the preceding time step, so all computing nodes should communicate data to all other
computing nodes in the cluster at each time step.

Further improvements to our implementation, which could be discussed in a future article, can be
achieved by implementing better memory management in cases of parallel algorithms on CUDA.
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