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Abstract: In this paper, we present a numerical solution of a two-phase fractional Stefan problem
with time derivative described in the Caputo sense. In the proposed algorithm, we use a special case
of front-fixing method supplemented by the iterative procedure, which allows us to determine the
position of the moving boundary. The presented method is an extension of a front-fixing method for
the one-phase problem to the two-phase case. The novelty of the method is a new discretization of
the partial differential equation dedicated to the second phase, which is carried out by introducing a
new spatial variable immobilizing the moving boundary. Then, the partial differential equation is
transformed to an equivalent integro-differential equation, which is discretized on a homogeneous
mesh of nodes with a constant spatial and time step. A new convergence criterion is also proposed
in the iterative algorithm determining the location of the moving boundary. The motivation for the
development of the method is that the analytical solution of the considered problem is impossible
to calculate in some cases, as can be seen in the figures in the paper. Moreover, the change of the
boundary conditions makes obtaining a closed analytical solution very problematic. Therefore,
creating new numerical methods is very valuable. In the final part, we also present some examples
illustrating the comparison of the analytical solution with the results received by the proposed
numerical method.

Keywords: moving boundary problems; fractional derivatives and integrals; stefan problems;
phase changes; numerical method

1. Introduction

Differential equations are an excellent tool for describing problems with technical applications [1].
A special class of differential equations are the so-called moving boundary problems which are one of
the most important area within partial differential equations. This particular kind of boundary-value
problem was originally intended to describe the solid–liquid phase change process, but also refers
to such phenomena as solute transport, molecular diffusion or controlled drug release [2]. In recent
years, the classical Stefan problem has been very well studied and described in many papers and
monographs (compare [3–7] and references therein).

The fractional Stefan problem is a natural generalization of the classical Stefan problem and is
related to the anomalous mass or heat transfer usually occurs in materials with strong heterogeneities
across a range of length scales. The movement of molecules in such materials is described by the law
< x2(t) >∼ Dαtα, where < x2(t) > is a mean squared displacement of the diffusing molecule in the
course of time t and Dα is the generalized diffusion coefficient. The first paper devoted to this issue
was published in 2004 and concerned the mathematical modeling of the controlled release of a drug
from slab matrices [8]. Recently, there has been an increase in the number of scientific publications
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concerning the moving boundary problems modeled by the anomalous diffusion equation. Basically,
published papers deal with three classes of phenomena. As mentioned above, the first concerned
the controlled release of a drug from slab matrices [9,10]. A second class of problems relates to
mathematical modeling of the thermal conductivity with phase transitions [11–14] and the last class
refers to mathematical modeling a movement of the shoreline in a sedimentary ocean basin [15,16].

Most of the analytical solutions of fractional Stefan problem were obtained for the one-phase
case, which is a special case of the two-phase problem. For this reason, we will recall the important
results obtained for the one-phase problem. Liu Junyi and Xu Mingyu [8] studied the one-phase
Stefan problem with fractional anomalous diffusion (Riemann–Liouville derivative with respect to
time variable was used) and got an exact solution (concentration of the drug in the matrix) in terms of
the Wright’s function. They also showed that position of the penetration of solvent at time t moving
as ∼t

α
2 , 0 < α ≤ 1. Xicheng Li et al. [17] considered one-phase fractional Stefan problem with

Caputo derivative with respect to time and two types of space-fractional derivatives (Caputo and
Riemann–Liouville). They got the solution in terms of the generalized Wright’s function. It should be
noted that, in both cases deliberated by the authors, the function describing the moving boundary is
∼t

α
β , 0 < α ≤ 1, 1 < β ≤ 2, where α and β denote the orders of the fractional derivatives with respect

to time and spatial variable, respectively. Voller [12] analytically solved a limit case fractional Stefan
problem describing the melting process. For the governing equation with a Caputo derivative with
respect to time of order 0 < β ≤ 1 and for the same fractional derivative with respect to space for the

flux of order 0 < α ≤ 1, he showed that a melting front is described by power function t
β

α+1 . More
analytical results are published in [18–20].

An important result with respect to this paper is the closed analytical solution of the two-phase
fractional Lamé–Clapeyron–Stefan problem in a semi-infinite region obtained by Roscani and
Tarzia [21], which is recalled in Section 3. The problem involves determination of three functions,
namely, u1, u2 and S fulfilling two subdiffusion Equations (13) and (14) and additional differential
Equation (18) (interface energy balance condition) governing function S. The authors showed that
u1 and u2 can be expressed in terms of the Wright’s function, while the location of the phase-change
interface is described by power function (21), where parameter p can be evaluated form transcendental
Equation (22). This solution is especially useful for validation of the numerical method proposed in
Section 4.

An alternative to the closed analytical solutions are those received by numerical methods. There
are many techniques of numerical solving of classical Stefan problem; some of them have been
generalized to the case of the fractional order. Xiaolong Gao et al. [22] generalized the boundary
immobilization technique (also known as front-fixing method [3]) to the fractional Stefan problem
with a space-fractional derivative. Another variant of the front-fixing method was proposed by Błasik
and Klimek [23] and applied to the fractional Stefan problem with time-fractional derivative.

