
mathematics

Article

AIRC: Attentive Implicit Relation Recommendation
Incorporating Content Information for
Bipartite Graphs

Xintao Ma 1,2 , Liyan Dong 1,2, Yuequn Wang 1,2, Yongli Li 3 and Minghui Sun 1,2,*
1 College of Computer Science and Technology, Jilin University, Changchun 130012, China;

maxt18@mails.jlu.edu.cn (X.M.); dongly@jlu.edu.cn (L.D.); yuequn16@mails.jlu.edu.cn (Y.W.)
2 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,

Jilin University, Changchun 130012, China
3 School of Information Science and Technology, Northeast Normal University, Changchun 130117, China;

liy1603@nune.edu.cn
* Correspondence: smh@jlu.edu.cn

Received: 9 November 2020; Accepted: 24 November 2020; Published: 30 November 2020 ����������
�������

Abstract: With users being exposed to the growing volume of online information, the recommendation
system aiming at mining the important or interesting information is becoming a modern research
topic. One approach of recommendation is to integrate the graph neural network with deep learning
algorithms. However, some of them are not tailored for bipartite graphs, which is a unique type of
heterogeneous graph having two entity types. Others, though customized, neglect the importance of
implicit relation and content information. In this paper, we propose the attentive implicit relation
recommendation incorporating content information (AIRC) framework that is designed for bipartite
graphs based on the GC–MC algorithm. First, through reconstructing the bipartite graphs, we obtain
the implicit relation graphs. Then we analyze the content information of users and items with
a CNN process, so that each user and item has its feature-tailored embeddings. Besides, we expand
the GC–MC algorithms by adding a graph attention mechanism layer, which handles the implicit
relation graph by highlighting important features and neighbors. Therefore, our framework takes
into consideration both the implicit relation and content information. Finally, we test our framework
on Movielens dataset and the results show that our framework performs better than other state-of-art
recommendation algorithms.

Keywords: recommendation system; bipartite graphs; graph representation learning;
matrix completion

1. Introduction

As social networks become indispensable in our daily life, the research focus has been
boosted on mining valuable information from them. Especially the rapidly growing demand
for the recommendation system, which aims to excavate a user’s preference and to personalize
recommendations accordingly, arouses many researchers enthusiasm to involve in the development of
recommendation systems. For instance, a deep learning network based recommendation algorithm for
video recommendation on YouTube has been proposed by Covington et al. [1]; Wang et al. developed
a news recommendation algorithm that incorporated deep-content based recommendation [2].
Cheng et al. [3] proposed an APP recommender system for Google with a wide and deep algorithm.

With the promising prospect of deep learning, neural networks have achieved a great success
in many fields, such as natural language processing, image recognition, and speech recognition.
In recommendation systems, with the ability of solving diverse types of auxiliary information,

Mathematics 2020, 8, 2132; doi:10.3390/math8122132 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-0214-1881
http://dx.doi.org/10.3390/math8122132
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/12/2132?type=check_update&version=2

Mathematics 2020, 8, 2132 2 of 19

neural networks could fulfill their purpose to improve the recommendation quality regardless of
textual or image. For instance, convolutional neural networks (CNNs) can be used for feature
representation learning from multiple sources, while recurrent neural network (RNN) especially LSTM
is capable of dealing with sequential data, including those historical user–item interactions with a time
sequence [4–9]. A key advantage of the neural network is dealing with multitype data, for instance,
when processing tweets data that have both textual information and image information, CNN/RNN
becomes an important part building neural networks.

The graph neural network (GNN), a powerful tool for non-Euclidean data like social networks,
knowledge graphs and etc. [10,11], stands out in recommendation systems. The reason is that the
user–item interactions and auxiliary information can be abstracted as vertices and edges in a graph.
As shown in Figure 1, a bipartite graph contains the interaction information represented as the edges
between user and item vertices. The core idea of GNN recommendation is to embed the graph as
low-dimensional vectors. Then, based on the embeddings, together with the help of deep learning
methods, recommendation tasks can be fulfilled by link prediction, clustering, etc.

Figure 1. An example of bipartite graph G = (U, V, E), which has two types of entities U and V.
The edges between the two entities are entitled with weights WUV , meaning the user watches and rates
the movie.

However, most graph embedding algorithms focus on either homogenous networks such as
Node2vec [12] or knowledge graphs such as Trans series [13,14], only a few existing works focus on
bipartite graphs [15–19].

There are two challenges when embedding bipartite graphs:

1. The first challenge we address is to leverage both the characteristic of bipartite graphs and
the auxiliary information. In bipartite graphs, only the structure information is presented by
the relations between users and items. Through incorporating both the content information
and the bipartite graph structure, we can improve not only the model accuracy but also the
cold-start problem.

2. Both homogenous and heterogeneous network algorithms take into account the explicit relations
between two types of vertices. However, there are implicit relations between the same type of
vertices in bipartite graphs. For example in Figure 1, where U and V are two sets of vertices
with different types, E is the set of edges, labeled with weights Wuv. The edge can represent
the interaction between user U and item V, for example the rating that a user gives to an item.
Suppose it is a user-movie graph. User 1 and user 2 should have an implicit relation as they
share the same interest in movie 1. When embedding those users into low-dimensional spaces,
they should be neighbors with similar vectors, thus more likely to be recommended to the

Mathematics 2020, 8, 2132 3 of 19

same preferred movies. As discussed in [20], modeling both relation types will improve the
recommendation accuracy.

A recent work by Berg et al. [18] proposed graph convolutional matrix completion (GC–MC) for
embedding the bipartite graph within a graph-based autoencoder framework, which produces the
user and item embedding through a form of message passing algorithm. However, GC–MC focused
on the interaction between users and items, i.e., the explicit relation in the bipartite graph, yet the
implicit relation has not been captured.

Thus, inspired by the previous work of graph embedding techniques, we propose attentive
implicit relation recommendation incorporating content information (AIRC), which is an extended
GC–MC model with an implicit-relation embedding attention mechanism built-in for the bipartite
graph. Our main contributions are as follows:

1. We define the user implicit relation graph the same way we define the item implicit relation
graph, as where users are linked if they have relations to the same item in the bipartite graph.
As a result, similar users/items become neighbors. In order to preserve the similarity during
embedding, we resort to the solution of graph attention mechanisms such as graph attention
networks (GATs) [21]. GAT is based on graph convolution algorithms, which leverages features
of neighbors from a node by learning different weights of different neighbors. Thus, the implicit
relations are preserved by embedding similar nodes with close vectors.

