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Abstract: The growth and yield modeling of a forest stand has progressed rapidly, starting from the
generalized nonlinear regression models of uneven/even-aged stands, and continuing to stochastic
differential equation (SDE) models. We focus on the adaptation of the SDEs for the modeling of forest
stand dynamics, and relate the tree and stand size variables to the age dimension (time). Two different
types of diffusion processes are incorporated into a hybrid model in which the shortcomings of
each variable types can be overcome to some extent. This paper presents the hybrid multivariate
SDE regarding stand basal area and volume models in a forest stand. We estimate the fixed- and
mixed-effect parameters for the multivariate hybrid stochastic differential equation using a maximum
likelihood procedure. The results are illustrated using a dataset of measurements from Mountain
pine tree (Pinus mugo Turra).

Keywords: stochastic differential equation; probability density function; stand basal area;
stand volume; quantiles

1. Introduction

Modeling growth and yield in a forest stand has progressed rapidly, starting from generalized
nonlinear regression models of uneven/even-aged stands, and continuing to stochastic differential equations
(SDEs) models and artificial neural network (ANN) models [1–3]. Nowadays, forest management needs
information on the outcomes of different decisions to predict changes in forest structure and yield.
All regression models continue to be generalized and refined [4]. Most of the empirical models
developed using regression were designed to properly and precisely reproduce observed data sets.
In contrast, the adaptation of the SDE for stand growth as an analogy has a shorter history, and aims to
relate stand attributes structure to time (age) [5]. Regression and artificial neural network models are
able to address questions using the linear or nonlinear relationships between model variables, and they
are restricted by a single problem. An individual model is a mathematical equation describing the
dynamics of specific components, such as diameter, height, crown width, tree density (number of
trees per hectare), basal area, volume, and others. Regression and artificial neural network models
suffer from the fixed forms of the cause and effect relationship. The theoretical methodology for both
techniques involves trying a variety of equations and choosing the best fitting equation based on
particular statistical measures. The limitations of these techniques are that they are laborious and the
empirical choices of candidate equations make the results subjective [6].

The multivariate SDE model enables the prediction of the future values of certain outputs, such as
diameter, height, tree density, stand basal area, stand volume per hectare, their mean and current annual
increases, and more, at a particular age. The dynamics of the transition probability density function
governed by the SDE determines the degree of stand variable predictability. Simple quantitative
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measures of the predictive capability, such as the mean and central moments, of stand variables can
be effectively calculated using a derived multivariate probability density function and its marginal
univariate and bivariate. In this study, we focused on multivariate continuous-time Markov processes
that are of the Ornstein–Uhlenbeck family [7]. Typically, the SDE is considered an ordinary differential
equation with a white noise variable, which incorporates an influence that seems random. The possibility
of combining SDEs, sophisticated mathematical techniques of parameter estimates, and increased
computing power have produced an advanced research methodology for understanding how the
stochastic phenomenon affects the predictions in practical applications [8–10].

Forestry systems, and particularly those regarding tree density and stem profile, are very noisy [11,12].
The deterministic mechanisms involved in stand variables cannot be fully determined, so they function
as a multivariate stochastic process. The discrete time Markov process has been most frequently
used in stochastic description of stand variables [13,14]. A few years later, the continuous time
univariate Markov process was used to predict the future diameter distributions [15,16]. Continuous
time stochastic growth models are useful in the modeling of a stand growth, as the dynamics we are
interested in is some interval of the real line. The multivariate stochastic process has been used to study
more complex sets of data than can be handled by univariate processes. Understanding the conditional
multivariate process possibilities provides the ability to choose response and predictor variables and
incorporates the factor of tree size variable dependence using the variance–covariance matrix of tree
or stand variables. Historically, the systematic application of the SDE models in forestry uses many
different symmetric and asymmetric types that concern sigmoid growth consisting of three key stages:
exponential, transitional, and plateau [16,17]. The variables involved in the SDE are therefore treated
as diffusion processes and the solutions are described in terms of normal or lognormal probability
density functions. Therefore, the central problem is determining how to frame a multivariate SDE
whose solution has, e.g., normally-, as well as, lognormally-distributed marginals. In this study,
we simultaneously assimilated two sets of the Gompertz and Vasicek SDEs. This is possible through
defining a hybrid system of SDEs. Statistical estimation parameters of the observed data sets can
be based upon the maximum likelihood procedure by maximizing the maximum log-likelihood
(fixed effect scenario) or the approximated log-likelihood function (mixed effect scenario) that consists
of the simultaneous assimilation of normal and lognormal probability density functions.

The general methodology of a stationary distribution formalizes an equilibrium structure or
steady-state structure of variables, which is commonly used in biology, chemistry, and other branches
of science [18]. This concept can be recognized as a constant form probability density function
corresponding to the solution of the multivariate SDE, the structure of which remains invariant
over time.

The main goal of this paper is to develop a multivariate hybrid mixed-effect parameters SDE model
that links different types of the drift and diffusion functions, and to describe the maximum likelihood
procedure for fixed-and mixed-effect parameter estimators. First, we find exact form solutions of the
multivariate hybrid SDE. Second, we use the newly developed multivariate and conditional hybrid
probability density functions for describing the mathematical equations of the dynamics of the stand
attributes such as the mean, median, mode, standard deviation, quantiles of the tree density, diameter,
height, basal area, and stand volume per hectare.

In the Results and Discussion sections, we consider a possible application of the multivariate
hybrid SDE to measurements from Mountain pine (Pinus mugo Turra) stands in Lithuania.

2. Materials and Methods

2.1. Hybrid Model and Its Characteristics

In producing a trivariate hybrid SDE model for predictions of stand attributes over time, it would
be instructive to start from fundamental variables related to all other aspects of forest stand development.
Traditionally the tree density N, diameter at breast height D, and height H are variables substantially
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affecting the development of whole stand growth and yield models [19]. Each variable can be analyzed as
a separate diffusion process. The multivariate probability density function of the tree density, diameter,
and height provides full-scale information about the cause and effect variables. The height–diameter
equation or the diameter–height equation can be derived using conditional stationary SDEs. Here,
we focus on a multivariate mixed effect parameters hybrid SDE model (Gompertz, Gompertz,

and Vasicek, see [17,20,21]), Xi(t) =
(
Xi

1(t), Xi
2(t), Xi

3(t)
)T

=
(
Ni(t), Di(t), Hi(t)

)T
of the tree density,

Ni(t), diameter, Di(t), and height, Hi(t) dynamics as follows:

dXi(t) = Ai
(
Xi(t)

)
dt + D

(
Xi(t)

)
B

1
2 · dWi(t), P

(
Xi(t0) = x0

)
= 1, i = 1, . . . , M, (1)

Ai(x) =
(((
α1 + ϕi

1

)
− β1ln(x1)

)
x1,

((
α2 + ϕi

2

)
− β2ln(x2)

)
x2, β3

(
α3 + ϕi

3 − x3
))T

, (2)

B =


σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

, (3)

D(x) =


x1 0 0
0 x2 0
0 0 1

, (4)

G(x) =
(
D(x)B

1
2

)(
D(x)B

1
2

)T
=


x1 0 0
0 x2 0
0 0 1



σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33




x1 0 0
0 x2 0
0 0 1

, (5)

where Wi(t) =
(
Wi

1(t), Wi
2(t), Wi

3(t)
)T

are independent multivariate Brownian motions, t ∈ [t0; T]

is a finite horizon, T < ∞, B
1
2 is the Cholesky factorization for a positive definite symmetric

matrix B into the product of a lower triangular matrix and its conjugate transpose, and ϕi
j,

i = 1, . . . , M, j = 1, . . . , 3, are independent and normally distributed random variables

with zero mean and constant variances (ϕi
j ∼ N

(
0; σ2

j

)
), an initial condition takes the form;

if t = t0, then Xi(t0) = x0 = (x10, x20, x30) = (n0, d0, h0)
T, σi j =

√
σiiσ j jρi j, and{

α1,α2,α3, β1, β2, β3, σ11,ρ12,ρ13, σ22,ρ23, σ33, σ1, σ2, σ3
}

are fixed effect parameters to be estimated.
As the drift and diffusion functions of Equation (1) confirm the conditions of existence and

uniqueness of the strong solution, then the SDE in Equation (1) has a unique strong solution for any
initial condition x0 [22,23]. The strategy to solve Equation (1) consists of a specific transform of the type