Our aim is to develop the numerical method of solving the two-phase, one-dimensional fractional
Stefan problem. The proposed numerical scheme is an extension of the front-fixing method [23] to the
two-phase problem. Our new approach is based on the suitable selection of the new space coordinates.
The original coordinate system (x, τ) is transformed into a two new orthogonal systems (v1, τ) and
(v2, τ) using transformation (27) and (43), respectively. Both new spatial variables v1, v2 depend
on the parameter p which is unknown and chosen a priori. The proposed numerical method uses
integro-differential equations equivalent to the corresponding governing differential equations of the
problem. The solutions of the integro-differential equations are obtained separately for each phase and
fulfill the interface energy balance condition (the moving boundary is fixed ) only when the value of
parameter p is correct. Selection of the appropriate value of parameter p is implemented by iterative
algorithm on the basis of the fractional Stefan condition.

The paper is organized as follows. In the next section, we introduce definitions of the fractional
integrals and derivatives together with some of their properties. In Section 3, we formulate a
mathematical model describing the melting process and recall closed analytical similarity solution for
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two-phase fractional Stefan problem. Section 4 is devoted to the new numerical method of solving
of two-phase fractional Stefan problem, which is a extension of the method developed in [23] to the
two-phase case. Section 5 contains the analytical and numerical results. The last two sections includes
a discussion and conclusions.

2. Preliminaries

Let us recall the basic definitions and properties from fractional calculus [24,25] which are
further applied to formulate and solve the two-phase fractional Stefan problem modeled by two
linear equations with Caputo time derivative of order α ∈ (0, 1]. First, we define the left-sided
Riemann–Liouville integral.

Definition 1. The left-sided Riemann–Liouville integral of order α, denoted as Iα
0+, is given by the following

formula for Re(α) > 0:

Iα
0+ f (t) :=

1
Γ(α)

∫ t

0

f (u)du
(t− u)1−α

, (1)

where Γ is the Euler gamma function.

The left-sided Caputo derivative of order α ∈ (0, 1) denoted by cDα
0+ is defined via the above

left-sided Riemann–Liouville integral cDα
0+ f (t) := I1−α

0+ f ′(t).

Definition 2. Let Re(α) ∈ (0, 1]. The left-sided Caputo derivative of order α is given by the formula:

cDα
0+ f (t) :=

 1
Γ(1−α)

∫ t
0

f
′
(u)du

(t−u)α , 0 < α < 1,
d f (t)

dt , α = 1.
(2)

An important property of fractional integral operator given by Formula (1) is called a semigroup
property, which allows composition of two left-sided fractional integrals.

Property 1 (cf. Lemma 2.3 [24]). If Re(α) > 0 and Re(β) > 0, then the equation

Iα
0+ Iβ

0+ f (t) = Iα+β
0+ f (t) (3)

is satisfied at almost every point t ∈ [0, b] for f (t) ∈ Lp(0, b) where 1 ≤ p ≤ ∞. If α + β > 1, then the above
relation holds at any point of [0, b].

The composition rule of the left-sided Riemann–Liouville integral with the left-sided Caputo
derivative is a consequence of the semigroup property for fractional integrals.

Property 2 (cf. Lemma 2.22, [24]). Let function f ∈ C1(0, b). Then, the composition rule for the left-sided
Riemann–Liouville integral and the left-sided Caputo derivative is given as follows:

Iα
0+

cDα
0+ f (t) = f (t)− f (0). (4)

The two-parameter Wright function determined in a complex plane plays important role in the
theory of partial differential equations of fractional order. It is a generalization of the complementary
error function.

Definition 3. Let γ > −1, δ ∈ C, z ∈ C. The two-parameter Wright function is given as the following series:

W(z; γ, δ) :=
∞

∑
k=0

zk

k!Γ(γk + δ)
. (5)
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We note that for γ = − 1
2 , δ = 1 the above two-parameter Wright function becomes complementary

error function [26]:

W
(
−z;−1

2
, 1
)
= erfc

( z
2

)
. (6)

For γ = − 1
2 , δ = − 1

2 the two-parameter Wright function can be expressed by the formula [27]:

W
(
−z;−1

2
,−1

2

)
=

1√
π

exp
(
− z2

4

)
. (7)

3. Formulation of the Problem

The two-phase fractional Stefan problem is a mathematical model describing the solidification
and melting process. The mathematical formulation of the problem involves an anomalous diffusion
equation for the liquid and solid phases and a condition at the liquid–solid interface, called the
fractional Stefan condition, which describes the position of the phase change front. At the moving
boundary X = s(t), the temperature U is constant and equal to melting point Us. We are considering
the melting of a semi-infinite, one-dimensional slab occupying X ≥ 0, where the phase change interface
moves from the heat source at a temperature U = U0 at the boundary X = 0. A simple scheme of the
model is shown in Figure 1.

Liquid Solid

Interface

U0

Us

U∞

s(t)

U(x,t)

X

Figure 1. Semi-infinite slab melting from x = 0 due to the high temperature U0.