2. We incorporate content information in our framework. We train both user and item features
through a simple CNN, yields user and item feature vectors. Then we represent each node in
the user graph and item with the feature vectors, so that nodes with similar feature vectors can
affect each other more in a neighborhood during the GAT process and also reduce the problem of
a cold-start.

3. With the user–item bipartite graph, we add a graph attention layer into GC–MC as side information,
and trained together to obtain the final embedding of each user and item. The structure of our
framework is shown in Figure 2. A bipartite graph is reconstructed into user and item implicit
relation graphs, and through a simple CNN operation we obtain a pretrained feature matrix.
Those matrices are then fed into a graph attention mechanism applied on the implicit graphs,
whereby becomes side information and trained together with GC–MC algorithm. The structure
will be in detail explained in Section 3.

Figure 2. The structure of our framework attentive implicit relation recommendation incorporating
content information (AIRC). The bipartite graph is reconstructed into the user implicit relation graph
and item implicit relation graph. Then CNN process pretrained user and item feature matrices, which is
the input of graph attention mechanism applied on implicit relation graphs as an extended layer
of GC–MC.

Mathematics 2020, 8, 2132 4 of 19

Our proposed AIRC framework was evaluated on the Movielens dataset. Experiments showed
that our framework outperforms previous works in terms of link prediction and recommendation,
evaluated by root mean square error (RMSE). Moreover, we also demonstrate that our framework can
achieve better results more quickly compared with others.

The paper is organized as follows: we first demonstrate related work in Section 2. Then we
represent our framework in details in Section 3. In Section 4 we will explain experimental setup and
discuss the results. Finally, we will make a conclusion of our work and introduce some future works in
Section 5.

2. Related Work

Many techniques have been put forward in the fields of recommendation systems. One traditional
approach is matrix factorization (MF), which map users and items into latent factor, and then high
correspondence regards to recommendation [22,23]. In most cases, traditional approaches such as MF
are integrated into neural networks. Dziugaite and Roy proposed neural network matrix factorization
to construct user and item latent features through a multilayer feed-forward neural network, and then
optimized the features by alternating between user and item networks [24]. DeepFM [25] integrates
the deep neural network into FM, which captures the linearity and the non-linearity interactions
between features.

Besides, neural networks CNN/RNN are also used in recommendation. Devooght et al. presented
to make a session based recommendation by RNN, leveraging between both long and short memory
by adding noise to the training history sequences [5]. Zheng et al. [26] proposed DeepCoNN that used
two parallel CNNs to approximate the behavior of users and the properties of items. The key idea is to
extract the review text into a low-dimensional embedding space. Moreover, autoencoders are also
applied in recommendation systems. AutoRec [27] is a successful algorithm that combines collaborative
filtering with autoencoders. It takes partial user and item vectors as input and reconstructs them in the
output layer. CDL [22] proposed a Bayesian network that integrates a denoising autoencoder with MF,
which balanced the interaction history of users and items and the side information.

With the growth of the attention mechanism, one could use the attention mechanism together
with neural networks to filter out unimportant information to make better recommendation [28].
Zheng et al. came up with the memory attention aware recommendation system that learned the
behavior of users by facilitating CNN with an attention part to memorize their most interested
items [29]. Ying et al. [30] proposed a hierarchical model for the attention mechanism. Different from
other sequential recommendation, this algorithm created two attention networks designed for short-
and long-term interactions respectively.

Currently, there is an increasing trend that data are represented as graphs. Graph embedding
becomes a popular alternative to recommendation systems. Sperduti et al. [31] motivated early
studies on GNNs and then Gori et al. [32] came up with the definition of graph neural networks.
Many algorithms learn the embedding and the graph structure by propagating node features until
equilibrium has reached. GraphSage [33] proposed by Hamilton et al. adopts sampling a fixed-size
neighbor for each node and distributing the neighbors’ features to the whole graph. PGE [34] further
optimized the sampling procedure of GraphSage. PGE assigns different weights to the neighbors of
a node according to their feature similarity, and then aggregates the sampled neighbors feature with
a biased neural network. Moreover, previous deep learning algorithms were integrated into graph
embedding. GraphRNA [35] combined random walks based on node attributes and graph recurrent
networks. GAT [21] and GAM [36] adopts the self-attention mechanism to mark the different influence
of node neighbors.

Bipartite network is a special heterogeneous network that emphasizes on the interaction between
users and items. Co-Hits algorithm [37] was proposed to solve the query-URL graphs, which leveraged
content information and also the graph structure. BiNE [19] developed bipartite network embedding
methods by performing random walks on the implicit relations and optimizing together with explicit

Mathematics 2020, 8, 2132 5 of 19

relations. Hu et al. [38] focused on the collaborative filtering in bipartite graphs. GC–MC [18] utilized
graph autoencoder into bipartite graphs by modeling the message passing procedure between user and
item, however, content information is not fully integrated. Recently, Wang et al. proposed KGAT [39],
which recursively propagates a node embedding and attends over its neighbors by attention mechanism
in collaborative knowledge graphs.

Our framework is an enhanced work on GC–MC [18], considering the recommendation problem
as matrix completion. However, we focus on the implicit relations in bipartite graphs, which shows
great similarity information about vertices of the same type. Besides, different from the work BiNE [19]
that performs random walks on the implicit relations, we adopt the attention mechanism that combines
content information with the implicit relation, and emphasize on the important features and neighbors.

3. Proposed Work

In this section, we described our proposed framework AIRC. The key idea is to aggregate the
implicit relation and also the context information into the embedding process of bipartite graphs.
We first introduce the generation of implicit relation graphs, integrated with feature information.
Then we present the GC–MC based model with an additional attention layer that leverages the implicit
relation graph.

To begin with, we denote a bipartite graph G = (U, V, E) and its weight matrix W, where U
and V denote two types of vertices respectively, E ∈ U ×V represents the edges between U and V.
Each edge carries a weight wi j that represents the connection strength between the two vertices ui and
v j. As shown in Figure 3a, ui and v j denote the i-th and j-th vertices in U and V, where i ∈ {1, 2 . . . |U|},
j ∈ {1, 2 . . . |V|}.

Figure 3. A demonstration of the reconstruction of a bipartite graph G = (U, V, E) end edge weights
W in (a). The 1st-order implicit graphs are shown in (b,c) according to Definition 1 and the weights are
calculated with Equation (1).

