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1. Introduction

In the nonlinear analysis field, the fixed point technique is used to solve many mathematical
problems as it is involved in differential and integral equations, integro-differential equations,
fractional calculus, and other disciplines of science and technology; see [1-7].

In the finite-dimensional spaces, this technique was created by Brouwer [8] and is known as
“Brouwer’s fixed point theorem (FPT)”. In 1922, the existence and uniqueness of this technique were
studied in a contraction mapping via a complete metric space, known as the “Banach contraction
principle [9]”. From this moment, the technique acquired special elegance and entered many important
applications. For infinite-dimensional spaces under the stipulation of compactness on a set and
equivalently on the operator, the results of Brouwer were generalized by Schauder [10].

A measure of noncompactness (MNC) is a very important tool in non-linear functional analysis,
especially when dealing with metric and topological fixed point theory. In 1930, Kuratowski first
introduced an MNC in [11] as follows:

0(E) =inf{w > 0: E C UL & withdiam(5)) <@, 1 <1 <m < oo},
where &, is a bounded set and diam (&) is defined by:
diam (2;) = sup {d(el,fz) 002 e E,} .

To discuss the existence of fixed point theorems (FPTs) via an MNC for condensing operators,
a nice paper was written by Darbo [12]. His results are a generalization of the classical Banach and
Schauder FPTs, and he used the theoretical study to present the solutions to differential and integral
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equations. For more published papers that generalized the results of Darbo and more applications,
see [13-19].

Darbo’s FPT was generalized to coupled and tripled fixed points (FPs) by Rashan [20] and
Karakaya et al. [21], respectively. Motivated by these results, here, we generalize Darbo’s FPT, and as a
consequence, we obtain the existence of QFPs. Here, we use the following symbols:

e Viaanorm ||.||, Z refers to a Banach space (BS),

e  Atthe center /! and radius €, S(¢!,¢€) is a closed ball,

e  The algebraic operations on sets take the form »Q and Q + P, where P,Q € Z and » € R,
e  Q refers to the closure of a set Q,

e c0(Q) and co(Q) stand for the convex hull and closed convex hull of Q, respectively,

e  ©7z symbolizes the collection of all bounded nonempty subsets of a BS Z,

o @lz is a subfamily composed of all relatively compact subsets of Z,

e  Hisanonempty, closed, bounded, and convex (NCBC) subset of a BS Z.

In this manuscript, the existence of the solution of nonlinear functional integral equations in
the Banach space under the technique of a measure of noncompactness is obtained. Furthermore,
some quadruple fixed point results that generalize Darbo’s fixed point theorem are given. Ultimately,
some examples to illustrate our study are included.

2. Preliminaries

Now, we recall some of the elementary useful results in our study.

Definition 1. [22] A function U : @7 — [0, +00) is called an MINC in Z if the stipulations below are fulfilled:

(i) The family ker(U) = {Q € @7 : U(Q) = 0} # @ and ker(V) C ©;

(ii) ifQC P, then5(Q) <U(P);

(iii) B(Q) =0V (Q);

(i) O (c0Q) = T(Q);

(v) forall te [0,1],5(nQ+ (1 —m)P) = 70 (Q) + (1 — m)U(P);

(vi) iflimy—eo U (Qn) = 0, where Q, € Oy is a sequence of closed sets so that, forn € N, Qu11 C Qp,
then Qoo = N5 1Qn # @.

Note that ker(U) mentioned in (i) is called a kernel of an MNC U, and Q. described in (vi) is an
element of the collection ker(U). Furthermore, we can see U (Qs) = 0 because U (Qw) C U (Qy) for
all n. Thus, Qw € ker(U).

Definition 2. [23] Assume that Q and P are two BSs; the mapping S : Q — P is called compact if for any
bounded subset Y in Q, 3(Y) is relatively compact in P.

Theorem 1. [10] Let E be an NCBC subset of a BS Z. If the map S : & — E is continuous and compact, then it
has one FP on E.

Theorem 2. [12] Assume that & is an NCBC subset of a BS Z and S : E — E be a continuous mapping so
that 0 < 6 < 1and:
G(3Y) < 00(Y),

for each non-empty subset Y of &. Then, on E, 3 has an FP.
The idea of coupled fixed points and mixed-monotone functions in partially ordered metric spaces

was first introduced in paper [24]. Under abstract spaces, some main consequences in the same lines
have been incorporated (see, for example, [25-29]).
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Definition 3. [24] We say that ({1, (%) € Z? is a coupled FP of the mapping S : Z> — Z,if S (¢4, %) = (1
and  (62,0Y) = (2.

Lemma 1. [30] Assume that 01,01, ..., Oy are an MNC in BSs Z1, 25, ..., Zy, respectively. Consider a convex
function K : [0,00)" — [0,00) so that K (¢, ¢2,...,0") = 0iff ¢ = 0, Vi = 1,2, ..., n. Therefore, an MNC in
Z1 X Zy X ... X Zy is defined as follows:

O(Y) =K(01(Y1),02(Y2), ..., Bn(Yn)) ,
for a natural projection Y; of Y into Z;.
Here, if Y # @ is a subset of Z/, where Z is a BS, we shall write that Y; refers to the image 77;(Y)
fori=1,2,..,n, where 7t (€1, 02,..,0)) = ¢, (¢}, 0%,.., 0)) € Y.

The following family of functions was introduced by Roshan [20]:

Definition 4. Suppose that ¥ is a family of all functions ¥ : RZ. — R, with usual order relation “<” on
RZ =Ry x Ry as (61, 02) < (T4, 72) iff 2 < T and £ < 7 satisfying the stipulations below:

e the function  is nondecreasing and continuous on R? ;
o foralll >0,y((,0) <
o forall {¢,7:i=1,2} € Ry,

%4’ (e1,) + %t/) (7)< (” *2_‘1, 62;12) .