Consider the following governing equations of the model

c1ρ1
cDα

0+,tU1(X, t) = K1
∂2U1(X, t)

∂X2 , 0 < X < s(t) ≤ l1, t > 0, (8)

c2ρ2
cDα

0+,tU2(X, t) = K2
∂2U2(X, t)

∂X2 , s(t) < X < ∞, t > 0, (9)

where U1 denotes the temperature in the liquid phase, U2 is the temperature in the solid phase,
s(t) represents the position of the moving boundary, K is the modified thermal conductivity (has SI
unit [J· s−α·m−1· K−1]), ρ is the density, c is the specific heat and subscripts 1 and 2 indicate liquid
and solid phase, respectively. Equations (8) and (9) should be supplemented by Dirichlet conditions:

U1(0, t) = U0, U1(s(t), t) = U2(s(t), t) = Us, lim
X→∞

U2(X, t) = U∞, t > 0. (10)
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At t = 0, the liquid phase does not exist, so we use two initial conditions:

U2(X, 0) = U∞, s(0) = 0. (11)

The position of the moving boundary s(t) is determined by the fractional Stefan condition,
which expresses the heat balance in the melting layer:

Lρ1
cDα

0+,ts(t) = K2
∂U2(X, t)

∂X

∣∣∣∣
X=s(t)

−K1
∂U1(X, t)

∂X

∣∣∣∣
X=s(t)

, (12)

where L is the latent heat. Let us note that the above mathematical model depends on eight parameters.
To simplify of the studied problem, we introduce the following dimensionless variables

x =
X
l1

, τ = t

(
K0

c0ρ1l2
1

) 1
α

, u1 =
U1 −Us

U0 −Us
, u2 =

U2 −Us

U0 −Us
, S =

s
l1

,

which reduces the number of free parameters to five and makes it possible study their impact on
the solution.

We can rewrite governing Equations (8) and (9) in a non-dimensional form

cDα
0+,τu1(x, τ) = κ1

∂2u1(x, τ)

∂x2 , 0 < x < S(τ) ≤ 1, τ > 0, (13)

cDα
0+,τu2(x, τ) = κ2

∂2u2(x, τ)

∂x2 , S(τ) < x < ∞, τ > 0, (14)

supplemented with the boundary conditions

u1(0, τ) = 1, u1(S(τ), τ) = u2(S(τ), τ) = 0, lim
x→∞

u2 (x, τ) =
U∞ −Us

U0 −Us
, τ > 0, (15)

initial conditions
u2(x, 0) =

U∞ −Us

U0 −Us
, (16)

S(0) = 0, (17)

and the fractional Stefan condition

cDα
0+,τS(τ) = λ2

∂u2(x, τ)

∂x

∣∣∣∣
x=S(τ)

−λ1
∂u1(x, τ)

∂x

∣∣∣∣
x=S(τ)

, (18)

where κ1 = (K1/K0)(c0/c1), κ2 = (K2/K0)(c0/c2), λ1 = (U0−Us)K1c0
LK0

and λ2 = (U0−Us)K2c0
LK0

are the
standard values of the respective variables.

According to results obtained by Roscani and Tarzia [21], the closed analytical solution of the
two-phase fractional Stefan problem (13)–(18) is given by the functions

u1(x, τ) = 1−
W
(

−x√
κ1τα/2 ;− α

2 , 1
)
− 1

W
(
−p√

κ1
;− α

2 , 1
)
− 1

, (19)

u2(x, τ) =
U∞ −Us

U0 −Us

W
(
−p√

κ2
;− α

2 , 1
)
−W

(
−x√

κ2τα/2 ;− α
2 , 1
)

W
(
−p√

κ2
;− α

2 , 1
) , (20)

S(τ) = pτα/2, (21)
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p
Γ(1 + α

2 )

Γ(1− α
2 )

=
λ2√

κ2

U∞ −Us

U0 −Us

W
(
−p√

κ2
;− α

2 , 1− α
2

)
W
(
−p√

κ2
;− α

2 , 1
) − λ1√

κ1

W
(
−p√

κ1
;− α

2 , 1− α
2

)
W
(
−p√

κ1
;− α

2 , 1
)
− 1

. (22)

It should be noted that the above solution reduces to the fractional one-phase problem [18,19] for
u2 → 0 .

When α→ 1, then from (19)–(22) the following results of the classical two-phase Stefan problem
are recovered:

u1(x, τ) = 1−
erfc

(
x

2
√

κ1τ

)
− 1

erfc
(

p
2
√

κ1

)
− 1

, (23)

u2(x, τ) =
U∞ −Us

U0 −Us

erfc
(

p
2
√

κ2

)
− erfc

(
x

2
√

κ2τ

)
erfc

(
p

2
√

κ2

) , (24)

S(τ) = p
√

τ, (25)

p
2
= λ2

U∞ −Us

U0 −Us

exp
(
− p2

4κ2

)
√

πκ2 erfc
(

p
2
√

κ2

) − λ1

exp
(
− p2

4κ1

)
√

πκ1

(
erfc

(
p

2
√

κ1

)
− 1
) . (26)

4. Numerical Solution

The numerical method proposed in the paper is an extension of the technique developed in [23]
to the two-phase problem. Applying the finite difference method to the fractional Stefan problem, we
encounter a number of difficulties related to the discretization of the fractional derivative with respect
to the time variable. As we know, the Caputo derivative is a non-local operator, which is defined on an
interval. Suppose the positions that the moving boundary will reach at different times are known and
are at uniform spaced intervals in the same time layer (see at the left side of Figure 2). For such a grid,
the discretization of the Caputo derivative at some node with respect to time is very difficult because
it requires values of function u1 (or u2) for all previous times (where the spatial variable is fixed) in
points, which do not overlap with the mesh nodes. Let us also notice one important fact regarding
discretization of Equation (13) leading to some ambiguity. The Caputo derivative requires for each
point of the liquid phase their history from time τ = 0, but they do not exist before they reach the
melting point. It seems that the only way to solve a mesh problem is a suitable choice of new space
coordinates for Equations (13) and (14).