Yi(t) =
(
eβ1tln

(
Xi

1(t)
)
, eβ2tln

(
Xi

2(t)
)
, eβ3tXi

3(t)
)T

. By applying Ito’s formula [24] to the transformation
Yi(t) the solution takes the following form:

Yi(t) = Yi(t0) +
(
eβt
− eβt0

)
α+ B

1
2 ·

∫ t
t0

eβudW(u),

P
(
Yi

1(t0) = ln(x10), Yi
2(t0) = ln(x20), Yi

3(t0) = eβt0x30
)
= 1, i = 1, . . . , M,

(6)

where α =
(

1
β1

(
α1 + ϕi

1 −
σ11
2

)
, 1
β2

(
α2 + ϕi

2 −
σ22
2

)
,α3 + ϕi

3

)T
, and eβt =


eβ1t 0 0
0 eβ2t 0
0 0 eβ3t

. Considering

the transformation Yi(t) =
(
eβ1tln

(
Xi

1(t)
)
, eβ2tln

(
Xi

2(t)
)
, eβ3tXi

3(t)
)T

and that the last term in Equation (6)

is normally distributed, we deduce that the conditional random vector
(
Xi(t)

∣∣∣Xi(t0) = x0
)

has a

trivariate hybrid lognormal–lognormal–normal distribution LN2N1
(
µi(t); Σ(t)

)
, with the mean vector

µi(t) defined by:
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µi(t) =
(
µi

1(t),µ
i
2(t),µ

i
3(t)

)T

=
((

e−β j(t−t0)ln
(
x j0

)
+ 1−e−β j(t−t0)

β j

(
α j + ϕi

j −
σ j j
2

)
, j = 1, 2

)
,α3 + ϕi

3+(
x30 −

(
α3 + ϕi

3

))
e−β3(t−t0)

)T
,

(7)

the variance-covariance matrix Σ(t):

Σ(t) =
(
v jk(t)

)
j,k=1,...,3

=

(
σ jk

β j + βk

(
1− e−(β j+βk)(t−t0)

))
j,k=1,...,3

, (8)

and the transition probability density function:

f
(
x1, x2, x3, t

∣∣∣θ1,ϕi
)
=

1

(2π)
3
2
∣∣∣Σ(t)∣∣∣ 1

2 x1x2

exp
(
−

1
2
Ω

(
x1, x2, x3, t|θ 1,ϕi

))
, (9)

Ω
(
x1, x2, x3, t

∣∣∣θ1,ϕi
)
=


ln(x1) − µi

1(t)
ln(x2) − µi

2(t)
x3 − µi

3(t)


T

(Σ(t))−1


ln(x1) − µi

1(t)
ln(x2) − µi

2(t)
x3 − µi

3(t)

, (10)

θ1 =
{
α1, β1,α2, β2,α3, β3, σ11,ρ12,ρ13, σ22,ρ23, σ33

}
, ϕi =

(
ϕi

1,ϕi
2,ϕi

3

)
. (11)

The univariate marginal distributions of
(
Xi

j(t)
∣∣∣∣Xi

j(t0) = x j0

)
j = 1,2 are lognormal

LN1

(
µi

j(t); v j j(t)
)
, and the marginal distribution of

(
Xi

3(t)
∣∣∣Xi

3(t0) = x30
)

is normal N1
(
µi

3(t); v33(t)
)
.

The marginal mean, median, mode, p-quantile (0 < p < 1), and variance trajectories mi
j(t), mei

j(t), moi
j(t),

mqi
j(t, p), and w j(t) of the tree density, diameter, and height ( j ∈ {1, 2, 3}) are listed in Table 1.

Table 1. Marginal mean, median, mode, p-quantile (0 < p < 1), and variance trajectories.

Variable Trajectory Type Equation

Xi
3(t)

Mean, median and mode µi
3(t)

Quantile (0 < p < 1) Φ−1
p

(
µi

3(t); v33(t)
)

*

Variance v33(t)

Xi
j(t),

j = 1, 2

Mean exp
(
µi

j(t) +
1
2 v j j(t)

)
Median exp

(
µi

j(t)
)

Mode exp
(
µi

j(t) − v j j(t)
)

Quantile (0 < p < 1) LΦ−1
p

(
µi

j(t); v j j(t)
)

*

Variance exp
(
2µi

j(t) + v j j(t)
)
·

(
exp

(
v j j(t)

)
− 1

)
* Φ−1

p (·; ·) is the inverse of the standard normal distribution function; and LΦ−1
p (·; ·) is the inverse of the lognormal

distribution function.

The marginal bivariate distribution of
(
Xi

1(t), Xi
2(t)

∣∣∣Xi
1(t0) = x10, Xi

2(t0) = x20
)

is lognormal

LN2
(
µi,12(t); Σ12(t)

)
, with the mean vector µi,12(t) and the covariance matrix Σ12(t) defined as

µi,12(t) =

e−β j(t−t0)ln
(
x j0

)
+

1− e−β j(t−t0)

β j

(
α j + ϕi

j −
σ j j

2

)
, j = 1, 2

T

(12)
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Σ12(t) =
(
v j,k(t)

)
j,k=1,2

. (13)

The marginal bivariate distribution of
(
Xi

1(t), Xi
3(t)

∣∣∣Xi
1(t0) = x10, Xi

3(t0) = x30
)
, is hybrid

lognormal-normal LN1N1
(
µi,13(t); Σ13(t)

)
with mean vector µi,13(t) and covariance matrix Σ13(t)

defined in the following forms:

µi,13(t)

=
(
e−β1(t−t0)ln(x10) +

1−e−β1(t−t0)

β1

(
α1 + ϕi

1 −
σ11
2

)
,α3 + ϕi

3 +
(
x30 −

(
α3 + ϕi

3

))
e−β3(t−t0)

)T (14)

Σ13(t) =
(
v j,k(t)

)
j,k=1,3

. (15)

The marginal bivariate distribution of
(
Xi

2(t), Xi
3(t)

∣∣∣Xi
2(t0) = x20, Xi

3(t0) = x30
)

is hybrid

lognormal–normal LN1N1
(
µi,23(t); Σ23(t)

)
, with mean vector µi,23(t) and covariance matrix Σ23(t)

defined in the following forms:

µi,23(t)

=
(
e−β2(t−t0)ln(x10) +

1−e−β2(t−t0)

β2

(
α2 + ϕi

2 −
σ22
2

)
,α3 + ϕi

3 +
(
x30 −

(
α3 + ϕi

3

))
e−β3(t−t0)

)T (16)

Σ23(t) =
(
v j,k(t)

)
j,k=2,3

. (17)

The univariate conditional distribution of
(
Xi

j(t)
∣∣∣∣Xi

j(t0) = x j0

)
j = 1,2 at a given(

Xi
3(t) = x3

)
is univariate lognormal LN1

(
ηi

j(t, x3); λ j3(t)
)
; the univariate conditional distribution

of
(
Xi

1(t)
∣∣∣Xi

1(t0) = x10
)

at a given
(
Xi

2(t) = x2
)

is univariate lognormal LN1
(
ηi

1(t, x2); λ12(t)
)
,

the univariate conditional distribution of
(
Xi

2(t)
∣∣∣Xi

2(t0) = x20
)

at a given
(
Xi

1(t) = x1
)
, is univariate

lognormal LN1
(
ηi

2(t, x1); λ21(t)
)
, the univariate conditional distribution of

(
Xi

3(t)
∣∣∣Xi

3(t0) = x30
)

at a

given
(
Xi

1(t) = x1
)

is univariate normal N1
(
ηi

3(t, x1); λ31(t)
)
, and the univariate conditional distribution

of
(
Xi

3(t)
∣∣∣Xi

3(t0) = x30
)

at a given
(
Xi

2(t) = x2
)

is univariate normal N1
(
ηi

3(t, x2); λ32(t)
)
, with the mean

and variance defined in Table 2. All Table 2 univariate conditional distributions are based on
one predictor.