Theorem 3. [20] Let = be an NCBC subset of a BS Z and U be an arbitrary MNC on Z. Consider U* as in
Lemma 1 and € Y. Assume that S : E? — Y? is a continuous function satisfying:

G (3(Y)) = » (U*(Y),0°(Y)),
for any non-empty subset Y of & x E. Then, S has an FP.

In 2011, triple fixed points (TFPs) were initiated in [21,31] for self-mappings in partially ordered
metric spaces and condensing operators in Banach spaces. Nice results are given by these points.
For instance, see [32-35].

Definition 5. [21,31] Assume that S : Z% — Z is a given mapping. We say that (€1, 02,03) € Z3 is a tripled
FPof S, if S (€1, 02,03) = 01, 3 (62,83,0Y) = 02, and 3 (3,01, 02) = (3.

Karapinar [36] initiated the idea of quadruple fixed points (QFPs) as a generalization of TFPs.
He presented some fixed point results on the topic. Following this study, a QFP is upgraded, and some
related fixed point consequences were shown in [37-40].

Definition 6. [36] Assume that S : Z* — Z is a given mapping, we say that (€1, 02,03,0%) € Z3 isa QFP of
S, if (08, 02,03, 0%) = 01, S (02, 03,04, 01) = 02,3 (03,04, 01, 02) = (8, and S (€4, 01, 02, 03) = (4.
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3. Results

We begin this part with the important examples as a result of Lemma 1 as follows:

Example 1. Suppose that O isan MNConaBS Z, K : ]Ri — Ry is a convex function, and K (61, 02,03, 24) =
0iff ¢/ =0,Yj = 1,2,3,4. Then:

G7(Y) = K(B(11),0(Y2),6(Y3), 0(Ys))
definesan MNC in Z* = Z x Z x Z x Z.
Example 2. Assume that U is an MNC on a BS Z, K : RY — R, is a convex function defined by
K (01, 02,03, 04) = fﬂ'. Then:
]
G7(Y) = 0B(Y1) + 0(Y2) + O(Y3) + 5(Yy)
defines an MNC in Z*.

Example 3. Assume that U is an MNC on a BS Z, K : R4 — Ry is a convex function defined by
K (01, 02,03, 0%) = max{ 1, (2, (3,0} for all (€, 02,03,0%) € RY. Then:

G*(Y) = max{0(Y1),0(Y2),0(Y3), 5(Ya) }
is an MINC in the space Z*.
The functions below are more general than the functions of Roshan [20].
Definition 7. Assume that * <" is an order relation defined on R4 by:
(26,0 < (WP it <, A< P A< Pand £ <
Assume that R is the family of all functions ¢ : RY — Ry, verifying the stipulations below.

Ry. the function ¢ is nondecreasing and continuous on R% ;

Ro. foralll >0, ¢(L,0,0,0) < ¢;

Rs. forall 1,02, 08,04 € Ry, @ (01,02, 03,04) = o (02,03, 0%, 01) = @ (L3, 04,01, 0%) = o (¢4, 01, 02, 03);
Ry forall {0/, 7V, pl,ul :j=1,2,3,4} € Ry,

1 1 42 43 p4 1 1 92 93 —4 1 1.2 .3 4 1 1.2 .3 4
10 (20 8) + 29 (TR TT) + 50 (P12 00 + g0 (2 ut)
(e1+71+p1+u1 C+P+p?+u? B+ TP+ pd+u £4+-I4—|—p4—|—u4)

< 4 7 7
- 4 4 4 4

For example, all functions below are members of ¢ :

e ¢ (El,éz, 23, 84) = 10 + 0% + a303 + a, 0%, for all 0 < ay,ay,a3,a4 < 1so that Ya<l,

4
j=1

o @ (02,604 =In (14 LY
o (B =1 (02451,
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Theorem 4. Assume that & is an NCBC subset of a BS Z and U is an arbitrary MNC on Z. Consider U* as in
Example 1, and ¢ € R. Suppose that S : E* — E* is a continuous function verifying:

G (3(Y)) < ¢ (B7(Y), 07(Y),G7(Y),0%(Y)), 1)

for any non-empty subset Y of Z*. Then, I has at least one FP in 5*, and the set of all FPs of 3 is compact.

Proof. Consider By = Z*, and define a sequence B, = co¥ (B,—1),n € N.
Firstly, we note that:

U* (Byi1) = U (

|
>

*
¢ g
=
=

)

IN
)
G
*
o
\=_/
G
*
o
\3_/
G
*
o
i/
G
*
o
E/

&

Secondly, B = c0 (S (By)) = @o (
then B, C $B;,_1, which leads to:

(%)) c Y* = By; similarly, B, C B;. Now, if B, C B,_1,

SBy U Bysq =0 (3 (Bn)) C 0 (S (Bu_1)) = By

Hence, we conclude that the sequence U* (B,) is a non-increasing of R; thus, there is a constant £ > 0
so that lim;,_,o, UO* (B;) = £. We shall illustrate that ¢/ = 0. Let us suppose that £ > 0. Then, it holds
by (2), and we get:

¢ = lim U* (Byi1)

n—o0

Jim @ (57 (Ba), 5 (Ba), 0" (Ba), " (Ba)

IN

IN

o (Jim 0" (Bo), fim " (By), im, () fim, 0" (B))
@ l,L,0,0) <,

which is a contradiction; so, we get lim,, o O* (B,) = 0. Since B,,11 C By, then by the stipulation (vi)
of Definition 1, we obtain that B, = NS By is an NCC, invariant via , and contained in ker(U*).
Thus, Theorem 1 tells us that the mapping S has an FP in Be..

Next, assume that V is the set of all FPs of 3. If §*(V) > 0, then by (1), one can write:

G (3(V)) <9 (U7°(V),6°(V),67(V),6°(V)) <O(V), ®)

which is a contradiction since (V) = V. Thus, U*(V) = 0, and this leads to the fact that V is
relatively compact.