Figure 2. Meshes for α = 1, p = 1, m1 = m2 = 5, n = 5, l2
l1
= 2.
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Let us first consider the region occupied by the first phase bounded by x = 0 and x = S(τ),
marked in blue in Figure 2. For Equation (13), it is convenient to replace the spatial variable with the
following similarity variable [28]:

v1 =
x

S(τ)
=

x
pτα/2 , (27)

which has an important property, namely it fixes the moving boundary at v1 = 1 for all τ. We transform
the first-order derivative with respect to the spatial variable:

∂u1(x, τ)

∂x
=

∂v1

∂x
∂u1(v1, τ)

∂v1
=

1
pτα/2

∂u1(v1, τ)

∂v1
. (28)

Subsequently, for the second-order spatial derivative, we have:

∂2u1(x, τ)

∂x2 =
1

p2τα

∂2u1(v1, τ)

∂v2
1

. (29)

For the first-order partial derivative in time, we have:

∂u1(x, τ)

∂τ
=

∂u1(v1, τ)

∂τ
− αv1

2τ

∂u1(v1, τ)

∂v1
. (30)

The Caputo derivative of function u1(v1, τ) with respect to the time variable can be expressed
as follows:

cDα
0+,τu1(v1, τ) =

1
Γ(1− α)

∫ τ

0
(τ − ξ)−α ∂

∂ξ
u1(v1, ξ)dξ

− αv1

2Γ(1− α)

∫ τ

0
(τ − ξ)−α 1

ξ

∂

∂v1
u1(v1, ξ)dξ.

(31)

Using Formulas (29) and (31), we write Equation (13) in coordinate system (v1, τ):

1
Γ(1− α)

∫ τ

0

1
(τ − ξ)α

∂u1(v1, ξ)

∂ξ
dξ−

αv1

2Γ(1− α)

∫ τ

0

1
(τ − ξ)α

1
ξ

∂u1(v1, ξ)

∂v1
dξ =

κ1

p2τα

∂2u1(v1, τ)

∂v2
1

.
(32)

We integrate the previous equation applying the left-sided Riemann–Liouville integral of order
α ∈ (0, 1) and we get the following equation:

Iα
0+,τ

cDα
0+,τu1(v1, τ)− αv1

2
Iα
0+,τ I1−α

0+,τ

(
∂

∂v1

u1(v1, τ)

τ

)
=

κ1

p2 Iα
0+,τ

(
1

τα

∂2u1(v1, τ)

∂v2
1

)
. (33)

Finally, using Properties 1 and 2 in Equation (33), we obtain an integro-differential equation in the
form of:

u1(v1, τ) = u1(v1, 0) +
αv1

2

∫ τ

0

∂

∂v1

u1(v1, ξ)

ξ
dξ+

κ1

p2Γ(α)

∫ τ

0

1
(τ − ξ)1−α

1
ξα

∂2u1(v1, ξ)

∂v2
1

dξ

. (34)

The kernel of the second integral on the right-hand side of Formula (34) causes some difficulties
in deriving a numerical scheme. For this reason we are introducing an auxiliary function:

ū1(v1, τ) = u1(v1, τ)τ−α, (35)
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which leads to the integro-differential equation:

ū1(v1, τ)τα = ū1(v1, 0)τα
0 +

αv1

2

∫ τ

0

∂

∂v1

ū1(v1, ξ)

ξ1−α
dξ+

κ1

p2Γ(α)

∫ τ

0

1
(τ − ξ)1−α

∂2ū1(v1, ξ)

∂v2
1

dξ,
(36)

supplemented with the boundary conditions

ū1(0, τ) = τ−α, ū1(1, τ) = 0,

and initial condition
ū1(v1, 0) = 0.

The region marked in blue in Figure 2 in the (x, τ) plane is transformed into the unit square (in the
general case to the rectangle) using the transformation (27). The rectangular mesh created in this way
consists of horizontal lines spaced ∆τ = 1/(np2/α) units apart and vertical lines spaced ∆v1 = 1/m1

units apart. The points ((v1)i, τj) = (i∆v1, j∆τ) where i = 0, . . . , m1 and j = 0, . . . , n, of intersection of
the horizontal and vertical lines are grid nodes. We denote the value of function ū1 at point (i∆v1, j∆τ)

by (ū1)i,j. At this stage, the value of parameter p is not known and chosen a priori. Construction
of similarity variable (27) requires an additional assumption for variable τ. Let τ0 be a very small
positive number.

The method of discretization of the integro-differential Equation (36) is described in detail in [23]
and leads to an implicit scheme:

(ū1)i−1,k+1(−r1
k+1,k+1 + q1

i,k+1) + (ū1)i,k+1(τ
α
k+1 + 2r1

k+1,k+1) + (ū1)i+1,k+1(−r1
k+1,k+1 − q1

i,k+1)

= (ū1)i,0τα
0 +

k

∑
j=0

r1
j,k+1((ū1)i−1,j − 2(ū1)i,j + (ū1)i+1,j) +

k

∑
j=1

q1
i,j((ū1)i+1,j − (ū1)i−1,j),

(37)

where

r1
j,k+1 =

cj,k+1κ1

p2Γ(α)(∆v1)2 , q1
i,j =

αiτα−1
j ∆τ

4
, (38)

cj,k+1 =



(∆τ)α

α(α+1)

(
kα+1 − (k− α)(k + 1)α

)
, for j = 0,

(∆τ)α

α(α+1) ((k− j + 2)α+1 + (k− j)α+1

−2(k− j + 1)α+1), for 1 ≤ j ≤ k,
(∆τ)α

α(α+1) , for j = k + 1.