Table 2. Mean and variance of conditional probability density functions with one predictor.

Probability Density Mean ηi
j(t,xk) Variance λjk(t)

LN1
(
ηi

1(t, x2); λ12(t)
)

µi
1(t) +

v12(t)
v22(t)

(
ln(x2) − µi

2(t)
)

v11(t) −
(v12(t))

2

v22(t)

LN1
(
ηi

1(t, x3); λ13(t)
)

µi
1(t) +

v13(t)
v33(t)

(
x3 − µi

3(t)
)

v11(t) −
(v13(t))

2

v33(t)

LN1
(
ηi

2(t, x1); λ21(t)
)

µi
2(t) +

v12(t)
v11(t)

(
ln(x1) − µ

i
1(t)

)
v22(t) −

(v12(t))
2

v11(t)

LN1
(
ηi

2(t, x3); λ23(t)
)

µi
2(t) +

v23(t)
v33(t)

(
x3 − µi

3(t)
)

v22(t) −
(v23(t))

2

v33(t)

N1
(
ηi

3(t, x1); λ31(t)
)

µi
3(t) +

v13(t)
v11(t)

(
ln(x1) − µ

i
1(t)

)
v33(t) −

(v13(t))
2

v11(t)

N1
(
ηi

3(t, x2); λ32(t)
)

µi
3(t) +

v23(t)
v22(t)

(
ln(x2) − µi

2(t)
)

v33(t) −
(v23(t))

2

v22(t)

The conditional mean, median, mode, p-quantile (0 < p < 1), and variance trajectories mi
j(t, xk),

mei
j(t, xk), moi

j(t, xk), mqi
j(t, p, xk), and wi

j(t, xk) based on one predictor variable for all scenarios listed
in Table 2 are presented in Table 3.
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Table 3. Conditional mean, median, mode, p-quantile (0 < p < 1), and variance trajectories with
one predictor.

Probability Density Trajectory Type Equation

N1
(
ηi

3

(
t, x j

)
; λ3 j(t)

)
j ∈ {1, 2}

Mean, median, and mode ηi
3

(
t, x j

)
Quantile

(0 < p < 1) Φ−1
p

(
ηi

3

(
t, x j

)
; λ3 j(t)

)
Variance λ3 j(t)

LN1

(
ηi

j(t, xk); λ jk(t)
)

j, k ∈
{
(1, 2), (1, 3), (2, 1), (2, 3)

}

Mean exp
(
ηi

j(t, xk) +
1
2λ jk(t)

)
Median exp

(
ηi

j(t, xk)
)

Mode exp
(
ηi

j(t, xk) − λ jk(t)
)

Quantile (0 < p < 1) LΦ−1
p

(
ηi

j(t, xk); λ jk(t)
)

Variance exp
(
2ηi

j(t, xk) + λ jk(t)
)
·

(
exp

(
λ jk(t)

)
− 1

)
The conditional mean, median, mode, p-quantile (0 < p < 1), and variance trajectories mi

j(t, xk, xm),

mei
j(t, xk, xm), moi

j(t, xk, xm), mqi
j(t, p, xk, xm), and wi

j(t, xk, xm) based on two predictors for all scenarios
listed in Table 4 are presented in Table 5.

Table 4. Mean and variance of conditional probability density functions with two predictors.

Probability Density Mean Πi
j(t,xk,xm) Variance Λjkm(t)

LN1
(
Πi

1(t, x2, x3); Λ123(t)
)

µi
1(t) +

(
v12(t) v13(t)

)( v22(t) v23(t)
v23(t) v33(t)

)−1( ln(x2) − µi
2(t)

x3 − µi
3(t)

)
v11(t) −

(
v12(t) v13(t)

)( v22(t) v23(t)
v23(t) v33(t)

)−1( v12(t)
v13(t)

)
LN1

(
Πi

2(t, x1, x3); Λ213(t))
)

µi
2(t) +

(
v12(t) v23(t)

)( v11(t) v13(t)
v13(t) v33(t)

)−1( ln(x1) − µ
i
1(t)

x3 − µi
3(t)

)
v22(t) −

(
v12(t) v23(t)

)( v11(t) v13(t)
v13(t) v33(t)

)−1( v12(t)
v23(t)

)
N1

(
Πi

3(t, x1, x2); Λ312(t)
)

µi
3(t) +

(
v13(t) v23(t)

)( v11(t) v12(t)
v12(t) v22(t)

)−1( ln(x1) − µ
i
1(t)

ln(x2) − µi
2(t)

)
v33(t) −

(
v13(t) v23(t)

)( v11(t) v12(t)
v12(t) v22(t)

)−1( v13(t)
v23(t)

)

Table 5. Conditional mean, median, mode, p-quantile (0 < p < 1), and variance trajectories with
two predictors.

Probability Density Trajectory Type Equation

N1
(
Πi

3(t, x1, x2); Λ312(t)
) Mean, median, and mode Πi

3(t, x1, x2)

Quantile
(0 < p < 1) Φ−1

p

(
Πi

3(t, x1, x2); Λ312(t)
)

Variance Λ312(t)

LN1

(
Πi

j(t, xk, xm); Λ jkm(t)
)

j, k, m ∈
{
(1, 2, 3), (2, 1, 3)

}
Mean exp

(
Πi

j(t, xk, xm) +
1
2Λ jkm(t)

)
Median exp

(
Πi

j(t, xk, xm)
)

Mode exp
(
Πi

j(t, xk, xm) −Λ jkm(t)
)

Quantile
(0 < p < 1) LΦ−1

p

(
Πi

j(t, xk, xm); Λ jkm(t)
)

Variance exp
(
2Πi

j(t, xk, xm) +Λ jkm(t)
)
·

(
exp

(
Λ jkm(t)

)
− 1

)

For the Gompertz- and Vasicek-type SDEs, it is possible to derive the stationary univariate
marginal and conditional distributions if parameters β1, β2, and β3 are positive [25]. As time t goes to
infinity, the trivariate diffusion process defined by Equation (1) assumes a stationary trivariate hybrid
lognormal–lognormal–normal distribution LN2N1

(
µi; Σ

)
with the mean vector µi defined by
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µi =
(
µi

1,µi
2,µi

3

)T
=

((
1
β j

(
α j + ϕi

j −
σ j j

2

)
, j = 1, 2

)
,α3 + ϕi

3

)T

, (18)

the variance–covariance matrix Σ:

Σ =
(
v jk

)
j,k=1,...,3

=

(
σ jk

β j + βk

)
j,k=1,...,3

, (19)

and the stationary probability density function:

f
(
x1, x2, x3

∣∣∣θ1,ϕi
)
=

1

(2π)
3
2 |Σ|

1
2 x1x2

exp
(
−

1
2
Ω

(
x1, x2, x3|θ

1,ϕi
))

, (20)

Ω
(
x1, x2, x3

∣∣∣θ1,ϕi
)
=


ln(x1) − µi

1
ln(x2) − µi

2
x3 − µi

3


T

(Σ)−1


ln(x1) − µi

1)

ln(x2) − µi
2

x3 − µi
3

. (21)

The marginal distributions converge to a stationary distribution with the means and variances
defined by Equations (18) and (19), and conditional distributions converge to a stationary distribution
with the means and variances listed in Tables 6 and 7.

Table 6. Mean and variance of conditional probability density functions with one predictor.

Probability Density Mean ηi
j(t,xk) Variance λjk(t)

LN1
(
ηi

1(x2); λ12
)

µi
1 +

v12
v22

(
ln(x2) − µi

2

)
v11 −

(v12)
2

v22

LN1
(
ηi

1(x3); λ13
)

µi
1 +

v13
v33

(
x3 − µi

3

)
v11 −

(v13)
2

v33

LN1
(
ηi

2(x1); λ21
)

µi
2 +

v12
v11

(
ln(x1) − µ

i
1

)
v22 −

(v12)
2

v11

LN1
(
ηi

2(x3); λ23
)

µi
2 +

v23
v33

(
x3 − µi

3

)
v22(t) −

(v23)
2

v33

N1
(
ηi

3(x1); λ31
)

µi
3 +

v13
v11

(
ln(x1) − µ

i
1

)
v33(t) −

(v13)
2

v11

N1
(
ηi

3(x2); λ32
)

µi
3(t) +

v23
v22

(
ln(x2) − µi

2

)
v33(t) −

(v23)
2

v22

Table 7. Mean and variance of conditional probability density functions with two predictors.