Finally, consider {¢1} C V to be a convergent sequence so that £, — ¢!, and since By is closed,
then we get ¢! € By. Furthermore,  is continuous, so we can write 6,11 = \sé}q — fland St = A2,
which leads to ¢! € V. Therefore, V is a compact set. [

Remark 1. Theorem 4 is valid if we replace the stipulation (1) by the conditions below: For all

4

0<ay,ay,a3,a4 <1,s0that Y aj <1,

j=1

e ¢ (U*(Y),0%(Y),0"(Y),0"(Y)) = ;U0*(Y) + a20*(Y) + a3U0*(Y) + a,U*(Y);
e thereisa function A : Ry — [0,1), so that A(u,) — 1 implies u,, — 0 and:

¢ (07(Y),0°(Y),G7(Y),0°(Y)) = a1A(G°(Y)) G (Y) + a2 (G7(Y)) B(Y)
+a3A (U*(Y)) B*(Y) + agA (U (Y)) U (Y);
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e there is an upper semi-continuous and non-decreasing function ¢ : Ry — Ry so that o(v) < v forv >0
and:

¢ (O7(Y), 67(Y),5°(Y), 57(Y)) = a1¢ (U7(Y)) + a2¢ (G7(Y)) + az¢ (U7(Y)) + a4¢ (G*(Y)) .

Now, the results concerned with the QFP of a mapping 3 become valid for discussion.

Theorem 5. Assume that & is an NCBC subset of a BS Z. Let U be an arbitrary MNC on Z. Assume a
continuous function ; : Y -5 5 Vi=1,2734 verifying:

O(Si(8) < ¢ (BN, B), B(¥), x(vh), @

where ¢ € R, and for any non-empty subset Y1, Y2, Y3, Y* of Eand A = Y x Y2 x Y3 x Y*. Then, there is
an element (ﬁ*l,é*z, €*3,£l4> € B4, so that:

A (6*1,6*2%*3, 6*4) L 2= 3, <£*1,€*2, 6*3,£*4> )
3 — Sa (5*1,5*2,5*3, 6*4) - Sy (g*l/g*zl 6*3,5*4) ‘
Proof. Define the operator X : E* — E by:
R (51,52,43,44) - (%1 (41,42,53,134) .Sy (61,62,£3,€4) , S5 (el,gz,ﬁ,ﬂ) L9y (51,42,43,44)). )
It follows from Example 2 that:
U'(Y) =0(Y1) + U(Y2) + U(Y3) + U(Yy),

is an MNC in Z*. Clearly, on Z4, the operator X is continuous. Only here, we want to show that X has a
fixed point by showing that R verifies the stipulation (1) of Theorem 4. Consider Y C E%; we get:

UTR(Y)) < U (S (A) xS
)

IA

IN
IS
hS|

Il
IS
hS|

Put O] = }LU* in (6); we have:
01 (R(Y)) < ¢ (01(Y), 01 (Y), B1(Y), B1(Y)) -

Thus, by Theorem 4, ® has an FP. O



Mathematics 2020, 8, 2130 7 of 21

Remark 2.
(a)  Clearly, the stipulation:
O(3i(Y)) < ¢ (B0, B0, 5%, 50,
for a non-empty subset Yof B4, is equivalent to the stipulation (4) because:
B (Si(Y)) <B(Si(8)),

where A =Y x Y2 x Y3 x Y4,
(b)  Theorem 5 is still valid if we take the function below:

P (U(Yl),U(YZ),U(YB),G(Y‘*)) < Amax {U(Yi) i=1,2, 3,4},
where A € (0,1).

Corollary 1. Let E be an NCBC subset of a BS Z and U be an arbitrary MNC on Z. Assume that 3 : E* —
is a continuous function verifying:

[z

G(3(8)) < ¢ (B, B(Y2),6(r7),5(rY), @)

where ¢ € R and for any non-empty subset Y',Y?,Y3,Y* of E and A defined in Theorem 5. Then, S has at
least a QFP, that is there is (¢*1,7*2,0*3,0**) € E* so that:

o= (e ), 2= (02,00, 04,0,
M= g (5*3, o4 é*l,e*z,) =gy (6*4,4*1,é*2, 6*3) .
Proof. From Theorem 5, the proof follows immediately, by setting ; = S, for all i = 1,2,3,4 and:
R (12,000 = (3 (¢,2,0,00),5 (2,68,6,0),9 (E,0,0,2,),5 (¢,0,2,7)).
O

Corollary 2. Let = be an NCBC subset of a BS Z and U be an arbitrary MNC on Z. Moreover, assume that

4
S:8* 5 Bisa continuous function so that there are constants 0 < aq,ay, a3, a4 < 1 with .E aj <1,

j=1
U (3(A)) < a0(YY) + a,5(Y?) 4 a30(Y3) + a,5(Y*),
for any non-empty subset Y',Y?2,Y3,Y* of Y. Then, S has at least a QFP.
Proof. Putting &; = S, foralli =1,2,3,4 and:
g (00, 0) =l + 0l + a3 + aul?,

in Theorem 5, we get the proof. [
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Theorem 6. Assume that & is an NCBC subset of a BS Z and U be an arbitrary MNC on Z. Let 3; : E* — E,
fori=1,2,3,4 be a continuous function justifying:

where ¢ € R, for any non-empty subset Y,Y?,Y3,Y* of Y and A defined in Theorem 5. Then, there is an
element (6*1,6*2,5*3, 6*4) € 54 50 that:

E*l

Sl (f*l, 8*2, 6*3, 5*4) , 5*2 — 32 <£*l,£*2/ E*S, 6*4) ,

3 — S (5*1,5*2, 6*3,6*4) - S, (6*1,6*2,6*3, £*4> _
Proof. Let X : E* — = be an operator defined by (5). Then, by Example 3, we have that:
U*(Y) = max {U(Yl),U(YZ),U(Y3),U(Y4)}

defines an MNIC in Z*. To finish the proof, we shall illustrate that X has an FP by proving the stipulations
of Theorem 4. Let Y C E%; we have:

0" (R(Y)) < U (S1(8) x32(4)
(

=%
2
e
|
P
=
=

Y3),5(Y4)}, max {B(Y1), 5(Y2), 5(Y3),B5(Y4)}, )

Therefore, by Theorem 4, X has an FP. [

If we take &; = &, foralli = 1,2,3,4 and:
R (51,52, o, 64) - (% (61,62,63,64) ,S (52,53, *, el) ,S (63, *, 51,52,) , 3y (54,51,52, 63)) )
in Theorem 6, the consequence below holds.