(39)

Weights (39) are the result of application of the trapezoidal rule [29] to the last integral term in
Formula (36). The obtained numerical scheme can be written in the matrix form

A(Ū1)k+1 = B, (40)
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where Ū1 is a vector of unknown values of function ū1 at instant τk+1. The elements of matrices A and
B are defined as follows:

A =



a2
k+1 a3

1,k+1 0 0 · · · 0 0 0
a1

2,k+1 a2
k+1 a3

2,k+1 0 · · · 0 0 0
0 a1

3,k+1 a2
k+1 a3

3,k+1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 a1

i,k+1 a2
k+1 a3

i,k+1 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · a1

m1−2,k+1 a2
k+1 a3

m1−2,k+1
0 0 0 0 · · · 0 a1

m1−1,k+1 a2
k+1


(m1−1)×(m1−1)

B =



b1 − a1
1,k+1(ū1)0,k+1

b2

b3
...
bi
...

bm1−2

bm1−1 − a3
m1−1,k+1(ū1)m1,k+1


(m1−1)×1

where

a1
i,k+1 := −r1

k+1,k+1 + q1
i,k+1,

a2
k+1 := τα

k+1 + 2r1
k+1,k+1,

a3
i,k+1 := −r1

k+1,k+1 − q1
i,k+1,

bi := (ū1)i,0τα
0 +

k

∑
j=0

r1
j,k+1((ū1)i−1,j − 2(ū1)i,j + (ū1)i+1,j),

+
k

∑
j=1

q1
i,j((ū1)i+1,j − (ū1)i−1,j).

We recover the values of function u1 in coordinate system (x, τ) by applying formulas

(u1)i,j = (ū1)i,jτ
α
j , (41)

xi,j = (v1)i pτα/2
j . (42)

The region marked in red in Figure 2 in the (x, τ) plane is transformed into the unit square using
the following transformation:

v2 =
x− pτα/2

l2/l1 − pτα/2 , (43)

which fixes the moving boundary at v2 = 0 for all τ. Let us note that the mesh for the semi-infinite
region contains an infinite number of nodes, which makes it impossible to perform any numerical
calculations. Therefore, from a practical point of view, the Dirichlet boundary condition in infinity (15)
can be replaced by the following condition:

u2 (l2/l1, τ) =
U∞ −Us

U0 −Us
, (44)
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where l2 is a sufficiently large positive real number.
We transform the first-order derivative with respect to the spatial variable:

∂u2(x, τ)

∂x
=

∂v2

∂x
∂u2(v2, τ)

∂v2
=

1
l2/l1 − pτα/2

∂u2(v2, τ)

∂v2
. (45)

Consequently, for the second-order spatial derivative, we have:

∂2u2(x, τ)

∂x2 =
1

(l2/l1 − pτα/2)2
∂2u2(v2, τ)

∂v2
2

. (46)

For the first-order partial derivative with respect to the time variable, we have:

∂u2(x, τ)

∂τ
=

∂u2(v2, τ)

∂τ
− αp(v2 − 1)

2τ(p− l2/l1τ−α/2)

∂u2(v2, τ)

∂v2
. (47)

The Caputo derivative of function u1(v1, τ) with respect to the time variable can be expressed
as follows:

cDα
0+,τu2(v2, τ) =

1
Γ(1− α)

∫ τ

0
(τ − ξ)−α ∂u2(v2, ξ)

∂ξ
dξ

− αp(v2 − 1)
2Γ(1− α)

∫ τ

0

(τ − ξ)−α

ξ(p− l2/l1ξ−α/2)

∂u2(v2, ξ)

∂v2
dξ.

(48)

Using Formulas (46) and (48), we can write Equation (14) in the new coordinate system (v2, τ):

1
Γ(1− α)

∫ τ

0

1
(τ − ξ)α

∂u2(v2, ξ)

∂ξ
dξ − αp(v2 − 1)

2Γ(1− α)

∫ τ

0

(τ − ξ)−α

ξ(p− l2/l1ξ−α/2)

∂u2(v2, ξ)

∂v2
dξ =

κ2

(l2/l1 − pτα/2)2
∂2u2(v2, τ)

∂v2
2

.
(49)

We integrate both sites of Equation (49) applying the left-sided Riemann–Liouville integral of
order α ∈ (0, 1):

Iα
0+,τ

cDα
0+,τu2(v2, τ)− αp(v2 − 1)

2
Iα
0+,τ I1−α

0+,τ

(
∂

∂v2

u2(v2, τ)

τ(p− l2/l1τ−α/2)

)
=

Iα
0+,τ

(
κ2

(l2/l1 − pτα/2)2
∂2u2(v2, τ)

∂v2
2

)
.

