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Abstract: Computational cardiology is rapidly becoming the gold standard for innovative medical
treatments and device development. Despite a worldwide effort in mathematical and computational
modeling research, the complexity and intrinsic multiscale nature of the heart still limit our
predictability power raising the question of the optimal modeling choice for large-scale whole-heart
numerical investigations. We propose an extended numerical analysis among two different
electrophysiological modeling approaches: a simplified phenomenological one and a detailed
biophysical one. To achieve this, we considered three-dimensional healthy and infarcted swine heart
geometries. Heterogeneous electrophysiological properties, fine-tuned DT-MRI -based anisotropy
features, and non-conductive ischemic regions were included in a custom-built finite element
code. We provide a quantitative comparison of the electrical behaviors during steady pacing and
sustained ventricular fibrillation for healthy and diseased cases analyzing cardiac arrhythmias
dynamics. Action potential duration (APD) restitution distributions, vortex filament counting,
and pseudo-electrocardiography (ECG) signals were numerically quantified, introducing a novel
statistical description of restitution patterns and ventricular fibrillation sustainability. Computational
cost and scalability associated with the two modeling choices suggests that ventricular fibrillation
signatures are mainly controlled by anatomy and structural parameters, rather than by regional
restitution properties. Finally, we discuss limitations and translational perspectives of the different
modeling approaches in view of large-scale whole-heart in silico studies.

Keywords: computational cardiology; finite element modeling; myocardial infarction;
ventricular fibrillation

1. Introduction

Recent developments in computational modeling of the heart’s bio-electrical activity have
established the most highly detailed example of a virtual organ [1-3]. These advances are the result
of the significant progress in cardiac cell modeling, corroborated with experimentation and clinical
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practice. Moreover, continuous increases in computational power have led to whole-heart electrical
models that have shown promising translational outcomes, improving the general understanding of
heart function, its pathologies, and therapies [4-9]. Still, critical modeling challenges arise when local
heterogeneities at different spatio-temporal scales are taken into account [10-16].

Various approaches have been proposed to simulate complex electrical behavior of the heart,
e.g., ventricular arrhythmias. First, detailed cell models, with highly accurate and validated
biophysical relationships representing the ground truth, have been incorporated to improve the
physiological relevance of in silico cardiac predictions. Nonetheless, these approaches may result
computationally demanding, further requiring advanced optimization tools [17-23]. Alternatively,
reduced phenomenological models were developed, preserving the main features of physiological
approaches but still allowing for a robust in silico investigation. Depending on the application at hand,
one of the two options is favorable, identifying the specific characters that minimize alterations of the
final results [24]. This is especially true in the study of abnormal electrical waves, e.g., ventricular
tachycardia (VT) and ventricular fibrillation (VF), in healthy and diseased conditions [25,26].

The computational cardiology literature contains a plethora of biophysical models that describe
the electrical behavior of the human myocardium [27]. A detailed description of ion channels,
pumps, and exchangers is usually included to explain experimental observations [28]. However,
many parameters are highly difficult or nearly impossible to measure in vivo, and different
formulations have been shown to replicate similar dynamics. For example, the O’hara Rudy
dynamic (Ord) model (41 variables, 16 parameters) and the Ten Tusscher-Panfilov 2006 (TP06) model
(19 variables, 48 parameters) produce similar electrical behaviors [29-31]. In addition, the multiple time
scales involved in the formulation, from milliseconds to seconds, make the resulting dynamic system
very stiff, which poses challenges in the numerical solution [32-34]. Alternatively, phenomenological
models are derived from the overall description of cumulative inward and outward currents across
the cell membrane and rely on a smaller set of variables. For instance, the Mitchell-Schaeffer model
(2 variables, 9 parameters) [35] and its generalizations [36] or the Fenton-Karma (FK) model (3 variables,
14 parameters) and its later extensions (minimal model—4 variables, 28 parameters) [37,38] are
well-known instances of simplified phenomenological descriptions able to reproduce several dynamic
properties of the cardiac electrical activity: threshold of excitation, maximum upstroke velocity,
action potential (AP) shape and morphology, restitution properties, action potential duration (APD)
and alternans dynamics [39-41]. Increased numerical efficiency is enforced, lacking detailed ionic
descriptions, although well-suited for large-scale whole-heart numerical studies.