Corollary 3. Let Z be an NCBC subset of a BS Z and U be an arbitrary MNC on Z. Let § : E* — E,
fori=1,2,3,4 be a continuous function justifying:

where ¢ € R, and for any non-empty subset Y1,Y?,Y3,Y* of Y, then S has at least a QFP,
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4. Supportive Application

We shall dedicate this part to using the results of Corollary 1 to study the existence of solutions to
a system of FlEsin the form of:

1 (w) = O(w) +V (w, £ (8 (w)) , 02 (3 (w)) , 43 (6 (w)), 5*4( (w)))
( w, (1 (8 (w)), £ (6 (w)) , £+ (6 (w)), 5*4( (
+Uu 7(w)
9( | c(w,a,e*l (@ (2)), 02 (@ (D)), £ (@ (D)), ¢ dD)
0
02 (w) = O(w) + V (w, £2 (5 (w)), £3 (5 (w)), £ (5 ( (w)))
w, 2 (8 (w)) £ (8 (w)) , £ (8 (w)), f*l(
+u 7(w)
9( I C(w,D,E*z (@ (©)),03 (@ ©)), (@ ()), ¢ dD) ’
0
03 () = O(w) + V (10,63 (8 (w)), €4 (6 (w)), €1 (5 (@)} ®
w, 03 (8 (), 4 (5 (w)) , £ (3 (w)), 4*2(
+Uu ¥(w)
e( I C(w,D,€*3 (@ (D)), 0% (@ (), (@ (9)), da) '
0
4 (w) = O(w) + V (w, £ (5 (w)), £1 (5 (w)), £2 (5 ( (w)))
w, (4 (8 (w)), £ (6 (w)), 2 (6 (w)) , £ (
+u 7(w)
9( I C(w,D,E*4 (@), (@ (D)), 02 (@ (D)), (@ (a)))da>
0

Before discussing the above system, we will introduce some important elementary results.
The modulus of continuity of /! € Q on the closed interval [0, A] is denoted by 74 (¢!, ¢€) and
defined as:

AL e) = sup{‘el(w) - ez(a)‘ Lw,0 € [0,A],|w—2| < e},

for each /! € Q and € > 0, so we can write TA(Q,€) = sup {TA(él,e) e Q} ,
71(Q) = limey00 T4(Q, €), and 1(Q) = lima 00 7§ (Q)-

Consider x (R4) to a BS, which consists of all bounded and continuous real-valued functions on
R, and endowed with |||, = sup {|¢!(w)| : w > 0} . Define an MNC [20-22] on O, (r,) by:

les

U (Q) = 1(Q) +lim sup diam Q(w), ©)

w—r00

where, for a non-negative fixed w,
diam Q(w) = sup {'Zl(w) - éz(w)‘ 002 e Q} ,

and Q(w) = {¢*(w) : /! € Q}.

Now, we return to define the formulas and functions in our system as follows:

©1) afunction O : Ry — Ris bounded continuous with ¢; = sup {|O(w)| : w € R4 };

(©2) 6,@,7: Ry — Ry are continuous functions and §(w) — oo as w — oo;

(V3)  the functions V : Ry x R* — Rand U : Ry x R> — R are continuous, and for a nondecreasing
continuous function ¢ : R — R with ¢(0) = 0 and ¢ € R, we have:

‘V (wrg*llg*z’ 6*3,£*4) v (w, T g2 e 7*4) ‘

< %fp(e*l—w*l e i P e I P A

),
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and:

’U (w, 1 g2 g3 gt 5*5) —u (w, i A I 7*5)‘

)+e(
forall /7,7 e R forj=1,2,3,4,5 and for eachw > 0;
(Q4) the function 6 : R: — R is continuous with (0) = 0, and there are 9, > 0, so that

[*1 o -[*1 g*z _ -[*2 f*3 o —I*3 6*4 . —[*4 5*5 _ -[*5

7 7

)

< lof

10 (w1) — 0 (w2)| < 0wy —wa°, (10)

for each wy,wy € Ry;
(O5)  the functions w — |U(w,0,0,0,0,0)| and w — |V (w,0,0,0,0)| are bounded on R, that is:

¢ = sup{|U(w,0,0,0,0,0)]:we R} < oo,
¢ = sup{|V(w,0,0,0,0)] :w e R} < o0;

the function C : Ry x Ry x R* — R is continuous, and there is a positive dy > 0 so that:

¢1+ ¢ (do,do, do, do) + G2 + 83+ 0 (9G4) < do,

where:
7(w) ¢
&4 = sup /c(w,a,g*l(@(a)),e*z(w(a)),z*B(w(a)),e*‘*(c@(a)))da ,

0

forallw € Ry, £*1,02,0%3,0** € x (R.) and:

lim
w—00

W( C (0,2, (@ (2)),£2 (@ (2)), 62 (@ (D)), £ (@ (2)))

) B
~C(wd, (@), T2(@(2)), T (@), T (@) )da_o’ w

uniformly with respect to 1, %2, %3, 74, g1 ¢*2, 08,04 ¢ x (Ry).
According to the above stipulations, we present our theorem of this part as follows:

Theorem 7. Via assumptions (V1) — (Og), System (8) has at least one solution in x* (Ry) = x (R4) x
X(Ry) xx (Ry) xx (Ry).

