On An Open Question in Controlled Rectangular b-Metric Spaces
Abstract
:1. Introduction
2. Preliminaries
- 1.
- if and only if
- 2.
- 3.
- 1.
- A sequence is called -convergent in if there exists such that
- 2.
- A sequence in is called -Cauchy if .
- 3.
- is called -complete if every -Cauchy sequence in X is convergent in X.
- 4.
- For any and , we define an open ball in with center c and radius η by
3. An Answer to an Open Question
4. On Fixed Point Theorems of Banach and Kannan
5. Application in Fractional Differential Type Equation
- (i)
- There exists such that for all , where is defined as follows:
- (ii)
- for all , and with where ;
- (iii)
- for each , if is a sequence in such that in and for all , then for all .
- (i)
- The functions and are continuous;
- (ii)
- is a function such that for all and, for every , we have:
- (iii)
- , for all and .
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fréchet, M. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo (1884–1940) 1906, 22, 1–72. [Google Scholar] [CrossRef] [Green Version]
- Hausdorff, F. Grundzuge der Mengenlehre. Monatshefte für Mathematik und Physik 1915, 26, A34–A35. [Google Scholar]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Bakhtin, I.A. The contraction mapping principle in quasi-metric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. 2000, 57, 31–37. [Google Scholar]
- George, R.; Radenović, S.; Rashma, K.P.; Shukla, S. Rectangular b-metric spaces and contraction principals. J. Nonlinear Sci. Appl. 2015, 8, 1005–1013. [Google Scholar] [CrossRef]
- Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, N. Controlled Metric Type Spaces and the Related Contraction Principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double Controlled Metric Type Spaces and Some Fixed Point Results. Mathematics 2018, 6, 320. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Karapınar, E.; Panda, S.K.; Mlaiki, N. Solutions of boundary value problems on extended-Branciari b-distance. J. Inequal. Appl. 2020, 2020, 103. [Google Scholar] [CrossRef]
- Shatanawi, W.; Abodayeh, K.; Mukhemer, A. Some fixed point theorems in extended b-metric spaces. U.P.B. Sci. Bull. Ser. A 2018, 80, 71–78. [Google Scholar]
- Ali, M.U.; Kamran, T.; Postolache, M. Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem. Nonlinear Anal. Model. Control 2017, 22, 17–30. [Google Scholar] [CrossRef]
- Kamran, T.; Postolache, M.; Ali, M.U.; Kiran, Q. Feng and Liu type F-contraction in b-metric spaces with application to integral equations. J. Math. Anal. 2016, 7, 18–27. [Google Scholar]
- Abodayeh, K.; Karapınar, E.; Pitea, A.; Shatanawi, W. Hybrid Contractions on Branciari Type Distance Spaces. Mathematics 2019, 7, 994. [Google Scholar] [CrossRef] [Green Version]
- Mlaiki, N.; Hajji, M.; Abdeljawad, T. A New Extension of the Rectangular b-Metric Spaces. Adv. Math. Phys. 2020, 7. [Google Scholar] [CrossRef]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Dung, N.V.; An, T.V.; Hang, V.T.L. Remarks on Frink’s metrization technique and applications. Fixed Point Theory 2019, 20, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Mitrović, Z.D. A note on a Banach’s fixed point theorem in b-rectangular metric space and b-metric space. Math. Slovaca. 2018, 68, 1113–1116. [Google Scholar] [CrossRef]
- Mitrović, Z.D. Fixed point results in b-metric space. Fixed Point Theory 2019, 20, 559–566. [Google Scholar] [CrossRef]
- Mitrović, Z.D.; Işik, H.; Radenović, S. The new results in extended b-metric spaces and applications. Int. J. Nonlinear Anal. Appl. 2020, 11, 473–482. [Google Scholar]
- Kamran, T.; Samreen, M.; Qurat, U.A. A generalization of b-Metric space and some fixed point theorems. Mathematics 2017, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, M.H.; Trujillo, J.J. Theory and Application of Fractional Differential Equations. In North Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integral and Derivative; Gordon Breach: London, UK, 1993. [Google Scholar]
- Vlase, S.; Marin, M.; Öchsner, A.; Scutaru, M.L. Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system. Contin. Mech. Thermodyn. 2019, 31, 715–724. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
George, R.; Belhenniche, A.; Benahmed, S.; Mitrović, Z.D.; Mlaiki, N.; Guran, L. On An Open Question in Controlled Rectangular b-Metric Spaces. Mathematics 2020, 8, 2239. https://doi.org/10.3390/math8122239
George R, Belhenniche A, Benahmed S, Mitrović ZD, Mlaiki N, Guran L. On An Open Question in Controlled Rectangular b-Metric Spaces. Mathematics. 2020; 8(12):2239. https://doi.org/10.3390/math8122239
Chicago/Turabian StyleGeorge, Reny, Abdelkader Belhenniche, Sfya Benahmed, Zoran D. Mitrović, Nabil Mlaiki, and Liliana Guran. 2020. "On An Open Question in Controlled Rectangular b-Metric Spaces" Mathematics 8, no. 12: 2239. https://doi.org/10.3390/math8122239
APA StyleGeorge, R., Belhenniche, A., Benahmed, S., Mitrović, Z. D., Mlaiki, N., & Guran, L. (2020). On An Open Question in Controlled Rectangular b-Metric Spaces. Mathematics, 8(12), 2239. https://doi.org/10.3390/math8122239