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Abstract: In this paper, we give an affirmative answer to an open question posed recently by
Mlaiki et al. As a consequence of our results, we get some known results in the literature. We also give
an application of our results to the existence of a solution of nonlinear fractional differential equations.
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1. Introduction

Fréchet [1] introduced the axiomatic form of distance as L-space. Hausdorff [2] re-defined it
as a metric space. In 1922, Banach [3] proved the existence and uniqueness of a fixed point for
self-contractive mappings in a complete metric space. Inspired by the wide applications of Banach’s
result, numerous extensions and generalizations of it appeared in the literature. One direction of such
generalizations was by generalizing the concept of a metric space itself. Bakhtin [4], Branciari [5],
George et al. [6], Mlaiki et al. [7], Abdeljawad et al. [8,9], and Shatanawi et al. [10] introduced the notion
of a b-metric, rectangular metric, rectangular b-metric, controlled metric, double controlled metric,
extended Branciari b-distance, and extended b-metric, respectively (see also [11–13]). The concept of
a controlled rectangular b-metric space was introduced in Mlaiki et al. [14]. The following two theorems
are the main results in [14].

Theorem 1. Let (X, Dξ) be a Dξ-complete, controlled, rectangular b-metric space, T : X → X be a self
map on X. If there exists 0 < δ < 1, such that

Dξ(Tz, Tt) ≤ δDξ(z, t),
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for all z, t ∈ X, and

sup
m>1

lim
n→∞

ξ(xn, xn+1, xn+2, xm) ≤
1
δ

, (1)

then T has a unique fixed point in X.

Remark 1. Note that, from Theorem 1 we obtain theorem 2.1 in [6].

Theorem 2. Let (X, Dξ) be a Dξ-complete controlled rectangular b-metric space, T : X → X be a self
map on X. If

Dξ(Tz, Tt) ≤ δ[Dξ(z, Tz) + Dξ(t, Tt)]

for all z, t ∈ E, wher δ ∈ (0, 1). Also, if

sup
m>1

lim
n→∞

ξ(xn, xn+1, xn+2, xm) ≤
1
δ

, (2)

and for all u, v ∈ X we have
lim

n→∞
ξ(u, v, xn, xn+1) ≤ 1, (3)

then T has a unique fixed point in X.

Mlaiki et al. in the paper [14] gave the following open question.

Question 1. Let (X, Dξ) be a controlled rectangular b-metric space, and T : X → X be a self map on X.
Assume that for all distinct u, v, Tu, Tv ∈ X there exists δ ∈ (0, 1) such that

Dξ(Tu, Tv) ≤ δξ(u, v, Tu, Tv)Dξ(u, v).

What are the other hypotheses we should add so that T has a unique fixed point in the whole space X?

The aim of this work is to provide an answer to the above question by providing other hypotheses
required to prove the existence of a unique fixed point of the mapping T given in Question 1. We also
provide a short proof of Theorem 1, and we replace condition (1) with

sup
m,n,k∈N

ξ(xm, xn, xm+k, xn+k) < +∞. (4)

Also, we show that condition (2) is redundant and that condition (3) can be relaxed.

2. Preliminaries

Definition 1 ([14]). Let X be a non-empty set, ξ : X4 → [1, ∞) and Dξ : X2 → [0, ∞) be given mappings.
We say that (X, Dξ) is a controlled rectangular b-metric space (or in short CRb-MS) if, for all distinct
c, d, e, f ∈ X, we have

1. Dξ(c, d) = 0 if and only if c = d;
2. Dξ(c, d) = Dξ(d, c);
3. Dξ(c, d) ≤ ξ(c, d, e, f )[Dξ(c, e) + Dξ(e, f ) + Dξ( f , d)].

Further, through the paper we will assume that (X, Dξ) is a CRb-MS. The following definition
presents the topology of this space.

Definition 2 ([14]).

1. A sequence {an} is called Dξ-convergent in (X, Dξ), if there exists a ∈ X such that lim
n→∞

Dξ(an, a) = 0.
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2. A sequence {an} in (X, Dξ) is called Dξ-Cauchy if lim
n,m→∞

Dξ(an, am) = 0.

3. (X, Dξ) is called Dξ-complete if every Dξ-Cauchy sequence {an} in X is convergent in X.
4. For any c ∈ X and η > 0, we define an open ball in (X, Dξ) with center c and radius η by

Bξ(c, η) = {d ∈ X | Dξ(c, d) < η}.