Proof. Define the operator X : x* (R ) — x (R4 ) by:
R (E*llg*Z, €*3,£*4)
= O(w)+V (w6 (5 (w)), €2 (5 (w)), €% (5 (w)), £ (5 (w))) (12)
w, €1 (8 (w)), €72 (8 (w)) , €73 (6 (w)), £** (8 (w)),
+U ¥(w) “ 2 3 *4 ’
0 Of C (w,D,€ (@ (D)),02 (@ (D)), 02 (@ (9)),0* (@ (a))) do
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and the space x* (R ) is endowed with the norm below:

H(f*l,é*z,é*3,€*4) et el 4 |le3]] |

xH(Ry) o 00 o0 oo 00

It is clear that finding a QFP of X (12) is equivalent to solving the system (8), and R (6*1, %2, 03, 5*4) is

a continuous function for any (6*1, 02,03, 6*4) ext (R4) . To finish the proof, we need to fulfill the
stipulations of Corollary 1. Firstly, we show that X is well defined. Therefore, by the triangle inequality
and Assumptions (©1)-(Vg), we have:

‘N (4*1,6*2,6*3,£*4) (w)‘
100) |+ |V (w0, (6 (w)), 2 (8 (w)), £3 (5 (w)) 4 (6 (w)) ) = V (,0,0,0,0)|
+|V (,0,0,0,0)| + |U (w,0,0,0,0,0)]
w, 51 (8 (w)) , 02 (8 (w)) , £ (8 (w)), £+ (3 (w)),
u( (?wc(w,a,e*l (@(2)), 02 (@), (@ (@), 0 (@ (a)))da> ) - U(0,0,0,0,0)

|

IA

+

IA

&+ 59 (|6 @], |2 6 @)

(8 (w)], |02 (6 (w))],

Je? @@l |et @ w))) + e +é

3 @ (@), | (6 (w))])

#9

Cl‘HP(

7(w)
9(/ C(w,D,€*1 (@ (9)),02 (@ (D)), (@ (9)), 0 (w(a)))da) —0(0)

0

LG ()|, |62 (6 (w))|, [0 (6 (w)|,

¥(w)
/c wae*l (a)),z*z(w(a)),e*3(w(@)),é*‘*(w(@))) do
0

IN

o)) +&+

¢
4o |0

, 5*2 5*4

< a+a+ate (||, e L)+ (988) < do.

[e)

Thus, X is well defined, and we can write N ((5d0)4) C Oy,, where (6d0)4 = Oy, x Oy, X
6,;10 X 6d0-

Secondly, we show that N : (5d0)4 — Oy, is continuous. Let (¢*1,0%2,¢*3,04),
(71, 71*2, 7108, € (5d0)4, and € > 0 arbitrary. Suppose that:

H(£*1/£*21€*3/£*4) _ (—I*l,_l*z, 73 TA)H(] , <
then, one can write:
‘N (6*1,2*2,5*3%*4) (w) — (—I*l T2 3 7*4) w)‘
|V (0,67 (6 (), 02 (8 (w)), £33 (w)), €4 (6 (w)))
=V (w0, T (6 (w)), T2 (5 (w)), T2 (6 (w)), T4 (6 (w))
w, 01 (6 (w)), €72 (8 (w)), 03 (6 (w)), £+ (8 (w)),
4 e <7§w)6<w,a,f*1 (@), £2(@(2)), £ (@), £ (@ <a>>)da>
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w, T (8 (w)), T2 (8 (w)), T (8 (w)), T (8 (w)),
9( [ C(w,0, T (@ )),1*2(w(a)),‘I*3(co(a>),‘l*4(w(é>)))da)
101 (8 (w)) — T (8 (w))], |42 (8 (w)) — T2 (5 (w))],
: ( 5 o) =1 (3 G 65 () — T 3 o) ) o
7(w)
+a(e(/ C (w0, ¢ (w(a)),e*z(co(a)),é*3(w(a)),f*“(w(a)))da)
0
7(w)
—6 / C (w0, 7 (@), 7% (@), 1% (@ (), T* (@ (a))) do
0
< 47( E*l—_[*l , 6*2—1*2 , 5*3—-[*3 , 1,’4_—[*4)

(w)

ey

0

C (w 0,0 (@ (D)), (@ (9)), 623 (@ (D)), (@ (a))) do

é)
¥(w)

/ C (w 0,0 (@ (D)), 0% (@ (D)), 02 (@ (D)), 0 (@ (a))) o
0

7(w)

- / c(w,a,‘i*l (@ (), T2 (@ (9)), T3 (@ (9)), T (@ (a)))da

0

Equation (11) leads to there being A > 0, so that if w > A, then:

7(w)
h ( [ (@2 T @E), T2 @E), T @©), T @ 0)) da)

0

g
) (14)

€

< .
- 2
for each ¢*1, 02, ¢*3 ¢4 Tl T2 3 e 5,10. Here, there are two cases:
Case 1. If w > A, then by (13) and (15), we get:

‘N (€*1,£*2, 6*3,6*4>

N (-I*l -I*Z —I*3 -I*4> )‘
(6 € € G) € € E:
2

?P\z2723) T332 "

5 > €.

Case 2. If w € [0, A], then similarly, we can write:
‘N (g*l’g*zl 5*3, 5*4) (w) N (-i*l, —I*ZI—I*BI —i*4) (w>‘
€ € € €
< =z =z
= ¢ (2' 22’ 2)

¥(w)
+o | ¢

/ C (w,D,E*l (@ (D)), 0% (@ (D)), (@ (9)),0* (@ (a))) do
0
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¢

¥(w)
- / C (w 0, T (@ (@), T2 (@ (), T2 (@ (@), T (@ (a))) 4o
0

< g +o (19 (’yAp (e))g) ,

where 74 = sup {y(w) : w € [0, A]} and:

|C (w, D, g*llg*Zl 6*3, £*4) -C (w’ D, —[*l’ —i*Z, 1*3/ —I*4) | .
[0, A], © € [0,4], 1,072,073, 074,771,772, 713,14 € [—dy, dy), (15)

p(G): 1 2 3 4 1 2 3 4
[(e1, 62,3, %) — (71,7275, 7 e,y <

The continuity of C on [0, A] x [0, 7] x [~do,do]* leads to lim. _,op (€) = 0; thus, using the

continuity of o, we have:
¢
o (19 ('yAp (e)) ) — 0.