Probability Density Mean Πi
j(xk,xm) Variance Λjkm

LN1
(
Πi

1(x2, x3); Λ123
)

µi
1 +

(
v12 v13

)( v22 v23
v23(t) v33

)−1( ln(x2) − µi
2

x3 − µi
3

)
v11 −

(
v12 v13

)( v22 v23
v23 v33

)−1( v12
v13

)
LN1

(
Πi

2(x1, x3); Λ213)
)

µi
2 +

(
v12 v23

)( v11 v13
v13(t) v33

)−1( ln(x1) − µ
i
1

x3 − µi
3

)
v22 −

(
v12 v23

)( v11 v13
v13 v33

)−1( v12
v23

)
N1

(
Πi

3(x1, x2); Λ312)
)

µi
3 +

(
v13 v23

)( v11 v12
v12 v22

)−1( ln(x1) − µ
i
1

ln(x2) − µi
2

)
v33 −

(
v13 v23

)( v11 v12
v12 v22

)−1( v13
v23

)

The stationary marginal and conditional mean, median, mode, p-quantile (0 < p < 1), and variance
trends of the tree diameter and height marginal and conditional processes are listed in Tables 8–10.
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Table 8. Stationary marginal mean, median, mode, p-quantile (0 < p <1), and variance trends.

Variable Trajectory Type Equation

Xj
j = 1, 2

Mean exp
(
µi

j +
1
2 v j j

)
Median exp

(
µi

j

)
Mode exp

(
µi

j − v j j

)
Quantile (0 < p < 1) LΦ−1

p

(
µi

j; v j j

)
Variance exp

(
2µi

j + v j j

)
·

(
exp

(
v j j

)
− 1

)

X3

Mean
Median
Mode

µi
3

Quantile (0 < p < 1) Φ−1
p

(
µi

3; v33
)

Variance v33

Table 9. Stationary conditional mean, median, mode, p-quantile (0 < p < 1), and variance trends with
one predictor.

Probability Density Trajectory Type Equation

N1
(
ηi

3

(
x j

)
; λ3 j

)
j ∈ {1, 2}

Mean, median, and mode ηi
3

(
x j

)
Quantile

(0 < p < 1) Φ−1
p

(
ηi

3

(
x j

)
; λ3 j

)
Variance λ3 j

LN1

(
ηi

j(t, xk); λ jk(t)
)

j, k ∈
{
(1, 2), (1, 3), (2, 1), (2, 3)

}

Mean exp
(
ηi

j(xk) +
1
2λ jk

)
Median exp

(
ηi

j(xk)
)

Mode exp
(
ηi

j(xk) − λ jk

)
Quantile

(0 < p < 1) LΦ−1
p

(
ηi

j(xk); λ jk

)
Variance exp

(
2ηi

j(xk) + λ jk

)
·

(
exp

(
λ jk

)
− 1

)
Table 10. Stationary conditional mean, median, mode, p-quantile (0 < p < 1), and variance trends with
two predictors.

Probability Density Trajectory Type Equation

N1
(
Πi

3(x1, x2); Λ312
) Mean, median, and mode Πi

3(x1, x2)

Quantile
(0 < p < 1) Φ−1

p

(
Πi

3(x1, x2); Λ312
)

Variance Λ312

LN1

(
Πi

j(xk, xm); Λ jkm

)
j, k, m ∈

{
(1, 2, 3), (2, 1, 3)

}

Mean exp
(
Πi

j(xk, xm) +
1
2Λ jkm

)
Median exp

(
Πi

j(xk, xm)
)

Mode exp
(
Πi

j(xk, xm) −Λ jkm

)
Quantile

(0 < p < 1) LΦ−1
p

(
Πi

j(xk, xm); Λ jkm

)
Variance exp

(
2Πi

j(xk, xm) +Λ jkm

)
·

(
exp

(
Λ jkm

)
− 1

)
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The stationary marginal bivariate distribution of
(
Xi

1, Xi
2

)
, is lognormal LN2

(
µi,12; Σ12

)
with the

mean vector µi,12 and the covariance matrix Σ12 given by the following forms:

µi,12 =

(
1
β j

(
α j + ϕi

j −
σ j j

2

)
, j = 1, 2

)T

(22)

Σ12 =
(
v j,k

)
j,k=1,2

. (23)

The marginal bivariate distribution of
(
Xi

j, Xi
3

)
, j = 1, 2 is hybrid lognormal–normal

LN1N1
(
µi, j3; Σ j3

)
with mean vector µi, j3 and covariance matrix Σ j3 is given by the following forms:

µi, j3 =

(
1
β j

(
α j + ϕi

j −
σ j j

2

)
,α3 + ϕi

3

)T

(24)

Σ j3 =

(
v j j v j3
v j3 v33

)
. (25)

2.2. Maximum Log-Likelihood Function

The hybrid SDE model defined by Equation (1) can be fitted to the number of tree density (x1),
diameter (x2), and height (x3) of samples

{(
xi

11, xi
21, xi

31

)
,
(
xi

12, xi
22, xi

32

)
, . . . ,

(
xi

1ni
, xi

2ni
, xi

3ni

)}
at discrete

times (ages)
{
ti
1, ti

2, . . . , ti
ni

}
(ni is the number of observed trees of the ith stand, i = 1, . . . , M) using

the maximum likelihood procedure. The associated maximum likelihood function for the trivariate
fixed-effect parameters hybrid SDE model (in this case, the parameters of random effects ϕi

1, ϕi
2, and ϕi

3
are assumed to be equal to the mean value E

(
ϕi

1

)
= 0, E

(
ϕi

2

)
= 0 and E

(
ϕi

3

)
= 0, respectively, takes the

following form:

L1
(
θ1

)
=

∏M

i=1

∏ni

j=1
f
(
xi

1 j, xi
2 j, xi

3 j, ti
j

∣∣∣θ1, (0, 0, 0)
)
, (26)

θ1 =
{
α1,α2,α3, β1, β2, β3, σ11,ρ12,ρ13, σ22,ρ23, σ33

}
and the maximum log-likelihood function as

LL1
(
θ1

)
=

∑M

i=1

∑ni

j=1
ln

(
f
(
xi

1 j, xi
2 j, xi

3 j, ti
j

∣∣∣θ1, (0, 0, 0)
))

, (27)

where the probability density function f
(
x1, x2, x3, t

∣∣∣θ1 , (0, 0, 0)
)

takes the form defined by
Equations (9)–(11).

The maximum likelihood estimator seeks to make the probability density
function f

(
x1, x2, x3, t

∣∣∣θ1, (0, 0, 0)
)

the most likely fit the observed dataset{(
xi

11, xi
21, xi

31

)
,
(
xi

12, xi
22, xi

32

)
, . . . ,

(
xi

1ni
, xi

2ni
, xi

3ni

)}
at discrete times (ages)

{
ti
1, ti

2, . . . , ti
ni

}
, starting at

the initial age t0 = 0, x10= 5000, x20= 0.1, and x30 = 0.1, from which a given set of SDEs (1) evolves.
The associated maximum likelihood function for the trivariate mixed-effect parameters hybrid

SDE model takes the following form:

L2
(
θ2,Ψ

)
=

∏M

i=1

∫
R3

∏ni

j=1
f
(
xi

1 j, xi
2 j, xi

3 j, ti
j

∣∣∣θ1,ϕi
)∏3

k=1
p
(
ϕi

k

∣∣∣σ2
k

)
dϕi

k, (28)

where p
(
ϕk

∣∣∣σ2
k

)
, k = 1, 2, 3 is a normal probability density function with zero mean and constant

variance, σ2
k , θ2 =

{
δ,α1, β1,α2, β2,α3, β3, σ11,ρ12,ρ13, σ22,ρ23, σ33, σ1, σ2, σ3

}
, and Ψ =

(
ϕ1, . . . ,ϕM

)
.