(50)

Finally, using Properties 1 and 2 in Equation (50), we obtain an integro-differential equation in the
form of:

u2(v2, τ) = u2(v2, 0) +
αp(v2 − 1)

2

∫ τ

0

∂

∂v2

u2(v2, ξ)

ξ(p− l2/l1ξ−α/2)
dξ+

κ2

Γ(α)

∫ τ

0

(τ − ξ)α−1

(l2/l1 − pξα/2)2
∂2u2(v2, ξ)

∂v2
2

dξ.
(51)

We introduce the second auxiliary function

ū2(v2, τ) =
u2(v2, τ)

(l2/l1 − pτα/2)2 , (52)
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which leads to the integro-differential equation:

ū2(v2, τ)(l2/l1 − pτα/2)2 = ū2(v1, 0)(l2/l1 − pτα/2
0 )2+

αp(v2 − 1)
2

∫ τ

0

∂

∂v2

(
pξα−1 − l2

l1
ξα/2−1

)
ū2(v2, ξ)dξ+

κ2

Γ(α)

∫ τ

0

1
(τ − ξ)1−α

∂2ū2(v2, ξ)

∂v2
2

dξ,

(53)

supplemented with the boundary conditions

ū2(0, τ) = 0, ū2(1, τ) =
1

(l2/l1 − pτα/2)2
U∞ −Us

U0 −Us
, (54)

and initial condition
ū2(v2, 0) =

1

(l2/l1 − pτα/2
0 )2

U∞ −Us

U0 −Us
. (55)

The integro-differential Equation (53) is discretized in analogy to Equation (36). For the second
phase, we also operate on a rectangular uniform grid consist of horizontal lines spaced ∆τ = 1/(np2/α)

units apart and vertical lines spaced ∆v2 = 1/m2 units apart. The points ((v2)i, τj) = (i∆v2, j∆τ)

where i = 0, . . . , m2 and j = 0, . . . , n, of intersection of the horizontal and vertical lines are grid nodes.
At this stage of the calculation, the value (for both phases the same) of parameter p is not known and
chosen a priori.

The implicit numerical scheme for second phase is in the form of:

(ū2)i−1,k+1(−r2
k+1,k+1 + q2

i,k+1) + (ū2)i,k+1((l2/l1 − pτα/2
k+1)

2

+ 2r2
k+1,k+1) + (ū2)i+1,k+1(−r2

k+1,k+1 − q2
i,k+1) =

= (ū1)i,0(l2/l1 − pτα/2
0 )2 +

k

∑
j=0

r2
j,k+1((ū2)i−1,j − 2(ū2)i,j + (ū2)i+1,j)+

k

∑
j=1

q2
i,j((ū2)i+1,j − (ū2)i−1,j),

(56)

where

r2
j,k+1 =

cj,k+1κ2

Γ(α)(∆v2)2 , q2
i,j =

αp(i∆v2 − 1)(pτα−1
j − l2/l1τα/2−1

j )∆τ

4∆v2
. (57)

The obtained numerical scheme can be written in the matrix form

D(Ū2)k+1 = E, (58)

where Ū2 is a vector of unknown values of function ū2 at instant τk+1.

D =



d2
k+1 d3

1,k+1 0 0 · · · 0 0 0
d1

2,k+1 d2
k+1 d3

2,k+1 0 · · · 0 0 0
0 d1

3,k+1 d2
k+1 d3

3,k+1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 d1

i,k+1 d2
k+1 d3

i,k+1 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · d1

m2−2,k+1 d2
k+1 d3

m2−2,k+1
0 0 0 0 · · · 0 d1

m2−1,k+1 d2
k+1


(m2−1)×(m2−1)
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E =



e1 − d1
1,k+1(ū2)0,k+1

e2

e3
...
ei
...

em2−2

em2−1 − d3
m2−1,k+1(ū2)m2,k+1


(m2−1)×1

The elements of matrices D and E are defined as follows:

d1
i,k+1 := −r2

k+1,k+1 + q2
i,k+1,

d2
k+1 := (l2/l1 − pτα/2

k+1)
2 + 2r2

k+1,k+1,

d3
i,k+1 := −r2

k+1,k+1 − q2
i,k+1,

ei := (ū2)i,0(l2/l1 − pτα/2
0 )2,+

k

∑
j=0

r2
j,k+1((ū2)i−1,j − 2(ū2)i,j + (ū2)i+1,j)

+
k

∑
j=1

q2
i,j((ū2)i+1,j − (ū2)i−1,j).

Applying the following formulas:

(u2)i,j = (ū2)i,j(l2/l1 − pτα/2
j )2, (59)

xi,j = (v2)i(l2/l1 − pτα/2
j ) + pτα/2

j , (60)

we recover the values of function u2 in coordinate system (x, τ).
The presented numerical scheme allows us solve the governing Equations (13) and (14), but only

when the correct value of the parameter p is known. We can determine it using the fractional Stefan
condition. First, we integrate both sides of Equation (18) applying the left-sided Riemann–Liouville
integral of order α ∈ (0, 1). Next, using Property 2, we obtain:

S(τ)− S(0) = λ2 Iα
0+,τ

∂u2(x, τ)

∂x

∣∣∣∣
x=S(τ)

−λ1 Iα
0+,τ

∂u1(x, τ)

∂x

∣∣∣∣
x=S(τ)

. (61)

Applying the difference quotient approximation for the first order derivative with respect to space
variable, weights (39) and condition (17), we get:

S(τn) =
λ2

Γ(α)

n

∑
j=0

cj,n
(u2)1,j − (u2)0,j

x1,j − x0,j
− λ1

Γ(α)

n

∑
j=0

cj,n
(u1)m1,j − (u1)m1−1,j

xm1,j − xm1−1,j
, j = 0, . . . , n. (62)

Let us note that the value of function S at the final time instant τn for the correct value of parameter
p should be equal to 1. From this relation, the following criterion of convergence results in:

|1− S(τn, p)| < ε, (63)

where ε > 0 is a certain arbitrarily small real number. We denote as S(τn, p) the value of S(τn) for
a fixed value of parameter p. Below we present an iterative algorithm for determining the value of
parameter p, based on the bisection method [23].