Therefore, by the two cases, we conclude that N is a continuous function.
Next, we prove that:

(N (A) < ¢ (10 (Q") % () 7 (%)% (@)

where A = Q! x Q% x Q% x Q% For this, let Q', Q2, Q3, Q* be arbitrary nonempty subsets of 6d0 and
wy, wy € [0, A] with |w; — wy| < e. Without loss of generality, consider y(w;) < 7(w,), and for each
(€*1,072,0%3,0%%) € A, we get:

’N (6*1,5*2, £*3, £*4> <w2) —N (6*1,5*2, 5*3, £*4) (w )‘
0(wz) = O(awn) | + |V (w2, € (0 (w2)), €2 (6 (aw2)), €2 (0
—V (w2,£*1 (5 (wr)), €2 (5 (wr)), 073 (8 (wy)), £** (&

(w2)), £ (8 (w2)))
w))]
+ V<wz,£*l (6 (w1)), €2 (8 (w1)), € (8 (wn)), £+ (6 ))
)
/

IN

=V (0, €7 (6 (wn), £ (8 (1)), £ (0 (wn)), £ (6
*4

w0, 01 (6 (1)), €72 (6 (1)), £% (0 (1)), £ (5
9<7}]Z C (w2, 0,0 (@ (9)), 02 (@ (9)), £ (@ (D)), 0 (@ da)
0

—

)wsz*l( (w)), €2 (8 (w )) 3(s ( 2)),
U ( T C (w22, 6 (@ (D)), £2 (@ (D)), £ (@ (9)), £ (@ da)
wzrf*l (8 (w1)), 02 (6 (w1)), €3 (6 (wy)), £** (&
9( € (w20, (@ (9)), 62 (@ (), £ (@ (), £ (@ d@)
( wa, 01 (6 (wy)) , €2 (8 (wr)) , €% (6 (w1)) , £+ (6
o (7’2 C (w2, 61 (@ (9)), 62 (@ (D)), £ (@ (9)), £ (@ dD) (16)
0
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B ), 26 ) 9 ) £ ),
0 <7f2 C w2 o, E*l (D)),Z*z (@ (D)),€*3 (@ (E))),é*4 (@ (E)))) dE))
0

—~

wy, €1 (8 (wr)), €2 (8 (wr)) , 02 (8 (w1)) , £ (6 (w1)),
0 (7}}2 C (w1,0, 01 (@ (D)), 2 (@ (), £ (@ (D)), £** (@ (9)))@)
0

wy, 01 (8 (w1)), €2 (8 (w1)) , £ (8 (w1)), £+ (8 (wr)),
9( fz)c w1,2,0 (@ (D)), £°2 (@ (D)), £ (@ (D)) , £ (@ (a)))m)

wy, £41(8 (w1)), €2 (8 (w1)) , £ (3 (wn)), £+ (8 (w1)),
! (7(}01)C(W1,9,€*1(6’0(9))15*2(6’0(9)),5*3(@(9))/4*4(@(9)))d9> '
0

For simplicity, we use the following formulas:

™ (0,6) = sup{|O(wy) — O(wy)| : wy,w; € [0,A], |wy —wy| <€},
A |V (g, €1, 02, 03, 0%4) — V (wy, €1, 042, 0%3,04) | : wy, w0, € [0, A],
1% =
i (V2€) o { w1 —wa| <, 71,072,073, 0% € [dy, do) ’
A (5e) = sup{[o(wy) —8(wy)]|: wy,w € [0,A], [y —ws| < e},
T4 (6*1,7‘4 ((5,6)) = sup{ 0V (wy) — 0 (w, ’ cwy,wy € [0,A], |w —wy| < T4 ((5,6)},
C (w,0,01,02,03,04) | :w e [0,A], D € [0,94],
Q) = o , 17
do su { f*l €*2 5*3 4 c [dO dO} ( )
C (w,0,0°1,0°2,0°3,04) | :w € [0, A], D € [0,74]
Q* _ A | Yy 7 7 7 2 7 2 7
v sup { 6*116*2, 5*3,6*4 c [dO/dO] ’
A B }u(w2,€*1’£*21€*3, £*4,£*5) _ U(wl,6*1,6*2,6*3,?‘4,6*5)| Dy, Wy € [O, A],
oo (the) = s“p{ [0 — wa] < €, £°1,62,03, 0% € [do,do], £ € [~O0F, O] '
4 |C (w1,D, €1, 62,03, 04) — C (wy, 0,012,033, 04| : w € [0, 4],
C, = ,
Tdo ( €) sup { De [0/ ,}/A], €*1,£*2/£*3/£*4 c [dO/dO]
™ (v,e) = sup{|y(w) —y(wa)|: w1, wp € [0, A, [wy —wy| <€}

It follows from (16) and (17) that:
‘N (6*1,6*2 3, 6*4) (w3) — X (6*1,6*2, 6*3,6*4> (wl))

A 1 (8 ))*f*l (8 (w1))|, [£%2 (8 (w2)) — €2 (8 (w1))|,
< T (O,e) 2(/)( ’5*3 ))—6*3((5(w1))|,|€*4((5(w2))—5*4((5(101))[ )

\6*1 >>f£*1<5<w1>>, <5<wz>>6*2<5<wl>>|,>

A
o (Vee) 24’( If*3 ws)) — 0% (8 (wn))|], [ (5 (w2)) — 4 (5 (wy))|

¥ (wa)
9(/ C(wz,a,é*l(w(a)),ﬁ*z(w(a)),£*3(a)(D)),E*‘*(w(D)))da)

| |

+7 o (U €) +0 (

¥ (w2)
B ( [ (w061 @©), 2 @@),0° @ @), (@) da)

0
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7 (w2)
+o| |0 /c(wl,a,e*l(w(a)),e*z(w(a)),z*?’(w(a)),e*‘*(@(a)))da
0