The maximum log-likelihood function is defined as
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LL2
(
θ2,Ψ

)
=

∑M

i=1

∫
R3

(∑ni

j=1
ln

(
f
(
xi

1 j, xi
2 j, xi

3 j, ti
j

∣∣∣θ1,ϕi
))
+

∑3

k=1
ln

(
p
(
ϕi

k

∣∣∣σ2
k

)))
dϕi

1dϕi
2dϕi

3. (29)

For the mixed-effect parameters hybrid SDE model, the two-step approximated maximum
log-likelihood procedure takes the following form:

LL2

(
θ2,

∧

Ψ

)
≈

∑M

i=1

g

 ∧ϕi
∣∣∣θ2

+ 3
2

ln(2π) −
1
2

ln

det


−∂2g

(
ϕi

∣∣∣θ2
)

∂(ϕi)
2



ϕi=

∧

ϕi


, (30)

where
∧

ϕi = argmax
ϕi

g
(
ϕi

∣∣∣∣∣∣ ∧θ2
)
, i = 1, . . . , M, (31)

g
(
ϕi

∣∣∣∣∣∣ ∧θ2
)
≡

∑ni

j=1
ln

 f

xi
1 j, xi

2 j, xi
3 j, ti

j

∣∣∣∣∣∣ ∧θ1,ϕi

+ ln
(
p(ϕi

1

∣∣∣∣∧σ1

)
+ ln

(
p
(
ϕi

2

∣∣∣∣∧σ2

))
+ ln

(
p(ϕi

3

∣∣∣∣∧σ3

)
. (32)

The maximization of L2
(
θ2,Ψ

)
is a two-step optimization problem. The internal optimization

step estimates the ϕi for every plot i = 1, . . . , M with Equation (31). The external optimization step

maximizes LL2

(
θ2,

∧

Ψ

)
after plugging

∧

ϕi, i = 1, . . . , M into Equation (30). Parameter estimates using the

maximum likelihood procedure are costly processes in terms of time and computational power.
The random effects ϕ = (ϕ1,ϕ2,ϕ3) calibrated from the newly observed dataset{

(x1,1, x2,1, x3,1), (x1,2, x2,2, x3,2), . . . , (x1,m, x2,m, x3,m)
}

at discrete previous times (ages) {t1, t2, . . . , tm} can
be calibrated using the following form:

∧
ϕ = argmax

(ϕ1,ϕ2,ϕ3)

∑m

j=1
ln

 f

x1, j, x2, j, x3, j, t j

∣∣∣∣∣∣ ∧θ1,ϕ

+ ln
(
p(ϕ1

∣∣∣∣∧σ1

)
+ ln

(
p
(
ϕ2

∣∣∣∣∧σ2

))
+ ln

(
p(ϕ3

∣∣∣∣∧σ3

). (33)

2.3. Data

Mountain pine (Pinus mugo Turra) is dwarf, slow growing plant grown on the coastal dunes of the
Curonian Spit (Kuršių Nerija) in Lithuania. The first plantations of Mountain pine were established on
the coastal sand dunes nearly 200 years ago [26]. Silvicultural policy in the Curonian Spit, a UNESCO
World Heritage Site, started in 2013 when mountain pine trees were cut down in some places to open
up the spit’s sandy hills by its gradual replacement with Pine sylvestris. A field study was accomplished
in western Lithuania (Kuršių Nerija). Age of sampled stands varies from 53 till 123 years. The radius of
the 31 circular plots was 6.9 m. Size of round sample plot was 150 m2. In all plots, the diameter at breast
height of all trees larger than 1 mm was measured (7005 trees). Diameter was measured to an accuracy
of 1 mm. The observed dataset used to develop the model consisted of 702 Mountain pine tree height
and diameter pairs of measurements taken from 31 plots, with a wide range of stand ages. A tree was
measured once its height exceeded 1.3 m. For every sample tree, the tree diameter over bark at 1.30 m
(in centimeters), the tree height (in meters), and the age (in years) were recorded. Height was measured
by using clinometer, with precision to the nearest 0.1 meter. Tree age was identified with stand age
which provides a general timeframe for when stands first established. The available observed dataset
was randomly divided into model estimation (23 plots) and model validation (8 plots) parts. Both
estimation and validation datasets are presented in Table 11.
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Table 11. Characterization of the datasets used to fit the SDE (1).

Data
Number of

Trees
(Plots)

Min Max Mean St.
Dev.

Number of
Plots Min Max Mean St.

Dev.

Estimation Validation

N (23) 2875 25,139 15,244 6345 (8) 6418 19,255 14,717 4371
d

(cm)
527
(23) 1.20 13.40 3.96 1.61 175

(8) 1.80 8.00 4.15 1.25

h (m) 527
(23) 1.50 7.90 3.55 1.11 175

(8) 2.07 6.56 3.84 0.91

t
(year)

527
(23) 53.00 123.00 92.21 20.82 175

(8) 53.00 103.00 80.60 17.50

3. Results

3.1. Parameter Estimators

Parameter estimations of trivariate hybrid SDE (1) use samples where the diameter, height,
and age are measured on every tree and tree density per hectare on every stand. The maximum
likelihood estimation technique capacities for unbiased minimum variance estimators having
approximate normal distributions and approximate sample variances given by the Fisher [27]
information matrix will most likely favor the other techniques where the emphasis is placed
on predicting particular observations in a given situation. For the fixed- and mixed-effect
scenario models, the parameter estimators θ1 =

{
α1,α2,α3, β1, β2, β3, σ11,ρ12,ρ13, σ22,ρ23, σ33

}
and

θ2 =
{
α1, β1,α2, β2,α3, β3, σ11,ρ12,ρ13, σ22,ρ23, σ33, σ1, σ2, σ3

}
, respectively, were calculated by the

maximization of the log-likelihood function defined by Equation (27) (fixed effect scenario) and
by the two-step maximization technique defined by Equations (30) and (31) (mixed effect scenario).
Maximization was performed using the NLPSolve procedure in MAPLE software [28]. The initial
condition takes the form if t = 0, then Xi(0) = x0 = (x10, x20, x30) = (5000, 0.1, 0.1)T. The parameter
estimators are summarized in Table 12.

Table 12. Estimates of fixed-effect parameters.

Scenario
Parameters of Drift Term

α1 β1 α2 β2 α3 β3

Fixed 0.1884 0.0186 0.0833 0.0558 3.5455 0.1548
Mixed 0.5949 0.0598 0.7442 0.4851 3.7622 0.3152

Parameters of Diffusion Term

σ11 ρ12 ρ13 σ22 ρ23 σ33 σ1 σ2 σ3

Fixed 0.0047 –0.6443 –0.9999 0.0165 0.8814 0.3845 - - -
Mixed 1.9 × 10−5 –0.9999 –0.8711 0.1313 0.7965 0.3284 0.0398 0.1312 1.1268

3.2. Bivariate Distributions

The trivariate dynamics of the tree density, diameter, and height denominated by the trivariate
probability density function (see Equations (9) and (10) or, for stationary case, Equations (20) and (21))
yield a unified system of forest stand development. The focus of this paper is the methodology of
growth and yield modeling using a hybrid trivariate SDE. The derived trivariate hybrid probability
density function can be used for calculation of stand volume, marginal bivariate can be used for
calculation of stand basal area, and so on. The conditional distributions of the size variable can be used
for formalizing a wide spectrum of tree or stand variable relationships. The manner in which tree size
variable distributions vary with the others provides information about how these size variables are
related, and these distributions can be described in part, as for any univariate distributions, by their
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expectations and variances. This modeling framework does not introduce a new modern concept, only
suggests a new use for the previous trivariate hybrid diffusion process concept.