1. Choose interval [pa, pb] for parameter p, define the value of parameter ε
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2. Calculate numerically the solution of Equations (36) and (53) for pa and pb

3. If one of the conditions
|1− S(τn, pa)| < ε or |1− S(τn, pb)| < ε

is fulfilled, then end the algorithm, otherwise go to the next step
4. If the condition

(1− S(τn, pa)) · (1− S(τn, pb)) < 0
is fulfilled, then go to the next step, otherwise go to Step 1

5. Calculate pc := pa+pb
2

6. Calculate numerically the solution of Equations (36) and (53) for pc

7. If |1− S(τn, pc)| < ε

is fulfilled, then end the algorithm, otherwise go to the next step
8. If (1− S(τn, pa)) · (1− S(τn, pc)) > 0,

then substitute pa := pc and go to Step 5, or
if (1− S(τn, pb)) · (1− S(τn, pc)) > 0,
then substitute pb := pc and go to Step 5.

A small value of ε causes that the algorithm need many iterations to achieve the desired accuracy.
In this case, we can define an additional stop criterion. For example, we can study the variance of the
value of p from the last few iterations–a value close to zero will show that the assumed accuracy has
been achieved.

5. Numerical Examples

To validate the results obtained by the proposed numerical method with the analytical solution
one, twelve computer simulations were performed. We assumed four values of order of the Caputo
derivative α ∈ {0.25, 0.5, 0.75, 1} and three sets of physical parameter values. Due to the fact that the
proposed method is iterative (involves multiple solving of governing equations for different values
of parameter p), the following mesh parameters were adopted: l2/l1 = 10, m1 = 100, m2 = 500 and
n = 400. Moreover, the calculations assumed ε = 0.001, pa = pexact− 0.05 and pb = pexact + 0.05, where
pexact was determined from the exact solution. The calculations usually required about eight iterations.

Table 1 shows the values of coefficient p obtained from transcendental Equation (22) depending
on the order of the Caputo derivative and three sets of physical parameters.

Table 1. Value of parameter p from exact solution.

α

λ1 λ2 κ1 κ2 0.25 0.5 0.75 1

1 1 1 1 0.6834 0.7472 0.8299 0.9397
1 2 1 1 0.5496 0.6013 0.668 0.7555
1 1 2 1 0.7218 0.7868 0.8697 0.9783

The results collected in Table 1 indicate that, for a fixed set of physical parameters, p is an
increasing function of order α. This means that for α values less than one the melting process is slower
than in the case of the classical Stefan problem.

Let us now analyze the impact of the physical parameters on the solution for the fixed value of
α. Comparing the first and second rows of Table 1, we notice that p is a decreasing function of λ2.
This observation results directly from Equation (18). For a growing heat a flux in solid zone (λ2 is
increasing), heat balance in the melting layer is preserved only when the value of the Caputo derivative
of function S decreases. For α = 1, the fractional derivative of function S can be interpreted as a
velocity of movement of the melting front. The opposite behavior of the melting process is observed
by analyzing the first and third row of Table 1 for the fixed value of α, coefficient p is an increasing
function of parameter κ1.
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The results given in Table 2 were obtained by applying the criterion of convergence formulated
in (63) and the iterative algorithm discussed in the previous section.

Table 3 contains the values of the variable τ for which the liquid phase propagates to the region
bounded by S(τ) = 1. The collected data lead to the following conclusion: changing parameter λ2 has
a greater effect on process dynamics than the changing parameter κ1 for the fixed value of α.

Table 2. Value of parameter p from numerical solution.

α

λ1 λ2 κ1 κ2 0.25 0.5 0.75 1

1 1 1 1 0.7053 0.7358 0.8041 0.9311
1 2 1 1 0.5691 0.5935 0.6497 0.7512
1 1 2 1 0.739 0.7801 0.8514 0.9674

Table 3. Value of variable τ fulfilling equation S(τ) = 1 obtained from numerical solution.

α

λ1 λ2 κ1 κ2 0.25 0.5 0.75 1

1 1 1 1 16.329 3.411 1.789 1.153

1 2 1 1 90.885 8.06 3.158 1.772

1 1 2 1 11.241 2.7 1.536 1.069

In Table 4, we present the average absolute error generated by the proposed method in mesh
nodes fulfilling condition xi

τα/2
j

< 10. The results collected in Table 4 lead to the following conclusion:

the average error is a decreasing function of the order α.

Table 4. Average absolute error generated by front-fixing method.

α

λ1 λ2 κ1 κ2 0.25 0.5 0.75 1

1 1 1 1 0.0109 0.0082 0.0076 0.0012

1 2 1 1 0.0108 0.0079 0.0064 0.0009

1 1 2 1 0.0106 0.0081 0.0059 0.0015

In Figures 3–6, we present dimensionless temperature profiles. On each graph, we show the
solutions obtained numerically (blue, yellow and green line) and the corresponding analytical solutions
(black lines) plotted for x ∈ [0, 10]. In two cases, for α = 1 and α = 0.75, we adopted x ∈ [0, 2] and
x ∈ [0, 6.5], respectively, because the analytical solution (20) is difficult to calculate for large values
of the spatial variable x. This is related to the definition of the Wright function (see Formula (5)).
Therefore, due to time constraints of calculations, we used 500 terms of the series. However, this is not
sufficient for large values of the similarity variable x

τα/2 .
In Figures 7–10, we present graphs of the function S which describe the position of the phase

change front. The black and red linea represent the analytical and numerical solutions, respectively.
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Exact τ=0.035 τ=0.177 τ=1.772
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Figure 3. Numerical solution of u1, u2 for α = 1, λ1 = 1, λ2 = 2, κ1 = 1, κ2 = 1.