3.1. Implicit Relation Graph Generation

As illustrated above, a bipartite graph contains both explicit relations and implicit relations.
Explicit relations usually reveal the interaction between different types of entities, for instance actors

Mathematics 2020, 8, 2132 6 of 19

perform movies, users purchase goods and then rate them. Previous work shows a lot of effort in
preserving the information in the explicit relations, such as random walks, whereby vertices are
nearby in the projecting space if they are strongly connected. However, in the bipartite graph, implicit
relations exist between the same type of entities. The semantics of these implicit relations should also
be preserved in order to recommend with higher precision.

We proposed to divide the bipartite graph G into two homogenous networks GU and GV , for two
types of vertices respectively. Those homogenous networks contain the information of implicit relations.
In order to comprehend, we first defined the k-order implicit relation graph:

Definition 1. Given a bipartite graph G = (U, V, E, W) with two types of vertices U and V,
edges E ∈ U ×V, and weights W, we define k-implicit relation graph Gk

N = (N, RN) with weight
matrix L, where N can be either U or V, and RN ∈ (RU, RV), where RU ∈ U ×U and RV ∈ V × V.
We define rui,ui′ ∈ RU and rv j,v j′ ∈ RV if there exist shortest paths P with k-order between vertices
(ui, ui′) and (v j, u j′) in the bipartite graph G respectively, where i, i′ ∈ {1, 2 . . . |U|}, and j, j′ ∈ {1, 2 . . . |V|}.
The weight matrix L can be calculated with different functions Lk

U = F(wim, wi′m|m ∈ V and m ∈ p) or
Lk

V = F(w jm, w j′m|m ∈ U and m ∈ p), where m is the middle vertex in the shortest path p.

However, constructing a higher order path between vertices is unfeasible especially for large
networks, as the complexity is exponential. Thus, in order to reach the balance between the complexity
and effectiveness, we only used a 1st-order implicit relation graph. For the reason that the 1st-order path
already preserves most of the neighbor information, and with the help of the graph attention algorithm,
higher-order implicit relation can also be learned as will be explained in Section 3.2. To simplify,
we used GU and GV to represent the 1st-order graph.

Furthermore, in order to preserve the semantics of the weight information, we defined a weight
function in the implicit relation graph:

F(L) =

∑
m∈V,m∈p

(
C−

(
wui,m −wui′ ,m

))
S

(1)

where S is the number of shortest paths p between ui and ui′ and C is the maximum value of weight
matrix W. This weight function represents the similarity between the same type of vertices. For example,
two users have similar taste when they see the same movies and also rate similarly. When two users
rate the same movies however with a large difference among the ratings, we argued that their tastes
differed, and the weight value was small, thus their embeddings were far from each other.

Figure 3a shows a user–movie bipartite graph G, where edges represent the rating action from
users U to movies V. According to Definition 1, we constructed the user implicit graph GU = (U, RU)

shown in Figure 3b, and item implicit graph GV = (V, RV) shown in Figure 3c. To illustrate, in
Figure 3b the edge ru1,u2 ∈ (u1, u2) demonstrates that in Figure 3a a shortest path with 1st-order
exists between vertices u1, u2. Additionally, lu1,u2 is calculated from the two shortest paths between
vertices u1, u2, namely u1 → v1 → u2 and u1 → v2 → u2 . Additionally, graphs G1

U and G1
V preserve the

semantics of original bipartite graph G. For instance, in (b) the edge ru1,u2 represents that users u5, u7

have rated the same movie v5, and the weight lu5,u7 = 5 is large, meaning that they share the same taste.
As a result in the embedding space they become neighbors, and with the later application of graph
embedding techniques their projections will be similar, thus raising the recommendation accuracy.

3.2. Content Information Extranction

Despite the structure information of the bipartite graph, we also leverage content information C
to embed vertices so that each vertex has its own feature vector. In this paper, we used Movielens
dataset to evaluate the framework. On one hand, following the work of [40], we used a CNN to learn
the feature matrix of both users and movies. On the other hand, with the help of obtained feature
vectors, we employed the graph attention mechanism correspondingly so that the hidden information

Mathematics 2020, 8, 2132 7 of 19

attends over its neighbors. The purpose of CNN is to obtain initial feature matrices, which can reduce
the cold-start problem for the graph attention mechanism. With the pretrained feature matrices as
input, the graph attention mechanism attends the hidden features more quickly.

3.2.1. CNN Process

As shown in Figure 4, the network is composed of two parts: the user network and movie network.
This process involves three types of features: single-value, multi-value and text-type. The first layer
for both the user and movie network is the embedding layer. For the single-value feature, such as
user/movie ID, user gender, user age and user occupation, we embed the features into numbers (for
instance, age is categorized into 7 groups according to the age range according to Table 1, and gender
is represented as 0 for female and 1 for male); for movie genres, which is multivalued, meaning that
it can be comedy and romance at the same time. There are totally 18 types, so we set a genres index
vector, where 0–18 are used to represent each type including the vacant value; for the text-type feature,
i.e., movie titles, according to statistics [40], no more than 5216 words in the movie titles and the length
is within 14 words. So, we transformed the movie titles into a 15 (14 + 1)-bit index vector with numbers
from 0 to 5216.

Figure 4. A CNN process to extract the initial feature matrix of users and movies. The user features
are extracted by two fully connected layers. The movie titles are processed by a text convolutional
layer, and by a fully connected layer, the movie features are extracted. Finally a multiply operation and
optimization are conducted.

Table 1. The categorization of the user feature age.

Age Encode

Under 18 1
18–24 18
25–34 25
35–44 35
45–49 45
50–55 50

Over 56 56

Mathematics 2020, 8, 2132 8 of 19

Next step we divided the network into two parts to illustrate in detail. In the user network we use
two fully connected layers to extract the user features. The first layer embeds different features into the
same dimension 1× 128 as follows:

fi = Relu(Ci × k1i + b1i) (2)

fu_dense1 = fuid ⊕ fgender ⊕ fage ⊕ fuoccupation (3)

where i is the corresponding feature name, Ci is the input feature matrix, ki is the kernel and bi is the
bias. We used Equation (2) to calculate fuid, fgender, fage and fuoccupation. Then we concatenated those
hidden representations as shown in Equation (3). The second fully connected layer was used to embed
the user features with dimension 1 × 200, to be in the same space as in the movie feature network,
shown in Equation (4):

fu_dense2 = Tanh(fu_dense1 × k2 + b2) (4)

On the other hand, in the movie network, movie title features were extracted using the concept of
natural process and text convolution networks [41]. As shown in Figure 5, we first transformed the
words into word vectors. Suppose a sentence contains n words represented as the d-dimensional word
vector. Thus the sentence can be represented as Equation (5):

x1:n = x1 ⊕ x2 ⊕ . . .⊕ xn (5)

Figure 5. The text convolution layer that extract the important features of movie titles. A sentence
is convoluted with different sizes of kernel, and by max-pooling operation, important features
are extracted.