To visualize the differences between the fixed- and mixed-effects modeling scenarios, we provide
standard plots of the bivariate density functions and tolerance regions. We focus on bivariate
distributions because they are easier to visualize than higher dimensional distributions. The same
ideas could be carried over to three dimensions; however, the visualization would require considerable

effort. The estimated bivariate densities use the estimators of the fixed effect parameters
∧

θ1 and
∧

θ2

listed Table 1, and the random effects ϕ1,ϕ2, and ϕ3 calibrated by Equation (33). Figure 1 shows
the estimated bivariate probability density functions (tree density and diameter, tree density and
height, and diameter and height), as well as fixed- and mixed-effect scenarios for the same randomly
selected stand. The fixed-effect scenario densities are considerably flatter than the mixed-effect scenario,
which reflects the spatial hierarchy of the observed dataset. The diameter and height bivariate density
function appears steeper than the other two distributions.

Mathematics 2020, 8, x FOR PEER REVIEW 13 of 23 

 

To visualize the differences between the fixed- and mixed-effects modeling scenarios, we 
provide standard plots of the bivariate density functions and tolerance regions. We focus on bivariate 
distributions because they are easier to visualize than higher dimensional distributions. The same 
ideas could be carried over to three dimensions; however, the visualization would require 
considerable effort. The estimated bivariate densities use the estimators of the fixed effect parameters ߠଵ∧

 and ߠଶ∧
 listed Table 1, and the random effects ߮ଵ, ߮ଶ, and ߮ଷ calibrated by Equation (33). Figure 

1 shows the estimated bivariate probability density functions (tree density and diameter, tree density 
and height, and diameter and height), as well as fixed- and mixed-effect scenarios for the same 
randomly selected stand. The fixed-effect scenario densities are considerably flatter than the mixed-
effect scenario, which reflects the spatial hierarchy of the observed dataset. The diameter and height 
bivariate density function appears steeper than the other two distributions. 

 

 

Figure 1. Estimated marginal bivariate probability density functions for a randomly selected stand 
from a validation dataset (average stand age = 88 years), and both (Left) fixed-effects scenario and 
(Right) mixed-effects scenario. 

Figure 1. Estimated marginal bivariate probability density functions for a randomly selected stand
from a validation dataset (average stand age = 88 years), and both (Left) fixed-effects scenario and
(Right) mixed-effects scenario.



Mathematics 2020, 8, 2230 13 of 22

To illustrate that the observed dataset corresponding to the randomly selected stand from the
validation dataset of the Mountain pine trees sufficiently corresponds to the marginal bivariate
estimated probability density function, we used a simple graphical technique called a tolerance region.
A tolerance region captures a specified proportion or more of size variables, with a given tolerance
level β. Conversely, a confidence region provides a method of estimating parameter vectors using
a corresponding sample statistic to a given level of confidence γ. The tolerance region is the region
pertaining to the entire stand and not just to a specific vector of parameters. It is expected that 100β%
of the entire population will lie in the tolerance region. This procedure has two probability values
involved: (1) the coverage probability β is the fixed percentage of the data to be covered; (2) the
confidence level γ. Hence, with γ% confidence, at least β% of the data fall within the given region.
For example, if γ = 0.95 and β = 0.90, we have a 95% confidence region for 90% coverage. Basically,
the bivariate normal tolerance region plot can be used for the cases with normally distributed data.
For lognormally-distributed data, we can plot a tolerance region using a logarithmic axis. A tolerance
region is a region for vector x satisfying the inequality:(

x− µi,12(t)
)T[
Σ12(t)

]−1(
x− µi,12(t)

)
= K (34)

where K is the tolerance factor that is subject to the condition that the region in Equation (34) contains
at least β% of the normal distribution with confidence γ% [29]. Figure 2 illustrates the tolerance
regions with fixed-effect and mixed-effect scenarios for β = 0.90, 0.95, and confidence level γ = 0.95,
which correspond to the randomly selected observed validation dataset. The random effects were
calibrated by Equation (33). Figure 2 shows that the tolerance regions of the mixed-effect parameters
bivariate probability density functions better centered the observed data points for the randomly
selected stand than the tolerance regions of the fixed-effect parameters scenario. For the tolerance
region plots, the K values were chosen from Table 1 in [29]: the first setting β = 0.90 and γ = 0.95
produces a K value of 7.74; the second setting β = 0.95 and γ = 0.95 produces a K of 10.02.

Figure 2. The tolerance regions with the observed data points for a randomly selected stand from a
validation dataset (age = 88 years, γ = 0.95): (M1–M3) mixed-effects scenario; (F1–F3) fixed-effects
scenario; tolerance level β = 0.90, solid line; tolerance level β = 0.95, dotted line.
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Several studies have suggested maintaining a continuous-cover forest stand and gathering
particular benefits [30]. A special case of continuous-cover forest stand process could be formulated
as a stationary system of SDEs that ensures the equilibrium state of tree size variables. The newly
developed stationary bivariate distributions are derived in Equations (22)–(25). For comparison of
bivariate distributions in Figures 1 and 2 with their stationary analogues, we present the graphics of
stationary distributions in Figures 3 and 4.
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Figure 4. The tolerance regions with the observed data point (represents the same stand as in Figure 3)
for stationary bivariate probability density functions (γ = 0.95): (M1–M3) mixed effects scenario;
(F1–F3) fixed effects scenario; tolerance level β = 0.90, solid line; tolerance level β = 0.95, dotted line.

4. Discussion

4.1. Models of Tree Density, Diameter, and Height Mean Dynamics

A system of trivariate hybrid SDE models for forest growth and yield estimation was presented in
Section 2.1. The developed SDE system is novel in its formation using the different types of diffusion
processes and the representatively-observed Mountain pine plot data for modeling tree and stand
growth. Since planning and forest management involve forecasting yield over short and long time
periods, the diffusion processes relating tree (stand) age with size components produce the most
accurate modeling framework. The trivariate hybrid SDE easily connects univariate marginal and
conditional probability density functions of tree density, diameter, and height with their multivariate
probability density functions.

The marginal probability densities, lognormal LN1

(
µi

j(t); v j j(t)
)
, j = 1, 2, and normal

N1
(
µi

3(t); v33(t)
)
, i = 1, . . . , M with mean and variance defined by Equations (7) and (8),

and the conditional probability densities lognormal LN1
(
ηi

1(t, x2); λ12(t)
)
, LN1

(
ηi

1(t, x3); λ13(t)
)
,

LN1
(
ηi

2(t, x1); λ21(t)
)
, LN1

(
ηi

2(t, x3); λ23(t)
)
, LN1

(
Πi

1(t, x2, x3); Λ123(t)
)
, LN1

(
Πi

2(t, x1, x3); Λ213(t))
)
,

and normal N1
(
ηi

3(t, x2); λ32(t)
)
, N1

(
ηi

3(t, x1); λ31(t)
)
,, N1

(
Πi

3(t, x1, x2); Λ312(t)
)

with the mean and
variance listed in Tables 2 and 3, allowed us to predict the mean, median, mode, p-quantile (0 < p < 1),
and variance trajectories for all response variables. The mean of the tree density, diameter, and height
dynamics in the forestry literature have been formulated using a wide range of mathematical
relationships, from linearized fixed-effect parameters regression equations to generalized nonlinear
mixed-effect parameters relationships [29–32]. The linkage between the diameter, height, and the other
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stand variables such as tree density has many applications in forest inventory and remote sensing for
stand basal area and volume calculation [33].

In this paper, after the fitting the SDE (1) to the estimated dataset of Mountain pine trees, the four
statistical measures of goodness of fit were calculated and are listed in Tables 13 and 14 to compare the
models concerning the dynamics of mean tree density, mean diameter, and mean height. Additionally,
Tables 13 and 14 provide the p-value of the Student’s t-test [34], which determines whether the mean
value of model predictions is statistically different from zero. The used parameter estimates were
selected from Table 12, and the random effects for the observed validation dataset were calibrated by
Equation (33).

Table 13. Statistical measures and p-values of the Student’s t-test for the fixed-effect scenario models.