Remark 2. Note that the condition (4) gives us the possibility to obtain, as a consequence of our result, a series
of known results in a b-metric space, rectangular metric space, b-rectangular metric space, extended b-metric
space, and extended b-rectangular metric space. Additionally, rectangular metric spaces (see Branciari in [5]),
rectangular b-metric spaces (see George et al. [6]), and extended Branciari b-distance spaces (see Abdeljawad et al.
in [9]) are all CRb-MS. (The converse is not necessarily true (see Example 1, [14]).

Remark 3. In this paper, we consider that the sequence {xn} is defined by xn = Txn−1, n ∈ N, where x0 ∈ X.

3. An Answer to an Open Question

Theorem 3. Let T : X → X be a mapping on Dξ-complete CRb-MS (X, Dξ). Assume that

Dξ(Tu, Tw) ≤ δξ(u, w, Tu, Tw)Dξ(u, w) (5)

for all distinct u, w, Tu, Tw ∈ X, where δ ∈ [0, 1). If

sup
m,n,k∈N

k

∏
i=1

ξ(xm+k−i, xn+k−i, xm+k+1−i, xn+k+1−i) < +∞ (6)

and
sup

m,n,k∈N
ξ(xm, xn, xm+k, xn+k) < +∞, (7)

then T has a unique fixed point in X.

Proof. Step 1. Let {xn} be a sequence defined as in Remark 3. If xn = xn+1 then xn is a fixed point
of T and we are done. So suppose that xn 6= xn+1 for all n ≥ 0. Then xn 6= xn+k for all n ≥ 0, k ≥ 1.
Then, we assume xn 6= xm for all distinct n, m ∈ N. Note that xn+k 6= xm+k for all distinct n, m ∈ N
xn+k, xm+k ∈ X \ {xn, xm}.

Step 2. From condition (6), we conclude that there exists M > 0, such that

k

∏
i=0

ξ(xm+k−i, xn+k−i, xm+k+1−i, xn+k+1−i) ≤ M (8)

for all m, n, k ∈ N. Since δ ∈ [0, 1), we conclude that there exists n1 ∈ N, such that

δn1 M < 1. (9)

Let k, m, m ∈ N, such that
min{k, m, n} ≥ n1. (10)

Now, from Condition 3 of Definition 1, we have

Dξ(xm, xn) ≤ ξ(xm, xn, xm+k, xn+k)[Dξ(xm, xm+k) (11)

+ Dξ(xm+k, xn+k) + Dξ(xn+k, xn)].



Mathematics 2020, 8, 2239 4 of 11

Next, from Condition (5), we have

Dξ(xm, xm+k) ≤ δξ(xm−1, xm+k−1, xm, xm+k)Dξ(xm−1, xm+k−1) (12)

≤ δ2ξ(xm−1, xm+k−1, xm, xm+k)

ξ(xm−2, xm+k−2, xm−1, xm+k−1)Dξ(xm−2, xm+k−2)

...

≤ δm
m

∏
i=1

ξ(xm−i, xm+k−i, xm+1−i, xm+k+1−i)Dξ(x0, xk).

Similar as in (12), we get

Dξ(xn, xn+k) ≤ δn
n

∏
i=1

ξ(xn−i, xn+k−i, xn+1−i, xn+k+1−i)Dξ(x0, xk) (13)

and

Dξ(xm+k, xn+k) ≤ δk
k

∏
i=1

ξ(xm+k−i, xn+k−i, xm+k+1−i, xn+k+1−i)Dξ(xm, xn). (14)

Let

Pm,n =
k

∏
i=1

ξ(xm+k−i, xn+k−i, xm+k+1−i, xn+k+1−i), (15)

Pm =
m

∏
i=1

ξ(xm−i, xm+k−i, xm+1−i, xm+k+1−i), (16)

Pn =
n

∏
i=1

ξ(xn−i, xn+k−i, xn+1−i, xn+k+1−i). (17)

From (11)–(14), we obtain

Dξ(xm, xn) ≤ ξ(xm, xn, xm+k, xn+k)[δ
mPmDξ(x0, xk)

+ δkPm,nDξ(xm, xn) + δnPnDξ(xk, x0)].

Due to the conditions (7) and (9), we have

Dξ(xm, xn) ≤ ξ(xm, xn, xm+k, xn+k)
(δmPm + δnPn)Dξ(x0, xk)

1− δkξ(xm, xn, xm+k, xn+k)Pm,n
.