In order to extract the features, we used a convolution filter w ∈ Rhk applied to a window of h
words. Thus a feature ci was calculated using Equation (6):

ci = Tanh(w ·xi:i+h−1 + b) (6)

The dimension of this convolution filter varies with each possible window of words to generate a
feature map:

c = [c1, c2, . . . , cn−h+1] (7)

Mathematics 2020, 8, 2132 9 of 19

To address the problem of capturing the most important feature in the sentence, we used a max
pooling operation for each window size:

ĉ = maxpool(c) (8)

Then after a dropout operation, we got the features of movie titles ftitles. Meanwhile, using
Equation (2) fvid and fgenres were obtained. Afterwards, the same as the user network, we concatenate
each movie hidden representation and applied a fully connected layer, resulting in a feature vector
with dimension 1× 200.

fv_dense1 = fvid ⊕ fgenres ⊕ ftitles (9)

fv_dense2 = Tanh
(

fv_dense1 × k′2 + b′2
)

(10)

To obtain the feature vectors, we multiplied the above user and movie networks results and regress
with the real ratings, then optimize loss with MSE. After pretraining, we could obtain a user/movie node,
which is represented by feature matrices fu and fv, and then leveraged in the attention mechanism
explained in Section 3.2.2.

3.2.2. Attention Mechanism

Currently, the attention mechanism has been widely used in many deep learning areas. Integrated
into different neural networks, one of the benefits of the attention mechanism is dealing with a sparse
and large dataset by focusing on the important information, just like the human visual attention
mechanism [42–44].

Inspired by the work of the Google team [45] and graph attention mechanism [21], we deployed
a self-attention mechanism and multiheaded attention to handle the feature matrix fu and fv.

Compared with the normal attention mechanism, self-attention learns the hidden representation
of a node by attending over its neighbor, instead of attending all the nodes in the graph, which both
increase the efficiency and become more attentive on the similar nodes.

Suppose we had the user implicit graph Gu, item implicit graph Gv according to Definition 1, users
with the same interest on items become neighbors. Considering the attention mechanism as a neural
network layer, our aim is to get the representation of the next layer through hidden representation.
Take the user graph as an illustration, a user node is represented as ni =

{
fi1, fi2 . . . fiF

}
, where F is

the number of features. Figure 6 and the following equations describe the update procedure of node
features from layer l to layer l + 1. The output of layer l + 1 has the form of n(l+1)

i ∈ RF′ .

z(l)i = W(l)n(l)
i (11)

e(l)ii′ = LeakyRelu(
→
a
(l)T

(z(l)i ‖z
(l)
i′)) (12)

a(l)ii′ =
exp

(
e(l)ii′

)
∑

k∈N exp
(
e(l)ik

) (13)

n(l+1)
i = sigmoid

∑
i′∈N

a(l)ii′ z(l)i′

 (14)

Equation (11) shows the embedded procedure of node n(l)
i , where W(l)

∈ F × F′ is a trainable
weight vector. Equation (12) is the original attention score between a node and its neighbors ni′ . We first

concatenated two embedded vector z, and multiplied it with a trainable weight vector
⇀
a
(l)
∈ R2×F′ ,

finally apply a LeakyRelu activation function. Then we computed the Softmax operation of the original
attention score by Equation (13). Lastly Equation (14) denotes the update rule, which calculates the

Mathematics 2020, 8, 2132 10 of 19

weighted sum of all the neighbor features. Whereby, we defined two trainable weights, namely a, W.
To illustrate this further, the weight W denotes the weight to emphasize the important features of
a given node, while on the other hand a emphasizes the different influence of the neighbor on a given
node. Therefore, we see that the graph attention mechanism adopts attention operation to replace the
generalized constant in the graph convolutional network.

Figure 6. The attention layer on the user implicit graph. A node ni and its neighbors are represented
with an orange circle. The operation ‖ represents the concatenation. Then we apply LeakyRelu and
Softmax operation to obtain the attention score aii′ .

Additionally, we used multihead attention to enrich the ability of the model and to stable the
process of training. The main inspiration of multihead attention is to linearly project the hidden
representation into different subspace, where each subspace has different reflection feature distribution
information. Then those projections are concatenated and once again embedded shown as Equation (15).

n(l+1)
i = ||k=1,...,Ksigmoid

∑
i∈N

ak
ii′W

kh(l)i′

 (15)

where k represents the number of attention head.
To summarize, we extracted the context information by a CNN network and integrated into the

graph attention mechanism for users and items separately. The benefit of this procedure is that we
took not only a node’s features into consideration but also its neighbor’s feature, whereby the node
embeddings are feature-oriented and neighbor-alike, in order to increase the recommendation accuracy.
In Section 3.3, we added this attention layer as content information into the whole structure and trained
together with the GC–MC model.

3.3. Structure

As a ubiquitous heterogeneous graph, bipartite graphs have drawn much attention because of
their ability to model the relationship between two kinds of entities. Traditional graph embedding
algorithms such as random walks, the graph convolutional network (GCN) for homogenous networks
cannot be directly carried out on bipartite graphs. The essential purpose of GCN is to extract the spatial
features of topological graphs, which uses a convolutional kernel to embed nodes and then propagates
the node information to all the graphs. It is trivial to notice that the propagation process is a message
passing process [46], which happens to be the nature of bipartite graphs.

However, due to the heterogeneity in bipartite graphs, the message passing should be divided
into two parts: each type of the vertex correspondingly. As a solution, the paper [18] proposed the

Mathematics 2020, 8, 2132 11 of 19

graph convolutional matrix completion (GC–MC). The main idea is to use the graph autoencoder and
GCN to obtain user and item embeddings by the inspiration of message passing separately. Then with
a bilinear decoder the recommendation task is accomplished by the means of matrix completion.

In this paper we used GC–MC as the basis, adding feature extraction and the graph attention
layer as content information, and trained together to embed the bipartite graphs in order to make
a recommendation. The whole structure is shown in Figure 2.