(Equation):
(Predictors)

Estimation Dataset (Prediction) Validation Dataset (Forecast)

B
(%)

AB
(%)

RMSE
(%) R2 T

p-Value
B

(%)
AB
(%)

RMSE
(%) R2 T

p-Value

Tree density

(4): (t) −48.4102
(−15.42)

4332.14
(33.97)

4947.44
(69.67) 0.2564 0.8332 −724.47

(−12.35)
1985.58
(19.43)

3270.42
(46.35) 0.1629 0.0040

(10): (d,h,t) −80.9793
(−8.12)

3011.79
(21.94)

3751.34
(41.67) 0.5725 0.6204 333.50

(−2.07)
2670.50
(20.51)

3253.55
(30.20) 0.1716 0.1768

(13): (d,t) −98.8060
(−9.62)

3350.29
(24.37)

4142.50
(47.37) 0.4787 0.5842 123.34

(−4.11)
2735.68
(21.35)

3425.94
(34.64) 0.0814 0.6345

(13): (h,t) −72.9577
(−8.35)

3014.94
(22.25)

3777.83
(42.36) 0.5664 0.6577 274.36

(−2.56)
2614.51
(20.31)

3248.79
(30.36) 0.1738 0.2655

Diameter

(4): (t) −0.0088
(−15.54)

1.1923
(34.02)

1.6504
(47.31) 0.0000 0.9025 0.2702

(−2.27)
1.0449
(25.57)

1.3191
(31.87) 0.0000 0.0074

(10): (N,h,t) −0.0156
(−5.85)

0.7091
(19.46)

0.9528
(26.54) 0.6482 0.7065 0.0662

(−2.98)
0.7928
(19.83)

1.0176
(25.51) 0.3427 0.3906

(13): (N,t) −0.0271
(−10.60)

0.9516
(26.56)

1.3637
(38.20) 0.2733 0.6501 0.2704

(0.27)
0.9947
(24.07)

1.2880
(30.28) 0.0000 0.0061

(13): (h,t) −0.0128
(−6.00)

0.7254
(19.81)

0.9705
(26.85) 0.6350 0.7627 0.0300

(−3.89)
0.7931
(20.21)

1.0210
(26.50) 0.3383 0.6977

Height

(4): (t) 0.0047
(−8.54)

0.8118
(23.69)

1.1143
(31.48) 0.0000 0.9229 0.2944

(2.85)
0.6847
(16.66)

0.9155
(21.42) 0.0000 0.00003

(10): (N,d,t) −0.0014
(−2.76)

0.4862
(14.21)

0.6448
(18.90) 0.6652 0.9605 0.1127

(0.46)
0.5192
(13.13)

0.6964
(16.74) 0.4212 0.0336

(13): (N,t) −0.0047
(−5.42)

0.6118
(18.10)

0.8411
(25.16) 0.4302 0.8979 0.2745

(3.20)
0.6898
(17.02)

0.9009
(21.42) 0.0313 0.00008

(13): (d,t) 0.0015
(−3.00)

0.5338
(15.56)

0.6993
(20.33) 0.6061 0.9604 0.0693

(−0.50)
0.5541
(14.20)

0.7031
(17.15) 0.4101 0.1937

The mean prediction bias, B = 1
n
∑n

i=1

(
yi −

∧

yi

)
; the percentage mean prediction bias, %B = 1

n
∑n

i=1
yi−
∧
yi

yi
∗ 100;

the absolute mean prediction bias, AB = 1
n
∑n

i=1

∣∣∣∣yi −
∧

yi

∣∣∣∣; the percentage mean absolute prediction bias,

%B = 1
n
∑n

i=1

∣∣∣∣∣∣ yi−
∧
yi

yi

∣∣∣∣∣∣; the root mean square error, RMSE =

√
1

n−1
∑n

i=1

(
yi −

∧

yi

)2
; the percentage root mean square

error, %RMSE =

√
1

n−1
∑n

i=1

(
yi−
∧
yi

yi

)2

∗ 100; coefficient of determination, R2 = 1−
∑n

i=1

(
yi−
∧
yi

)2

∑n
i=1(yi−y)2 , where n =

∑M
i=1 ni is

the total number of observations used to fit the model, M is the number of stands, ni is the number of measured
trees in the ith stand, and yi,

∧

yi, and y are the measured, estimated, and average values of the dependent variable
(number of trees per hectare, N; diameter, d; height, h; stand basal area, G; stand volume, VS).
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Table 14. Statistical measures and p-values of the Student’s t-test for the mixed-effect scenario models.

See Table:
(Predictors)

Estimation Dataset Validation Dataset

B
(%)

AB
(%)

RMSE
(%) R2 T

p-Value
B

(%)
AB
(%)

RMSE
(%) R2 T

p-Value

Tree density

(1): (t) 1.6709
(−0.01)

6.2768
(0.05)

7.8379
(0.09) 1.0 0.0000 0.2336

(−0.01)
5.4773
(0.04)

6.9829
(0.7) 1.0 0.6587

(5): (d,h,t) −1.0965
(−0.06)

80.4988
(0.46)

108.7885
(0.60) 0.9996 0.8171 −1.172

(−0.01)
68.4800
(0.43)

88.6621
(0.54) 0.9994 0.8614

(3): (d,t) −1.0340
(−0.01)

81.9300
(0.46)

111.9989
(0.63) 0.9996 0.8322 −1.260

(−0.01)
71.8156
(0.45)

89.7277
(0.55) 0.9994 0.8528

(3): (h,t) 0.6278
(−0.01)

76.4693
(0.45)

102.8041
(0.60) 0.9997 0.8886 −0.877

(−0.01)
68.7991
(0.43)

91.9456
(0.57) 0.9994 0.8997

Diameter

(1): (t) –0.0823
(−11.44)

0.8511
(21.83)

1.1336
(32.29) 0.5019 0.0963 −0.1291

(−10.72)
0.8903
(23.79)

1.0774
(31.52) 0.2631 0.1149

(5): (N,h,t) –0.0070
(−5.05)

0.6436
(17.76)

0.8485
(24.63) 0.7210 0.8501 −0.0202

(−5.26)
0.7311
(18.86)

0.9636
(25.63) 0.4106 0.7821

(3): (N,t) 0.0067
(−8.50)

0.8299
(23.61)

1.1200
(33.33) 0.5138 0.8901 −0.0255

(−7.84)
0.8742
(22.96)

1.0721
(29.81) 0.2704 0.7530

(3): (h,t) –0.0454
(−5.33)

0.6726
(18.19)

0.8871
(25.32) 0.6950 0.2402 −0.0552

(−5.68)
0.7577
(19.57)

1.0122
(27.08) 0.3497 0.4718

Height

(1): (t) 0.0012
(−2.93)

0.4065
(12.53)

0.5483
(18.03) 0.7578 0.9580 0.0003

(−2.09)
0.3971
(10.96)

0.5182
(15.30) 0.6796 0.9937

(5): (N,d,t) 0.0008
(−1.47)

0.3224
(9.68)

0.4214
(13.07) 0.8570 0.9639 −0.00002

(−1.25)
0.3332
(8.99)

0.4495
(12.07) 0.7588 0.9994

(3): (N,t) 0.0007
(−2.77)

0.4050
(12.47)

0.5451
(17.85) 0.7607 0.9751 −0.0005

(−2.02)
0.3939
(10.87)

0.5165
(15.16) 0.6816 0.9900

(3): (d,t) 0.0010
(−1.19)

0.3306
(9.94)

0.4298
(13.38) 0.8512 0.9584 0.0003

(−1.07)
0.3468
(9.30)

0.4662
(12.27) 0.7406 0.9937

Within comparison problems, the aim of predictive SDE models of the tree density, diameter,
and height is to accurately predict an outcome value from a set of predictors (age, tree density,
diameter, and height). Common assumptions of these models are nonlinearity; that is, the expected
outcome value is modeled by a nonlinear combination of predictors, and the underlying covariance
structure is considered to drive changes in the predictor variables (tree density, diameter, and height).
The comparison of the models using the four statistical measures, presented in Tables 13 and 14,
highlighted that the mixed-effect models are superior to the fixed-effect models. Consequently,
the mixed effect scenario models account unobserved ecological factors such as temperature, solar
radiation, precipitation, nutrient condition and much more. The statistical measures computed for
the estimation dataset indicated a moderate accuracy level, with lower performance on the validation
dataset, as expected. Therefore, as demonstrated in Tables 13 and 14, the maximum impact on the tree
density dynamics demonstrated the tree height. For the impact on diameter dynamics, the height was
shown to be the most important predictor variable; for the impact on height dynamics, diameter was
the most important predictor variable; for the impact on tree density dynamics, height was the most
important predictor variable.