Using condition (6), we obtain that {xn} is a Dξ-Cauchy. Thus, there exists x∗ ∈ X such that

lim
n→∞

xn = x∗.

We have

Dξ(x∗, Tx∗) ≤ ξ(x∗, Tx∗, xn, xn+1)[Dξ(x∗, xn) + Dξ(xn, xn+1) + Dξ(xn+1, Tx∗)]

≤ ξ(x∗, Tx∗, xn, xn+1)[Dξ(x∗, xn) + Dξ(xn, xn+1) + Dξ(Txn, Tx∗)]

≤ ξ(x∗, Tx∗, xn, xn+1)[Dξ(x∗, xn) + Dξ(xn, xn+1)+

δξ(x∗, Tx∗, xn, xn+1)Dξ(xn, x∗)].

Since lim
n→∞

Dξ(x∗, xn) = 0 and lim
n→∞

Dξ(xn, xn+1) = 0, we conclude Dξ(x∗, Tx∗) = 0, i.e Tx∗ = x∗.
Step 3. Uniqueness. Let y∗ ∈ X such that Ty∗ = y∗. Then we have

Dξ(x∗, y∗) ≤ ξ(x∗, y∗, xn, xn+1)[Dξ(x∗, xn) + Dξ(xn, xn+1) + Dξ(xn+1, y∗)].
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Since lim
n→∞

Dξ(x∗, xn) = 0, lim
n→∞

Dξ(xn, xn+1) = 0, lim
n→∞

Dξ(xn+1, y∗) = 0 we obtain Dξ(x∗, y∗) = 0.

Thus, x∗ = y∗.

4. On Fixed Point Theorems of Banach and Kannan

Now, we give another variant of the Theorem 1.

Theorem 4. Let T : X → X be a mapping on Dξ-complete CRb-MS (X, Dξ). Suppose that for all distinct
u, w, Tu, Tw ∈ X, there exists δ ∈ [0, 1), such that

Dξ(Tu, Tw) ≤ δDξ(u, w) (18)

and
sup

m,n,k∈N
ξ(xm, xn, xm+k, xn+k) < +∞. (19)

Then, T has a unique fixed point in X.

Proof. Step 1. Same as in Theorem 3.
Step 2. From condition (19), we obtain that there exists M > 0 such that

ξ(xm, xn, xm+k, xn+k) ≤ M, (20)

for all m, n, k ∈ N. Since δ ∈ [0, 1) we conclude that there exists n1 ∈ N such that

δn1 M < 1. (21)

Let k, m, m ∈ N such that
min{k, m, n} ≥ n1. (22)

Next, we have

Dξ(xm, xn) ≤ ξ(xm, xn, xm+k, xn+k)[Dξ(xm, xm+k) (23)

+ Dξ(xm+k, xn+k) + Dξ(xn+k, xn)].

Next, from condition (18), we have

Dξ(xm, xm+k) ≤ δDξ(xm−1, xm+k−1) (24)
...

≤ δmDξ(x0, xk).

Additionally, as in (24), we obtain

Dξ(xn, xn+k) ≤ δnDξ(x0, xk) (25)

and
Dξ(xm+k, xn+k) ≤ δkDξ(xm, xn). (26)

So, we obtain

Dξ(xm, xn) ≤ ξ(xm, xn, xm+k, xn+k)
(δm + δn)Dξ(x0, xk)

1− δkξ(xm, xn, xm+k, xn+k)
.
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Next, using condition (19), we obtain that {xn} is a Dξ-Cauchy. Therefore, there exists x∗ ∈ X such that

lim
n→∞

xn = x∗.

Now let us prove that x∗ is a fixed point. We have

Dξ(x∗, Tx∗) ≤ ξ(x∗, Tx∗, xn, xn+1[Dξ(x∗, xn) + Dξ(xn, xn+1) + Dξ(xn+1, Tx∗)]

≤ ξ(x∗, Tx∗, xn, xn+1)[Dξ(x∗, xn) + Dξ(xn, xn+1) + Dξ(Txn, Tx∗)]

≤ ξ(x∗, Tx∗, xn, xn+1)[Dξ(x∗, xn) + Dξ(xn, xn+1)+

δDξ(xn, x∗)].

Since
lim

n→∞
Dξ(x∗, xn) = 0, lim

n→∞
Dξ(xn, xn+1) = 0,

we conclude
Dξ(x∗, Tx∗) = 0.