As a basis, the task of GC–MC is to learn the explicit relation between users and the item through
message passing. A user’s embedding is the gathering of messages from the items that it interacts with,
which was accomplished by a GCN layer. Suppose we had a bipartite graph G = (U, V, E), the initial
user embedding hui revealing the implicit relation is shown by Equation (16):

hui = σ[||r∈R(
∑

v j∈Ni

µv j→ui,r)] (16)

where µv j→ui,r is the message passing from item v j to user ui under the edge type r with the form
µv j→ui,r =

1
c Wrxv j , c is the regularization constant and Ni is the neighbors of user ui. The operator ‖ is

concatenation and σ is activation function such as LeakyRelu.
After modeling the explicit relation, we added a graph attention layer to combine the content

information and implicit relation as illustrated Section 3.2. With the implicit relation graph Gu and Gv

and the pretrained feature matrix fu and fv, we used Equation (5) to get the side information ni, n j.
Then we integrated the initial embedding hui together with the side information ni into a dense layer
as shown in Equation (17):

ui = σ
(
Whui + W2ni

)
(17)

where W and W2 are trainable parameters. Thus, we obtained the embedding matrix of users, and the
items embedding in the same way, where users and items share the same weight W. The procedure to
get the embedding for item v j is the same as the user illustrated above.

In order to train and recommend, a decoder was performed to estimate the possibility distribution
of getting a certain rate by a Softmax operator.

p
(
ŷi j = r

)
=

euT
i Qrv j∑

t∈R euT
i Qtv j

(18)

where Q is also a trainable parameter. Then the predicted rating was calculated:

ŷi j =
∑
r∈R

rp
(
ŷi j = r

)
(19)

For the training phase, our goal was to minimize the equation below, where I equals to 1 when r
and ŷi j are the same, equals to 0 otherwise.

L =
∑
r∈R

I
(
r = ŷi j

)
log p

(
ŷi j = r

)
(20)

In summary, the Algorithm 1 integrates both the implicit relation and the explicit relation in
bipartite graphs, and takes content information into consideration as follows:

Mathematics 2020, 8, 2132 12 of 19

Algorithm 1. Attentive implicit relation recommendation incorporating content information (AIRC).

Input: Bipartite graph G = (U, V, E), content information Cu and Cv

Output: Embeddings ui and v j, prediction ŷi j
1: Partition G into Gu and Gv according to Def. 1
2: user feature matrix fu = CNN(Cu)

3: item feature matrix fv = CNN(Cv)

4: for i = 1, . . . , max_iter do
5: GCN layer: user initial embedding:

hui ← σ[||r∈R(
∑

v j∈Ni
µv j→ui,r)]

Item initial embedding:
hv j ← σ[||r∈R(

∑
u j∈Ni

µui→v j,r)]

6: Attention layer
ni ←

{
fi1, fi2 . . . fiF

}
z(l)i ←W(l)n(l)i

e(l)ii′ ← LeakyRelu(
→
a
(l)T

(z(l)i ||z
(l)
i′))

a(l)ii′ ←
exp

(
e(l)ii′

)
∑

k∈N exp
(
e(l)ik

)
User attentive embedding:

n(l+1)
i ← sigmoid

(∑
i′∈Ni

a(l)ii′ z(l)i′

)
Item attentive embedding:

n(l+1)
j ← sigmoid

(∑
j′∈N j

a(l)j j′ z
(l)
j′

)
7: Dense layer: user hidden representation:

ui ← σ
(
Whui + W2n(l+1)

i

)
item hidden representation:

v j ← σ
(
Whv j + W2n(l+1)

j

)
8: Decoder: p

(
ŷi j = r

)
= euT

i Qrvj∑
t∈R euT

i Qtvj

rate prediction:
ŷi j ←

∑
r∈R

rp
(
ŷi j = r

)
9: Train phase: L =

∑
r∈R

I
(
r = ŷi j

)
log p

(
ŷi j = r

)
update parameter

⇀
a
(l)

, W(l), W, W2 by gradient descent minimizing L
10: end for

According to the algorithm, we first reconstructed the bipartite graph into Gu and Gv. Then step 2
and 3 were obtained by Equations (2)–(10), so that we had the initial user and item feature matrices in
the CNN process. Next, we added an additional graph attention layer shown as step 6, which operated
on Gu and Gv with the pretrained input fu and fv. Finally we trained the attention layer together with
GC–MC from step 5 to step 8 by minimizing the loss L iteratively.

4. Experiment

In this section we evaluated our framework AIRC on the dataset Movielens, which contains users,
items and their content information as well as ratings, which exactly corresponds with our needs.

4.1. Dataset

Movielens is a widely used benchmark for movies, collected by Grouplens Research.
More information can be seen from the Movielens official website (https://grouplens.org/datasets/
movielens/). In this experiment, we mainly used two datasets from Movielens, 100K and 1M.
The statistics are shown in Table 2.

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/

Mathematics 2020, 8, 2132 13 of 19

Table 2. The statistic of the dataset Movielens.

Dataset Items Users Ratings Density

Movielens-1M 3706 6040 1,000,209 0.0447
Movielens-100K 1682 943 100,000 0.0630

Dataset description: Movielens-100K is the movie dataset with over 100,000 ratings. It contains
943 users and 1682 movies. On the other side, Movielens-1M collects 1 million ratings from 6040 users
on 3900 movies. However, after screening those users without valid ratings, only 3706 users are left
to be put in use. For both datasets, we transformed the rating files to construct the bipartite graphs,
consequently constructing the implicit relation graphs. Additionally, they also contained the user
profile and movie profile, which we took as content information and then were fed into our CNN layer
and given attention weights.

Preprocessing: For the user profile, we only used UserID, gender, age, and occupation attributes to
describe users. Firstly, we encoded 0 for female and 1 for male. Then we categorized age into 7 groups,
and occupation into 21 types, then encoded them as listed numbers. For the movie profile, we used
MovieID, genres and title attributes, where genres had 18 types and were encoded into listed numbers.
The handling for titles was different from other attributes: we first created the dictionary from the text
to numbers, and converted the description of the text into a list, then with the help of text convolutional
neural networks as illustrated in Section 3.2.1, we obtained the title feature representation.

Implicit relation graphs (IRG): According to Definition 1, we constructed the user and movie
implicit relation graph. The statistic is summarized in Table 3. We could see that with the first order
shortest path, we already had over 9 million edges for Movielens-1M dataset, not to mention this
number of edges was proportional to the number of orders of shortest path. That is why we only used
the first order shortest path to construct implicit relation graphs.

Table 3. The statistic of the reconstructed implicit graphs.

Dataset Graph No. Nodes No. Edges

Movielens-1M User IRG 3706 9,469,555
Item IRG 6040 32,721,414

Movielens-100K User IRG 943 859,323
Item IRG 1682 1,574,374

4.2. Baseline

As our framework improved the recommendation based on GC–MC algorithms, we compared
our results mainly with GC–MC. Additionally, for movielens-100k, we compared the results with
matrix completion algorithms, and for movielens-1M, we compared our results with recommendation
algorithms cooperated with collaborative filtering algorithms.