Figure 5 shows the tree density, diameter, and height mean and 5% and 95% quantile trajectories via
age for three randomly selected stands from the validation dataset using marginal univariate probability
densities. The figure reveals the superiority of the mixed-effects scenario over the fixed-effects scenario.
The mixed-effect 5% and 95% quantile curves of the tree density, diameter, and height for all three
stands in the validation dataset (Figure 5) closely matched the observed data points in the validation
dataset. The fixed-effect scenario modeling technique produced quite a few of the points from the
observed datasets that passed the 5% and 95% quantile limits for tree height.
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constant over time. This might seem obvious to some, but this is seldom mentioned in the scientific 
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Figure 5. Mean and 5% and 95% quantiles trajectories with observed data points of the tree density,
diameter, and height: mean trajectory, solid line; 5% and 95% quantiles trajectories, dashed lines;
first row, mixed-effects scenario for the first stand; second row, mixed-effects scenario for the second
stand; third row, mixed-effects scenario for the third stand; last row, fixed effects scenario for all stands;
and validation dataset, red circles.

4.2. Models of Stand Basal Area

The stand basal area is a measure of tree density, which is the sum of the basal area of all (living)
trees in a stand, expressed in m2/ha, and widely used in forestry to describe the average amount of an
area occupied by trees. Stand basal area is a useful measure for understanding forest–wildlife habitat
relationships and making timber harvest decisions, and can be used to estimate stand volume per
hectare or as a useful measure of the competition in a stand [35]. Basal area production describes the
stand development over age and is defined as [36]:

G =
π ·D2

40000
·N. (35)

The multitude of existing machine learning models, when applied to stand basal area and volume,
can be seen as regression models, and they need the underlying growth processes to be stationary,
which means that we assume the mean and the variance of stand size components are constant over
time. This might seem obvious to some, but this is seldom mentioned in the scientific literature.
All the above regression models can be generalized to handle this non-stationarity by applying SDEs
to the dynamics of stand size components such as the stand basal area and volume per hectare.
According to the marginal bivariate (tree density and diameter) probability density function defined
by Equations (12) and (13), the basal area dynamics takes the following form:
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G(t) = π
40000

∫ +∞

−∞

∫ +∞

−∞
x2

2
· x1 · f

(
x1, x2

∣∣∣∣∣∧Θ)
dx1dx2,

∧

Θ =

(
∧

θ2,
∧

Ψ

)
,

θ2 =
{
α1,α2, β1, β2, σ11,ρ12, σ22, σ1, σ2, σ3

}
.

(36)

The aim of developing SDE stand basal area models was to estimate the present and future values
of stand basal area at the whole Mountain pine stand level in Lithuania. Figure 6 illustrates the basal
area development over time with the observed dataset for the mixed-effect scenario (the random effects
were calibrated by Equation (33)). Figure 6 demonstrates that the mixed-effect scenario basal area
formula, defined by Equation (36), for three stands provides predicted values close to the observed stand
basal area values. The results showed that there were marked differences between the mixed-effect
parameters and the fixed-effect parameters simulations of the stand basal area; moreover, the fixed-effect
scenario model alone could not explain the full range variation between stands. The fixed-effect
scenario stand basal area models should instead be considered as some of the possible dynamics that
are not necessarily close to the true trajectory of the stand basal area.
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Figure 6. Dynamics of stand basal area over time for the mixed-effects scenario model: solid line,
mean stand basal area curves; the first stand, black; the second, red color; the third stand, blue; circles,
observed data points.

Table 15 presents the statistical measures for the stand basal area mixed-effect parameters
non-stationary and stationary SDE models. Table 15 shows that the mixed-effect scenario SDE model
achieved high accuracy in predicting stand basal area. The non-stationary and stationary stand basal
area models produced similar goodness results from the numerical simulations. We suggest this
conjunction is largely due to the parameter estimates of the SDE (1), which focused on Mountain
pine trees growth experiments with the majority of data points from the stationary phase (more than
50 years).

Table 15. Statistical measures and p-values of the Student’s t-test for the stand basal area (m2/ha)
(Equation (36)).

Model B
(%)

AB
(%)

RMSE
(%) R2 T

Mixed 0.1587
(1.10)

1.1292
(5.16)

1.6082
(8.81) 0.9451 0.5909

Mixed-stationary 0.1587
(1.10)

1.1292
(5.16)

1.6082
(8.81) 0.9451 0.5909

In this study, we used the diameter, height, and tree density as SDE system variables, but the other
variables at the stand level (stand basal area and volume per hectare) were analyzed by prioritizing
their definition.
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4.3. Models of Stand Volume

Typically, stand level models evaluate stand volume as a function of stand level variables such as
age, site index, and density. Our developed methodology of stand volume modeling is based on a
general trivariate (diameter, height, and density) distribution function that challenges conventional
thinking in forest stand modeling. The European national forest inventories traditionally use regression
models to estimate tree volume from measurements of tree variables, such as the diameter at breast
height and height, which are measured during inventory.

Prior to the stand volume analysis, individual tree volume prediction was examined using a few
general nonlinear models using power and q-exponential regression forms [37,38]. We incorporated
the q-exponential function, which is defined as

V = β1 + β2hβ3 [−β4(1− exp((1− β5)d))]
1

1−β5
+ (37)

where d is diameter at breast height, h is tree height, β1–β5 are the unknown parameters to be estimated,

and [a]+ =

{
a, i f a ≥ 0,
0, i f a < 0

. The parameters were estimated using observed dataset (217 trees):

β1 = −0.0004; β2 = 0.0022; β3 = 0.8422; β4 = 0.2344; β5 = −0.3139 [12].
According to the trivariate (tree density, diameter, and height) probability density function defined

by Equations (7)–(10), the volume evolution takes the following form:

VS(t) = π
40000 ·

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
V(y, z) · z · f

(
x, y, z, t

∣∣∣∣∣∧Θ)
· dx · dy · dz,

∧

Θ ∈

(
∧

θ1,
∧

Ψ

)
,

θ1 =
{
α1, β1,α2, β2,α3, β3, σ11,ρ12,ρ13, σ22,ρ23, σ33

}
.

(38)

Figure 7 shows the dynamics of the stand volume per hectare as a function of stand age using the
mixed-effect scenario. Table 16 shows the predictive ability for both the newly-developed non-stationary
and stationary mixed-effect scenario volume per hectare models defined by Equation (38).

Table 16. Statistical measures and p-values of the Student’s t-test for the stand volume (m3/ha)
(Equation (40)).

Model B
(%)

AB
(%)

RMSE
(%) R2 T

Mixed 0.7361
(1.79)

4.8464
(6.40)

7.8747
(9.80) 0.9979 0.5204

Mixed-stationary 0.7361
(1.79)

4.8464
(6.40)

7.8747
(9.80) 0.9979 0.5204
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5. Conclusions

In this study, we developed new ideas about how the forest stands of Mountain pine trees
evolve from natural or artificial establishment toward old growth forest stands. The old growth forest
stand dynamics are unclear, so we proposed a hybrid multivariate diffusion process defined by the
multivariate SDE to define changing frames between tree- or stand-state variables over time. First,
the marginals we used of the hybrid multivariate SDE in the Gompertz and Vasicek types include the
asymmetric and symmetric growth patterns in the biological world. Second, our derived stationary
hybrid multivariate probability density function enables the clearer establishment of what constitutes
an old growth forest stand (Tables 14 and 15). The results demonstrated the high accuracy of the newly
developed models for stand basal area and volume predictions. Many stand or tree attributes and the
different tree species may be examined using stochastic process analogy.
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