Step 3. Uniqueness. Let y∗ be another fixed point of T. Then we have

Dξ(x∗, y∗) ≤ ξ(x∗, y∗, xn, xn+1)[Dξ(x∗, xn) + Dξ(xn, xn+1) + Dξ(xn+1, y∗)].

Since
lim

n→∞
Dξ(x∗, xn) = 0, lim

n→∞
Dξ(xn, xn+1) = 0, lim

n→∞
Dξ(xn+1, y∗) = 0,

we obtain Dξ(x∗, y∗) = 0, so x∗ = y∗.

The next result is a version of Kannan’s theorem in controlled rectangular b-metric space.

Theorem 5. Let T : X → X be a mapping on Dξ-complete CRb-MS (X, Dξ), satisfying the following
condition: For all z, t ∈ X, there exists δ ∈ [0, 1

2 ) such that

Dξ(Tz, Tt) ≤ δ[Dξ(z, Tz) + Dξ(t, Tt)]. (27)

Additionally, if

lim
n→∞

ξ(u, Tu, xn, xn+1) ≤
1
δ

, (28)

for all u ∈ X, then T has a unique fixed point in X.

Proof. Let {xn} be a sequence defined as in Remark 3. From condition (27), we obtain

d(xn+1, xn) ≤ δ[Dξ(xn, xn+1) + Dξ(xn−1, xn)],

d(xn+1, xn) ≤
δ

1− δ
Dξ(xn, xn−1)],

so,
d(xn+1, xn) ≤ βnDξ(x1, x0)], (29)

for all n ∈ N, where β = δ
1−δ . Additionally, from condition (27), we have

d(xm, xn) ≤ δ[Dξ(xm−1, xm) + Dξ(xn−1, xn)].

Using condition (29), we get

d(xm, xn) ≤ δ[βm−1Dξ(x0, x1) + βn−1Dξ(x0, x1)]
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for all m, n ∈ N. Therefore, {xn} is Dξ-Cauchy. Let a∗ = lim
n→+∞

xn. Since, X is controlled rectangular

b-metric space we obtain

Dξ(a∗, Ta∗) ≤ ξ(a∗, Ta∗, xn, xn+1)[Dξ(a∗, xn) + Dξ(xn, xn+1) + Dξ(xn+1, Ta∗)]

≤ ξ(a∗, Ta∗, xn, xn+1)[Dξ(a∗, xn) + Dξ(xn, xn+1) +

δ(Dξ(xn, xn+1) + Dξ(a∗, Ta∗)].

Now, from condition (28), we obtain Ta∗ = a∗. Uniqueness follows from condition (27).

Remark 4. Note that instead of condition (28) in Theorem 5 we can use the condition that T is continuous.

Corollary 1. [15] (see also [16–18]) Let (X, Dξ) be a complete b-metric space and T : X → X such that

Dξ(Ts, Tr) ≤ λDξ(s, r) (30)

for all s, r ∈ X, where λ ∈ [0, 1). Then, T has a unique fixed point in X.

Remark 5. As a consequence of Theorem 4, we obtain results for rectangular b-metric space (theorem 2.1 of [6])
and extended b-metric space (corollary 3.3 in [19] and theorem 2 in [20]).

5. Application in Fractional Differential Type Equation

In this section, using Theorem 3, we obtain existence and uniqueness solutions of nonlinear
fractional differential equation system Caputo type (see, for example, Ref. [21])

CDθ(ψ(ι) + χ(ι, ψ(ι))) = 0, ι ∈ [0, 1), θ < 1 (31)

ψ(0) = ψ(1) = 0,

where ψ ∈ C([0, 1],R) and C([0, 1],R) is the set of all continuous functions from [0, 1] to R, χ :
[0, 1]×R→ R is a continuous function, and CDθ is the Caputo derivative of order θ

CDθ(ω(ι)) :=
1

Γ(n− θ)

ι∫
0

(ι− κ)n−θ−1ω(n)(κ)dκ, (n− 1 < θ < n), (32)

where ω : [0, ∞)→ R is a continuous function, see [22–24]).
Let G be a Green function for the system (31), for α < 1, as follows:

G(ι, κ) =

{
(ι(1− κ))α−1 − (ι− κ)α−1, if 0 ≤ κ ≤ t ≤ 1;
(ι(1−κ))α−1

Γ(α) , if 0 ≤ ι ≤ κ ≤ 1.