GC–MC [18]: it is a graph autoencoder framework designed for bipartite graphs. The main idea
is to learn the user and item representation by message passing. In this comparison experiment, we set
dropout as 0.7 and layer size as [500, 75] in the GCN layer. For Adam, we set the learning rate 0.01.
We adopted batch_size = 50 for Movielens-100K and batch_size = 100 for Movielens-1M.

MC [47]: it is a classic matrix completion method. It aims to recover the low-rank matrix.
GMC [48]: Geometric Matrix Completion (GMC) improves the matrix completion by constraining

the solution to be smooth. It combines the content-based filtering with clustering techniques.
Additionally, the entries are set to 500× 500 for Movielens-100K.

sRGCNN [49]: Separable recurrent multi-graph CNN (sRGCNN) used geometric deep learning to
solve the problem of matrix completion. The architecture contains a CNN for spatial feature learning
and LSTM matrix diffusion. The parameter settings are as follows: Chebyshev polynomials of order
p = 5, output dimension = 32, LSTM cells with 32 features and T = 10 diffusion steps.

Mathematics 2020, 8, 2132 14 of 19

PMF [23]: Probabilistic matrix factorization (PMF) aims to solve the problem of large dataset with
few ratings, especially the dataset that is sparse and unbalanced. The feature dimension is set to 60 as
it performs the best.

U-AutoRec [27]: The model proposed to combine the collaborative filtering algorithm with an
autoencoder. We used a single hidden layer architecture and the number of hidden units is set to 500
and the learning rate as 0.001.

NNMF [24]: Neural network matrix factorization (NNMF) focused on the improvement on matrix
factorization by replacing the inner product by a neural network, so that the inner product and latent
representation are tailored for a different dataset. We set feature dimension as 60 and the learning rate
as 0.005.

4.3. Evaluation Metrics

We used root mean square error (RMSE) as our evaluation:

RMSE =

√∑S
i=1(ri − r̃i)

2

S
(21)

where ri is the real world rating for item i, r̃i is the predicted value and S is the total number of rating.

4.4. Results and Discussion

In this section, we tested our framework AIRC with state-of-art algorithms.
Our experiment environment was Aliyun with 8 vCPU, 32 GiB, Intel Xeon Platinum processor.

To show the improvement of our framework, we used the same parameter setting as in GC–MC,
i.e., batch_size = 50 for Movielens-100K, and batch_size = 100 for Movielens_1M, drop_out = 0.7,
additionally we collaborated features in our attention layer, and we set the dimension of hidden feature
to 8, attention_head = 8.

Movielens-100K:
We first evaluated the performance on Movielens-100k as shown in Table 4.

Table 4. Root mean square error (RMSE) for Movielens-100K. The result of baseline matrix completion
(MC), GMC and sRGCNN is taken from [49].

Algorithm RMSE

MC 0.973
GMC 0.996

sRGCNN 0.929
GC–MC (with features) 0.910

AIRC (Ours) 0.892

We can see that among the traditional matrix completion algorithms, our framework performed
the best with the least RMSE. GMC performed better than MC because GMC was better at handling
sparser dataset like Movielens-100K. sRGCNN improved the result by the usage of neural networks
that extracted the features of users and items. Compared with the traditional matrix completion
algorithm MC, our framework improved the performance by 8.32%. We can see that our framework
improved the results of GC–MC, because we incorporated implicit relation and content information of
users and items, which have deep influences during the recommendation. One thing to notice is that
GC–MC reached its best performance at epoch 89, however our algorithm reached the best at epoch 50.
The reason is that in the first step we already trained the feature vector with CNN, plus the attention
mechanism, thus our framework made more use of the content information.

Movielens-1M:

Mathematics 2020, 8, 2132 15 of 19

In the above experiment, we compared our framework with matrix completion algorithms.
So, for Movielens-1M, we used another type of recommendation algorithms as our baseline:
collaborative filtering algorithms. The result is shown in Table 5. The algorithm AutoRec combines the
autoencoder with collaborative filtering that reconstruct users and items in the output layer. It had
a better result than PMF. NNMF added neural networks based on MF, which is capable of dealing
non-linearity in the dataset. Compared with other matric factorization algorithms and collaborative
filtering algorithms, our framework outperformed and improved RMSE compared with GC–MC by
1.32%. The improvement was not as obvious as Movielens-100K, as the data was much sparser than
Movielens-100K. However, with the rich information provided by content information and the implicit
relation among the same type of entities, our framework was more effective.

Table 5. RMSE for Movielens-1M. The result of baseline probabilistic matrix factorization (PMF),
U-AutoRec and NNMF is taken from [22].

Algorithm RMSE

PMF 0.883
U-AutoRec 0.874

NNMF 0.843
GC–MC (with features) 0.832

AIRC (Ours) 0.821

Cold-start Analysis:
As illustrated before, our framework reached the best RMSE at the earlier stage, i.e., relieving

the problem of cold-start. As shown in Figure 7a,b, compared with GC–MC, our framework had
less RMSE at the start and smoothly reduced, especially for Movielens-100K, which had a smaller
network structure. At the start, our framework reduced to 4.7% RMSE for Movielens-1M, and reduced
to 8.0% RMSE for Movielens-100K. Besides, a bigger gap occurred as the epoch increased. We can
see that at epoch 9, the difference increased to 14.7% compared with the start point for Movielens-1M.
So, we could conclude that our framework not only reduced the cold-start problem at the beginning
but also reached the best result more quickly.

Moreover, in order to show the effectiveness of the CNN part in our framework, which aims
to reduce the problem of cold-start, we set up an ablation experiment and the result is shown in
Figure 7c,d. Instead of pretrained fu, fv that fed into the graph attention mechanism, we set two
comparison experiments, namely random initialized and one-hot initialized user and item matrices,
which were fed into the graph attention mechanism.

We can see from Figure 7c,d that the impact of initializing the user and item feature matrices
differed in the same task: (1) our framework that incorporates CNN to process the features performed
best when dealing with the cold-start problem, as the features were pretrained. Take dataset
Movielens-100K for example, AIRC-CNN have already reached a RMSE with 1.13, which was 30% less
than AIRC-RandomInitialzation and 6% less than AIRC-OneHot. Besides, the curve of AIRC-CNN
was smoother and less than those two algorithms; (2) our framework that incorporated one-hot for
feature processing performed better than that of random initialization. The reason is that one-hot
initialization takes real-world features into consideration, rather than completely randomized. However,
our framework, no matter how the feature matrices were initialized, started with a smaller RMSE and
reduced quickly compared with GC–MC.