Exact τ=0.063 τ=0.316 τ=3.158
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Figure 4. Numerical solution of u1, u2 for α = 0.75, λ1 = 1, λ2 = 2, κ1 = 1, κ2 = 1.

Exact τ=0.161 τ=0.806 τ=8.06
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Figure 5. Numerical solution of u1, u2 for α = 0.5, λ1 = 1, λ2 = 2, κ1 = 1, κ2 = 1.
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Exact τ=1.818 τ=9.088 τ=90.885
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u
2
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Figure 6. Numerical solution of u1, u2 for α = 0.25, λ1 = 1, λ2 = 2, κ1 = 1, κ2 = 1.
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Figure 7. Numerical solution of S for α = 1, λ1 = 1, λ2 = 2, κ1 = 1, κ2 = 1.

0.668016 τ0.375 0.6497 τ0.375

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

τ

s
(τ
)

Figure 8. Numerical solution of S for α = 0.75, λ1 = 1, λ2 = 2, κ1 = 1, κ2 = 1.
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Figure 9. Numerical solution of S for α = 0.5, λ1 = 1, λ2 = 2, κ1 = 1, κ2 = 1.

0.549573 τ0.125 0.5691 τ0.125
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Figure 10. Numerical solution of S for α = 0.25, λ1 = 1, λ2 = 2, κ1 = 1, κ2 = 1.

Figures 11–14 lead to an important observation. In all considered cases, we note the highest
absolute error for small values of variable τ and in the area close to the moving boundary x = 1.
The calculations were performed in the mesh nodes fulfilling condition xi

τα/2
j

< 10.

Figure 11. Absolute error for α = 1, λ1 = 1, λ2 = 2, κ1 = 1, κ2 = 1.
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Figure 12. Absolute error for α = 0.75, λ1 = 1, λ2 = 2, κ1 = 1, κ2 = 1.

Figure 13. Absolute error for α = 0.5, λ1 = 1, λ2 = 2, κ1 = 1, κ2 = 1.

Figure 14. Absolute error for α = 0.25, λ1 = 1, λ2 = 2, κ1 = 1, κ2 = 1.
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6. Discussion

The proposed numerical method is complicated due to the non-local differential operators
used in the equations. The numerical scheme presented in the paper allows to solve three partial
differential Equations (13), (14) and (18) supplemented with a set of boundary and initial conditions.
These equations are related to each other through the function S, describing the position of the moving
boundary, which reflects the presence of the parameter p in the numerical scheme. The analysis of the
convergence of the presented method would require the simultaneous consideration of the implicit
(multi-step) scheme (40) and (58) and Formula (62), which is a very complicated task. Therefore, let us
look at the proposed method not as a whole, but at its smaller fragments that make up this whole.

At this point, it should be noted that the discretization of the integro-differential Equations (36)
and (53) is performed using convergent approximations and numerical methods known from the
literature. Let us point out that the first integral term of Equations (36) and (53) is approximated by
the rectangular rule (error O(∆τ)) and the central differential quotient (error O(∆v2

1) and O(∆v2
2)).

The second integral term of Equations (36) and (53) is approximated by the fractional trapezoidal rule
(error O(∆τ1+α) [29]) and the difference quotient for the second derivative (error O(∆v2

1) and O(∆v2
2)).

The same methods are used in Formula (62). The above observations are in agreement with the results
in Table 4, which shows the relationship between the order of the Caputo derivative α and the accuracy
of the method.

Figures 11–14 show the distribution of the absolute errors for the four cases presented in the paper.
Their analysis leads to the following observations:

1. The transformation (27) has a singularity at τ = 0. Applying the numerical approximation
consisting in assuming a very small positive number as τ0 (the calculations assumed τ0 = 10−30),
we make a certain error at the beginning of the calculations. This initial error is transferred to
subsequent time layers of the mesh, by the preceding time layers. Its highest value was observed
for the initial time layers. We can significantly improve the quality of the solution using the
numerical integration algorithm supported by an artificial neural network, as shown in [30].
This approach is very time-consuming and is planned at a later stage of the research.

2. Formula (62) allows us to determine the position of the moving boundary for the nodes of the
mesh shown on the left side of Figure 2. It is a non-uniform grid with a constant time step and a
variable spatial step. The unequal spatial step causes that the flux of the liquid and solid phases
are approximated with different accuracy, which results in some inaccuracy in determining the
position of the moving boundary, which is visible in Figures 11–14. At a further stage of the
research, it is planned to determine the optimal relationships among m1, m2 and n. An artificial
neural network will be used to implement this task.

7. Conclusions

In this paper, we develop a numerical method for solving the two-phase fractional Stefan problem,
which can be used as an effective tool for determining a solution alternative to the closed analytical
one. The applied special case of front-fixing technique allows us to use the mesh with constant spatial
and time step, which provides discretization of the Caputo derivative with respect to time. Let us
point out that the proposed method has some limitations directly derived from the construction of
the new spatial variables requiring the analytical explicit form of the function describing the moving
boundary depending on the unknown parameter p.

As part of further research, it is planned to test the stability and convergence of the proposed
numerical method.
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