Let us give the first existence result of this section.

Theorem 6. Let the nonlinear fractional differential Equation (31) and µ : R×R→ R be a given function,
such that the following assumptions are true:

(i) There exists ψ0 ∈ (C[0, 1],R) such that µ(ψ0(ι),
1∫

0
Tψ0(ι)dι) ≥ 0 for all ι ∈ [0, 1], where T :

C([0, 1],R)→ C([0, 1],R) is defined as follows:

Tψ(ι) =
∫ 1

0
G(ι, κ)χ(κ, x(κ))dκ (33)
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(ii) |χ(ι, α)− χ(ι, β)| ≤ 1√
τ

ξ(α, β, Tα, Tβ)|α− β| for all ι ∈ [0, 1], τ > 1 and α, β ∈ R with µ(α, β) ≥ 0

where ξ : X4 → [1, ∞);
(iii) for each ι ∈ [0, 1], if {ψn} is a sequence in C([0, 1],R) such that ψn → ψ in C([0, 1],R) and

µ(xn(ι), xn+1(ι)) ≥ 0 for all n ∈ N, then µ(ψn(t), ψ(t)) ≥ 0 for all n ∈ N.

Then, the Equation (31) has a unique solution.

Proof. Let X = C([0, 1],R) endowed with Dξ : X× X → such that

Dξ(ψ, ϕ) = ‖ψ− ϕ‖∞ = sup
ι∈[0,1]

| ψ(ι)− ϕ(ι) |2

and ξ : X4 → [1, ∞) defined by ξ(ψ, ϕ, Tψ, Tϕ) = max{ψ, ϕ, Tψ, Tϕ}+ 2 for any ψ, ϕ ∈ X. Clearly,
(X, Dξ) is a Dξ-complete CRb-MS.

It is obvious the problem (31) can be resumed to finding an element ψ∗ ∈ X which is a fixed point
for the operator T.

Let ψ, ϕ ∈ X, such that µ(ψ(ι), ϕ(ι)) ≥ 0 for all ι ∈ [0, 1]. By (i) and (ii), we have true the
following inequalities:

|Tψ(ι)− Tϕ(ι)|2 =

∣∣∣∣∫ 1

0
G(ι, κ)[χ(κ, ψ(κ))− χ(κ, ϕ(κ))]dκ

∣∣∣∣2
≤
(∫ 1

0
G(ι, κ)dκ

)2 ∫ 1

0
|χ(κ, ψ(κ))− χ(κ, ϕ(κ))|2 dκ

≤ 1
τ

∫ 1

0
ξ2(ψ(κ), ϕ(κ), Tψ(κ), Tϕ(κ)) |ψ(κ)− ϕ(κ)|2 dκ

(∫ 1

0
G(ι, κ)dκ

)2

.

Let ξ(ψ(κ), ϕ(κ), Tψ(κ), Tϕ(κ)) = max
κ∈[0,1]

{ψ(κ), ϕ(κ), Tψ(κ), Tϕ(κ)}+ 2 = γ + 2 =
√

λ be such

that λ < τ.
Then, we have

|Tx(ι)− Ty(ι)|2 ≤ λ

τ
|ψ(ι)− ϕ(ι)|2

(∫ 1

0
G(ι, κ)dκ

)2

.

Then, taking supremum in both sides, for every ψ, ϕ ∈ X with µ(ψ(ι), ϕ(ι)) > 0 and ι ∈ [0, 1],
we obtain

Dξ(ψ, ϕ) = ‖Tψ− Tϕ‖∞ ≤
λ

τ
‖ψ− ϕ‖∞ =

λ

τ
Dξ(ψ, ϕ).

It is easy to check that

k

∏
i=1

ξ(ψm+k−i(κ), ψn+k−i(κ), ψm+k+1−i(κ), ψn+k+1−i(κ)) =
k

∏
i=1

γi < +∞,

and

ξ(ψm(κ), ψn(κ), ψm+k(κ), ψn+k(κ)) < +∞,

for all k, m, n ≥ n0, with n0 ∈ N.
For 0 < δ = 1

τ < 1 and λ < τ, we conclude that all the conditions of the Theorem 3 are
accomplished. Then, the system (31) has a unique solution.
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Let us consider the following type of integral equation

x(ι) = q(ι) +
t∫

0

P(ι, κ)g(κ, x(κ))dκ, ι ∈ [0, 1], x(ι) ∈ X, (34)

where g(ι, x(ι)) : [0, 1] × R → R, q(ι) : [0, 1] → R are two bounded continuous functions and
P : [0, 1]× [0, 1]→ [0, ∞) is a function such that P(ι, ·) ∈ L1([0, 1]) for all ι ∈ [0, 1].