Thus, we could see that with the pretrained feature matrix, through the graph attention mechanism
that mined the implicit relations in the bipartite graphs, our framework improved the effectiveness
compared with GC–MC and relieved the problem of the cold-start.

Mathematics 2020, 8, 2132 16 of 19

Figure 7. (a) The cold-start comparison of dataset Movielens-1M between our framework and GC–MC;
(b) the cold-start comparison of dataset Movielens-100K between our framework and GC–MC; (c) the
cold-start comparison of dataset Movielens-1M among the original pretrained user and item feature
matrices, random initialized feature matrices and one-hot feature matrices and (d) the cold-start
comparison of dataset Movielens-100K among the original pretrained user and item feature matrices,
random initialized feature matrices and one-hot feature matrices.

5. Conclusions

In this paper, we presented AIRC, a GC–MC based framework, which learns the implicit relation
and content information in bipartite graphs. We reconstructed the bipartite graphs into implicit
relation graphs and adopted the graph attention mechanism. The reconstructed implicit relation graph
contained the same entity type, which was linked if there existed the shortest path between them in the
bipartite graph. Besides, we used a CNN to pretrain the content information of users and items, so that
each user and item had its unique embedding and those who shared similar interests became neighbors.
Then through the graph attention mechanisms, we, in order to obtain the hidden representation of
entities, highlighted on one hand the important features and on the other hand the important neighbors,
thus the representation preserved the necessary content and structural information. Then we added
the attention mechanism as a layer to the GC–MC structure that considered the interaction between
entities as message passing, and trained together in order to increase the accuracy of recommendation.
Finally we tested our framework with the Movielens dataset. Experiments show that ours not only
improved RMSE but also reduced the cold-start problem, compared with the original GC–MC and
other state-of-art matrix completion and collaborative filtering algorithms.

In future works, we could improve the performance of our framework by replacing the CNN
by LSTM so that the history behavior of users or items was learned. In our framework, CNN only

Mathematics 2020, 8, 2132 17 of 19

considered the interaction behavior of users and items. With the help of LSTM, which takes interaction
memory into account, a long-term behavior of users could be learned. Another possible improvement
is to reduce the complexity of reconstructed implicit relation graph. Since so far we only considered the
1st-order implicit relation graph, in order to mine deeper relations of the same type entities, we could
reduce the complexity using Node2vec etc.

Author Contributions: Conceptualization, X.M. and Y.W.; Data curation, X.M.; Formal analysis, X.M.;
Methodology, X.M.; Project administration, L.D.; Software, X.M.; Supervision, L.D., Y.L. and M.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This study was partially supported by National Natural Science Foundation of China (61872164) and
Program of Science and Technology Development Plan of Jilin Province of China (20190302032GX).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hu, X.; Mai, Z.; Zhang, H.; Xue, Y.; Zhou, W.; Chen, X. A hybrid recommendation model based on weighted
bipartite graph and collaborative filtering. In Proceedings of the International Conference on Web Intelligence
Workshops, Omaha, NE, USA, 13–16 October 2016; pp. 119–122.

2. Covington, P.; Adams, J.; Sargin, E. Deep Neural Networks for Youtube Recommendations. 2016.
Available online: https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45530.
pdf (accessed on 20 December 2019).

3. Wang, H.; Zhang, F.; Xie, X.; Guo, M. DKN: Deep knowledge-aware network for news recommendation.
In Proceedings of the 27th International Conference on World Wide Web (WWW’18), Lyon, France, 23–27
April 2018; pp. 1835–1844.

4. Cheng, H.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.;
Ispir, M.; et al. Wide & deep learning for recommender systems. arXiv 2016, arXiv:1606.07792.

5. Hu, B.; Shi, C.; Zhao, W.X.; Yu, P.S. Leveraging meta-path based context for top-n recommendation with
a neural co-attention model. In Proceedings of the Knowledge Discovery in Databases, Dublin, Ireland,
10–14 September 2018; pp. 1531–1540.

6. Li, J.; Ren, P.; Chen, Z.; Ren, Z.; Ma, J. Neural attentive session-based recommendation. arXiv 2017,
arXiv:1711.04725.

7. Robin, D.; Hugues, B. Long and short-term recommendations with recurrent neural networks. arXiv 2017,
arXiv:1608.07400.

8. Baocheng, W.; Wentao, C. Attention-Enhanced Graph Neural Networks for Session-Based Recommendation.
Mathematics 2020, 8, 1607.

9. Wu, C.Y.; Ahmed, A.; Beutel, A.; Smola, A.J.; Jing, H. Recurrent Recommender Networks. In Proceedings of
the 10th ACM International Conference on Web Search and Data Mining (WSDM’17), New York, NY, USA,
6 February 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 495–503.

10. Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W.L.; Leskovec, J. Graph convolutional neural
networks for web-scale recommender systems. arXiv 2018, arXiv:1806.01973.

11. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016,
arXiv:1609.02907.

12. Grover, A.; Leskovec, J. Node2vec: Scalable feature learning for networks. In Proceedings of the Knowledge
Discovery in Databases, Riva del Garda, Italy, 19–23 September 2016; pp. 855–864.

13. Deng, H.; Lyu, M.R.; King, I. A generalized co-hits algorithm and its application to bipartite graphs.
In Proceedings of the Knowledge Discovery in Databases, Bled, Slovenia, 7–11 September 2009; pp. 239–248.

14. Jiang, S.; Hu, Y.; Kang, C.; Daly, T., Jr.; Yin, D.; Chang, Y.; Zhai, C. Learning query and document relevance
from a web-scale click graph. In Proceedings of the Special Interest Group on Information Retrieval, Pisa, Italy,
17–21 July 2016; pp. 185–194.

15. He, X.; Gao, M.-Y.; Kan, M.; Wang, D. Birank: Towards ranking on bipartite graphs. arXiv 2017,
arXiv:1708.04396. [CrossRef]

16. Van den Berg, R.; Kipf, T.N.; Welling, M. Graph convolutional matrix completion. arXiv 2017, arXiv:1706.02263.

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45530.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45530.pdf
http://dx.doi.org/10.1109/TKDE.2016.2611584

Mathematics 2020, 8, 2132 18 of 19

17. Ming, G.; Leihui, C.; Xiangnan, H.; Aoying, Z. BiNE: Bipartite network embedding. In Proceedings of the
41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor,
MI, USA, 8–12 July 2018; pp. 715–724.