¥(w1)
| [ c(wma @@, 2 @0), 0% @)1 @) da)
0

IN

A (px1 A A (px2 LA
A A (01,74 (8,)) , T4 (02,74 (0,€)), A
T (O/ 6) + Tdo (V/ 6) t+¢ ( A (5*3, A ((5,6)) ,TA (4*4/ A (5/ 6)) Tdo, 00 (U,E)

y(w2)
+o |0 /c(wz,a,é*l(w(a)),e*z(w(a)),£*3(@(a)),e*‘*((o(a)))
0
—C (w1,9,€*1 (@ (D)), (@ (D)), (@ (D)), 0 (@ (a))) d@f)
() ¢
o | o /c(wl,a,e*l(w(a)),z*z(w(a)),e*3(co(a)),e*4(w(a)))da
(w1)

A (px1 LA A (px2 LA
™ (0,6) + 14 (V,e) + ¢ ( TTA ((E g*e:/ZA(((Z,ee))))IITTA (é*i;A(((Zee)))), ) +75 o (Use)
+0o (19 (Q%TA ('y,e))é) +0o (19 ('yAT;l?) (C,e))€> :

Since (£*1,0*2,¢*3,0**) € A is arbitrary, then we have:

IN

™ (R(A) €)

(18)

< t0,e)+1} (V,e)+CP< ™ (QL T4 (0€), T4 (Q% T (6.€)), )

(@74 (5,)) T4 (QN T4 (4€))

+T(§?)/Q* (Ue)+o (19 (Q;?OTA ('y,e)>€> +o (0 (')/AT;(‘) (C,e))g> :

Since U, C and V are uniform continuous on the compact sets [0, A] x [—do, do]* x [-Q*,Q*], [0, A] x
[0,74] x [—do,do]*, and [0, A] x [—do, do]*, respectively, we have:

Tj(‘),Q* (U,e) =0, Td/é (C,e) > 0and Té?)’ﬂ* (V,e) -0, ase — 0.
Furthermore, the uniform continuity of 6, , and O on [0, A] leads to:
A A A
™ (6,€) =0, 77 (7,€) = 0and 7" (O,€) — 0, ase — 0.

Additionally, by the definition of o with ¢/(0) = 0 and Q* finite, we get:

¢ 4
o4 (19 (Qg‘OTA (%e)) ) +0o <19 (’)/ATEII?J (C,e)) > — 0, ase = 0.
Hence, passing the limit as € — 0 in (19), one gets:

() <o (v (Q) (@) (). (') (19)
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When A — oo in (19), we can write:
w (N (A) < ¢ (w0 (Q") % (@) % (Q%) % (Q)). 20)

Finally, we prove that the stipulation (7) of Corollary 1 is fulfilled. Consider (¢£*1,¢*2,¢*3,¢*%),
(_I*l, 2,743, -I*A‘) € A to be arbitrary elements and w € R, then by (13), we have:

’N (5*1 2 03 8*4) (w) — X (—I*l T2 3 1*4) (w)‘

< |£*1 )) —l*l | |£*2 ))_—l*Z (5(ZU))|, )
- |07 (5 (w)) — 7*3 w))|, [ (8 (w)) =T (6 (w))]
7(w)
v ( 9 ( [ (w1 @@),02@@),¢° @), (@) da)
0
7(w)
—0 / C (w,x, T @ (), T2 (@ (@)), 7% (@ (@), T (@ (D))) do
0
< dzam QY6 (w)), diam Q(6 (w)), diam Q*(8 (w)), diam Q*(5 (w)))
( (., 6% (@(2)),£2 (@ (2)), £ (@ (), £* (@ (2))) dD
€ (0% 71 (@(2), T2 (2(2), 7 (@(2), T (@ (2))) daf) |
This implies that:

diam X (A) (w)
< ¢ (diam QL(6 (w)), diam Q2(6 (w)), diam Q3(6 (w)), diam Q*(6 (w)))

+0 (19

€ (0,571 (@), T2(@(2)), 7% (@ (2)), T (@ (9))) d@f) .

7(w)

| c(@wo @), 6% @@), % @), (@) b

0

As w — oo in (22) and by (11), we have:

limsup,, .., diam Q' (5 (w)),

_ ' limsup,, ., diam Q*(6 (w)),
lim sup diam X (A) (w) < . e

Sub. (A)(w) < ¢ limsup,, ,, diam Q(5 (w)),

limsup,,_,, diam Q*(5 (w))

(22)

It follows from (20) and (22) that:

n®(A) < ¢(w(Q) w(Q) () w(Q))
limsup,, , , ., diam Q' (5 (w)),
limsup,,_, , ., diam Q*(5 (w)),
limsup,, , . ., diam Q3(5 (w)
limsup,, , ., diam Q*(5 (w)
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Now, since ¢ is continuous, non-negative, and ¢(¢, ¢, ¢,{) < { by property R, it must hold that

¢(0,0,0,0) = 0. Thus:

IN

w8 () < (@) () (2w ())
limsup,,_, ., diam Q(6 (w)
limsup,, , . . diam Q*(5 (w)
limsup,, , . ., diam Q*(6 (w)
limsup,,_, , ., diam Q*(5 (w)
TO(Q1)+lim sup,, . o, diam Q! (6({0))
4
TO(Q2 +limsup,, _, ., diam QZ(tS(w))

)
4 7
= 4¢ 7 (Q®)+limsup,,_, , o, diam Q*(5(w))
4
)

w(Q*) +limsup,,_, , ., diam Q*((w))
4

4

~

+¢

7

)
)
)
)

7

Now, define U = ZO which is still an MNC, and by (9), we get:

G R(A) < @ (BQY),B(QY),B(Q%),6(QY) .
Therefore, by Corollary 1, X has at least one QFP in )(4 (R4) . This ends the proof. [

5. Illustrative Example

In this part, we introduce the example below.

Example 4. Consider the following system:

” 1 w4 1 v e2w "
o= A rarey * 30t wh)  2(0te) ) " (10(1+eW) + 12(1+eZW))£ (w)
ew2 1 ewS w?