Then, our aim is to establish the existence of a solution for the previous integral Equation (34)
using Theorem 4. In this frame, let us give the following result.

Theorem 7. Let X = C([0, 1],R) be the set of all continuous real-valued functions defined on [0, 1]. Let T :
X → X be an operator defined by:

Tx(ι) = q(ι) +
∫ ι

0
P(ι, κ)g(κ, x(κ))dκ, ι ∈ [0, 1], x(ι) ∈ X. (35)

Suppose the following conditions hold:

(i) The functions q(ι) : [0, 1]→ R and g(ι, x(ι)) : [0, 1]×R→ R are continuous;

(ii) P : [0, 1]× [0, 1] → [0, ∞) is a function such that P(ι, ·) ∈ L1([0, 1]) for all ι ∈ [0, 1] and, for every
κ ∈ [0, 1], we have:

‖
ι∫

0

P(ι, κ)dκ‖ < 1.

(iii) | g(κ, x(κ))− g(κ, y(κ)) |≤ 1√
α
| x(κ)− y(κ) |, for all x, y ∈ X and α > e2τι.

Then, the Equation (34) has a unique solution.

Proof. Let X = C([0, 1],R) endowed with the Bielecki norm

Dξ = ‖x‖B = sup
ι∈[0,1]

| x(ι) | e−τι with τ > 1

and ξ : X4 → [1, ∞) defined by ξ(x, y, Tx, Ty) = max{x, y, Tx, Ty}+ 2 for any x, y ∈ X. It is easy to
check that (X, Dξ) is a Dξ-complete CRb-MS.

Then, our problem (34) can be resumed to finding an element x∗ ∈ X which is a fixed point for
the operator T.

We have the estimation

| Tx(ι)− Ty(ι) |2 ≤|
∫ ι

0
[P(ι, κ)g(κ, x(κ))− P(ι, κ)g(κ, y(κ))]dκ |2

≤
∫ ι

0
| P(ι, κ)[g(κ, x(κ))− g(κ, y(κ))] |2 dκ

≤
(∫ ι

0
P(ι, κ)dκ

)2 ∫ ι

0
| [g(κ, x(κ))− g(κ, y(κ))] |2 dκ

≤ 1
α

∫ ι

0
| x(κ)− y(κ) |2 dκ

(∫ ι

0
P(ι, κ)dκ

)2

=
e2τι

αe−2τι

∫ ι

0
| x(κ)− y(κ) |2 e−2τιdκ

(∫ ι

0
P(ι, κ)e−τιdκ

)2
.
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Thus, we obtain

| Tx(ι)− Ty(ι) |2≤ e2τι

αe−2τι

∫ ι

0
| x(κ)− y(κ) |2 e−2τιdκ

(∫ ι

0
P(ι, κ)e−τιdκ

)2
. (36)

Taking supremum in the inequality (36), we have

[ sup
ι∈[0,1]

| Tx(ι)− Ty(ι) | e−τι]2 ≤ 1
αe−2τι

[ sup
ι∈[0,1]

| x(ι)− y(ι) | e−τι]2
(∫ ι

0
sup

ι∈[0,1]
P(ι, κ)e−τιdκ

)2

. (37)

Using the hypothesis (ii), we have

Dξ(x, y) = ‖Tx− Ty‖B ≤
1√

αe−τι
‖x− y‖B =

1√
αe−τι

Dξ(x, y).

It is easy to check that ξ(xm(κ), xn(κ), xm+k(κ), xn+k(κ)) < +∞, for all k, m, n ≥ n0, with n0 ∈ N.
Then, for 0 < δ = 1√

αe−τι < 1, we have true all the conditions of Theorem 4. In this condition,
we can conclude that Equation (34) has a unique solution.

6. Conclusions

In this paper, we gave an affirmative answer to an open question posed recently by
Mlaiki et al. [Adv. Math. Phys., 2020]. As a consequence of our results, we get some known results
in the literature. We also gave an application of our results to the existence of a solution of nonlinear
fractional differential equations. We believe that our results will have an impact on other researchers
in this field.
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