18. Yu, L.; Zhang, C.; Pei, S.; Sun, G.; Zhang, X. WalkRanker: A unified pairwise ranking model with multiple
relations for item recommendation. In Proceedings of the Association for the Advancement of Artificial
Intelligence, New Orleans, LA, USA, 2–7 February 2018.

19. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph attention networks. arXiv 2017,
arXiv:1710.10903.

20. Ali, F.; El-Sappagh, S.; Islam, S.M.R.; Ali, A.; Kwak, K.-S. An Intelligent Healthcare Monitoring Framework
Using Wearable Sensors and Social Networking Data. In Future Generation Computer Systems; Elsevier:
Amsterdam, The Netherlands, 2020; Volume 114, pp. 23–43.

21. Ayvaz, E.; Kaplan, K.; Kuncan, M. An integrated LSTM neural networks approach to sustainable balanced
scorecard-based early warning system. IEEE Access 2020, 8, 37958–37966. [CrossRef]

22. Dziugaite, G.K.; Roy, D.M. Neural network matrix factorization. arXiv 2015, arXiv:1511.06443.
23. Zheng, L.; Lu, C.-T.; He, L.; Xie, S.; Noroozi, V.; Huang, H.; Yu, P.S. MARS: Memory attention-aware

recommender system. arXiv 2018, arXiv:1805.07037.
24. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the

Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1024–1034.
25. Yifan, H.; Hongzhi, C.; Changji, L.; James, C.; Ming-Chang, Y. A representation learning framework for

property graphs. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, Anchorage, AK, USA, 3–7 August 2019; pp. 65–73.

26. Xiao, H.; Qingquan, S.; Yuening, L.; Xia, H. Graph recurrent networks with attributed random walks.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
Anchorage, AK, USA, 3–7 August 2019; pp. 732–740.

27. Hongbo, D.; Michael, L.; Irwin, K. A generalized co-HITS algorithm and its application to bipartite graphs.
In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Paris, France, 28 June–1 July 2009; pp. 239–248.

28. Xiang, W.; Xiangnan, H.; Yixin, C.; Meng, L.; Chua, T.-S. KGAT: Knowledge graph attention network
for recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, Anchorage, AK, USA, 3–7 August 2019, pp. 950–958.

29. Sperduti, A.; Starita, A. Supervised neural networks for the classification of structures. IEEE Trans. Neural
Netw. 1997, 8, 714–735. [CrossRef] [PubMed]

30. Gori, M.; Monfardini, G.; Scarselli, F. A new model for learning in graph domains. In Proceedings of the
IEEE International Joint Conference of Neural Networks, Montreal, QC, Canada, 31 July–4 August 2005;
pp. 729–734.

31. John, L.; Ryan, R.; Xiangnan, K. Graph classification using structural attention. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK,
19–23 August 2018; pp. 1666–1674.

32. MovieLens Based Recommender System. Available online: http://blog.csdn.net/chengcheng1394/article/

details/78820529 (accessed on 15 December 2019).
33. Kim, Y. Convolutional neural networks for sentence classification. arXiv 2014, arXiv:1408.5882.
34. Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent models of visual attention. arXiv 2014,

arXiv:1406.6247.
35. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhutdinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell:

Neural image caption generation with visual attention. arXiv 2015, arXiv:1502.03044.
36. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate.

arXiv 2014, arXiv:1409.0473.
37. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention

is all you need. arXiv 2017, arXiv:1706.03762.
38. Dai, H.; Dai, B.; Song, L. Discriminative embeddings of latent variable models for structured data.

In Proceedings of the International Conference on Machine Learning (ICML), New York City, NY, USA,
19–24 June 2016; pp. 2702–2711.

39. Recht, E.J.C.B. Exact matrix completion via convex optimization. arXiv 2012, arXiv:0805.4471.

http://dx.doi.org/10.1109/ACCESS.2020.2973514
http://dx.doi.org/10.1109/72.572108
http://www.ncbi.nlm.nih.gov/pubmed/18255672
http://blog.csdn.net/chengcheng1394/article/details/78820529
http://blog.csdn.net/chengcheng1394/article/details/78820529

Mathematics 2020, 8, 2132 19 of 19

40. Monti, F.; Bronstein, M.M.; Bresson, X. Geometric matrix completion with recurrent multi-graph neural
networks. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA,
4–9 December 2017; pp. 3697–3707.

41. Wang, H.; Wang, N.; Yeung, D.-Y. Collaborative deep learning for recommender systems. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney,
Australia, 10–13 August 2015; pp. 1235–1244.

42. Kalofolias, V.; Bresson, X.; Bronstein, M.; Vandergheynst, P. Matrix completion on graphs. arXiv 2014,
arXiv:1408.1717.

43. Mnih, A.; Salakhutdinov, R.R. Probabilistic matrix factorization. In Proceedings of the Advances in Neural
Information Processing Systems, Vancouver, BC, Canada, 8–10 December 2008; pp. 1257–1264.

44. Sedhain, S.; Menon, A.K.; Sanner, S.; Xie, L. Autorec: Autoencoders meet collaborative filtering. In Proceedings
of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 111–112.

45. Antoine, B.; Nicolas, U.; Alberto, G.-D.; Jason, W.; Oksana, Y. Translating embeddings for modeling
multi-relational data. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe,
NV, USA, 5–10 December 2013; pp. 2787–2795.

46. Han, X.; Minlie, H.; Yu, H.; Xiaoyan, Z. TransA: An adaptive approach for knowledge graph embedding.
arXiv 2015, arXiv:1509.05490.

47. Guo, H.; Tang, R.; Ye, Y.; Li, Z.; He, X. DeepFM: A factorization-machine based neural network for CTR
prediction. arXiv 2017, arXiv:1703.04247.

48. Zheng, L.; Noroozi, V.; Yu, P.S. Joint deep modeling of users and items using reviews for recommendation.
arXiv 2017, arXiv:1701.04783.

49. Ying, H.; Zhuang, F.; Zhang, F.; Liu, Y.; Xu, G.; Xie, X.; Xiong, H.; Wu, J. Sequential recommender system
based on hierarchical attention networks. In Proceedings of the IJCAI International Joint Conference on
Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 3926–3932.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Work
	Implicit Relation Graph Generation
	Content Information Extranction
	CNN Process
	Attention Mechanism

	Structure

	Experiment
	Dataset
	Baseline
	Evaluation Metrics
	Results and Discussion

	Conclusions
	References