L K*Z £*3
+<%O+Wﬂ+ﬂ> @+ (s ) * ) @

1 *4
+(40 14 e) 48)4 ®)

O |cos £*1 (w) | |cos £*2 (w)| |cos £*3 (w) | |cos £*4 (w)|
* 0/ e (14 cos? 1 (w)) (1 + cos? £*2 (w)) (1 + cos? £*3 (w)) (1 + cos? £** (w))

do,

) 1 w4 1 v eZw 9
s = &
(@) 4 1—|—w2)+3(1+w4)+2(1—|—ew) +(1o(1+eW)+12(1+e210)> @)
1 v w?
6*3 é*4
20 1+gw2 24) (w) + <3O (1—&—@1"3) + 36(1+w2)) (w)

f*l
40 1+ew4 48) (w)

N 7 O |cos £*1 (w) | |cos £*2 (w)| |cos £*3 (w) | |cos £*4 (w)|
J e (1+ cos? £*2 (w)) (14 cos? 3 (w)) (14 cos? £*4 (w)) (1 + cos? £+1 (w))

+

/\/\

do,

3 w 1 e” e 3
o w) = 41+w2 3wt 2(1+e®) +(10(1+eW)+12(1+e2W)>£ (w)

L) i+ (=2 gy
20 1+ew2 T 30 (1+e?”)  36(1+w?)

(23)
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1 *2
+(40 1+ev) 48>€ (w)

+/w O |cos £*1 (w)| |cos £*2 (w) | |cos £*3 (w)| |cos £*4 (w)|
0

e (1 + cos? £*3 (w)) (14 cos? £*4 (w)) (1 + cos? £+ (w)) (14 cos? £*2 (w)) 40,

o4 _ 1 w* 1 o P2 ”

(w) = 4(1+w2)+3(1+w4)+2(1+ew) +(10(1+ew)+12(1+32w)) (w)
€w2 1 i ews wz )

(20(1+€w2) ! 24) el (30 (14ev") * 36(1+w2)) 2 (w)

e 1\ .
(40 (1 + e + 48) 2 @)
7 O |cos £*1 (w) | |cos £*2 (w)| |cos £*3 (w) | |cos £*4 (w)|
* 0/ e (14 cos? 4 (w)) (14 cos? £*1 (w)) (1 + cos? 2 (w)) (14 cos? £*3 (w))

Jr

—+

do.

It is obvious that the system (23) is a special form of the system (8) with the following:
- _1
> v (w, E*l, 5*2, f*?), £*4) —

wt w? w3 wt

3(1+w4) T 10(1+6w)

f*l e *2 e *3 e *4

/ 4
20(1+ewz) * 30(1+ew3) * 40(1+ew4)
1 2 34 1 g
sy T 12(1+e2w)£* + a5l + 36(1+w2)£* s+ D,

w1 %2 g3 pxd) D‘Cosé*l(w)HcosZ*z(w ||cosf*3 w)||cosE*4(w)|
> C (w’ O, 0, 05, 07, € ) ~ e?(14cos? Z*l(w))(l+cos2 £42(w)) (14-cos? £+3 (w)) (1+cos? 8*4(w)) ’

> J(w) =o(w) =75w)=0c(w)=0(w)=uw,
> ¢(w,D,f,T) = v
Now, we shall verify the hypotheses of Theorem 7.
e The hypothesis (©1) is fulfilled, since O(w) = m
e From the definition of 6(w), @(w) and y(w), we see that §(w) = @ (w) = y(w) = w are continuous and
d(w) — oo as w — oo, so the hypothesis (y) is satisfied.
e Since 8(w) = w, for 9, = 1, the inequality (10) is verified; hence, (V4) is as well.

e It is easy to see that U (w,0,0,0,0,0) = ﬁ V (w,0,0,0,0) = ﬁ & =3 and & = 1.
Furthermore, we can write:

> ( e*l 6*2 6*3 5*4 D)

is continuous on R4 and & = %.

‘V (w, 01 g2 6*3,6*4) v (w, U -[*4) ’

’ew *1,‘[*1 + L g*Zi-[*Z
=101 +ev) 20 (1+ew2)
ew3 ew4
| T | ———— | |t =T
30 (1 n ew3) 40 (1 n ew4)
1 1 1
< - g*l_ *1 L 6*2— *2 - 5*3— *3 - £*4_ *4
ST Bl +55 B +35 T + 10 1
S ;(; é*l——I*l +é E*Z_—I*Z +é E*B_—I% +% €*4—-I*4>
1
< = I *2 =2 *3 _ =%3 #4 =4,
< so(|er—T|er =72 et - 9 4 et T

similarly,

’U (w,f*l,ﬁ*Z, 3 4 Dl) —u (W, TR, 3 e Dz) ‘
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< e E*l _ —I*l + i 6*2 _ —I*Z
= |12(1 + e2v) 24
w? 1
€*3_ *3 - €*4_ *4 D —D
+‘36(1+w2) LR T+ 1P1 = Do
< i 6*1—-!*1 +i 6*2_-[*2 _‘_i f*3—7*3 _l_l 5*4—-I*4 —|—|D1—D2|
- 12 24 36 48
1/1 1 1 1
< [z g*li *1 - 6*27 *2 - 5*37 *3 - 6*4* *4 Di—D
< 2<5 T+ 3 T+ 3 T+ 3 T2 ) +|D1 — Da|
1
< iq)(g*l_—l*l , 6*2_-[*2 , 6*3—1*3 + f*4—-l*4)—|-0'(|D1—D2|).

Thus, we find that the hypotheses (V3) and (Vs) are satisfied.

6. Conclusions

In nonlinear functional analysis, measures of noncompactness have many applications,
especially in metric and topological fixed point theory. This technique allows us to obtain the
existence solution of functional integral equations. In Banach algebras, functional integral equations
are considered in complicated form, and a well-developed system is required to study this type of
equation. Therefore, in our manuscript, the technique is successfully applied to obtain the solution
of these equations in a Banach space. Furthermore, some quadruple fixed points consequences with
illustrative examples are derived.
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