Cardiac arrhythmias, such as VT and VF, have been studied in detail using physiologically-based
computational approaches. Various cardiac diseases, such as long-QT syndrome or Brugada Syndrome,
have been elucidated using advanced computational techniques [42-44]. Computational cardiology
modeling has also been used to explain the relation between AP shape changes with the likelihood of a
reentrant arrhythmia (see e.g., [24] and references therein). Estimates of membrane potential and ionic
currents distributions in the core region of a sinoatrial node reentry was obtained through detailed
computer simulations [45]. Subject-specific whole-heart computational models explored arrhythmia
risk-stratification in patients with myocardial infarction (MI) [9,46], and complex VF dynamics have
also been characterized in terms of scroll wave filaments through detailed ventricular models [42].
Likewise, the study of AP vortex dynamics has been conducted via phenomenological descriptions in
both simplified [47-49] and whole-heart simulations [50-53]. These studies show that the in silico study
of arrhythmias is currently being done either using phenomenological ionic models or biophysical
ionic models, but how the choice of ionic model affects the arrhythmic signatures of VF in normal and
failing hearts remains understudied. Furthermore, heart simulations based on phenomenological ionic
models are expected to take less wall-clock time due to the simplified mathematical representation
of simplified ionic models. This has been explored in previous works using the Eikonal equation to
simulate action potential propagation [40]. However, using the complete monodomain or bidomain
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approach, a study of the differences in computing time for biophysical versus phenomenological ionic
models in realistic heart geometries has not been fully elucidated.

The scientific question that guides the current study is the following: How does the choice of ionic
model affect the dispersion of repolarization, arrrhythmic signatures of VF, and the overall computing
time? To answer this question, we constructed subject-specific computational models of normal and
failing hearts using two models of ionic transmembrane current, namely the FK and the TP06 models.
To analyze the differences between these two modeling choices, we assessed the resulting dispersion
of repolarization, VF signatures, and wall-clock time.

2. Materials and Methods

2.1. Subject-Specific Heart Models

We constructed three-dimensional bi-ventricular heart models representative of a healthy normal
case (NC) and an ischemic heart failure case (HFC). See Figure 1 for a graphical representation of the
cardiac fiber orientation distribution, transmural topology and cellular electrophysiological behavior.
Layers from Endo to Epi showed in the figure refer to the parametrization used in the TP06 model.
The geometry and structural information of each heart is taken from our previous publication [9].

(a) NC model

NC HFC

Voltage [mV]
3

_ I} — o 100 200 300 400 500

Epi Mid Endo time [ms]
(0) (d)

Figure 1. Bi-ventricular heart geometry models and fiber distribution from MRI and DT-MRI datasets.
(a) Normal (NC) and (b) myocardial infarcted (HFC) cases (scar region—infarcted zone—is shown in
dark gray). (c) Transverse plane section views highlighting the three-layer subdivision adopted for the
TP06 model: endocardium (Endo—red), mid-myocardium (Mid—gray), and epicardium (Epi—blue)
regions. Infarcted zone (IZ) is shown in orange. (d) Time course of the layer-specific action potential
parametrization for TP06 ionic model.

Structural differences due to pathological remodeling processes appear in fibers orientation and
ventricular wall thickness, though the overall organs are volumetrically and morphology similar [54].
Accurate geometry models are reconstructed from ex vivo segmentation of high-resolution swine hearts
using MRI and DT-MRI datasets as described in [55,56]. For the HFC model, myocardial infarction was
induced by occluding the obtuse marginal branches of the left circumflex artery. Healthy and infarcted
regions were identified, and tetrahedral finite elements were used to discretize the bi-ventricular
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heart domains. In particular, a scalar function (x) € [0,1] was implemented to represent the volume
fraction of healthy tissue, i.e.,;: i(x) = 1 represents healthy tissue, #(x) = 0 represents the infarcted
zone and 0 < h(x) < 1 represents the transition zone in which interpolated electrophysiological
properties are imposed. A vector field, f(x), representing fiber orientation, was related to the mesh
nodes and interpolated to the finite elements.

In the case of the TP06 electrophysiological model we further accounted for the transmural
dispersion of repolarization using a Laplace interpolation method [57]. Such a modeling choice
allowed us to represent epicardial, mid-myocardial and endocardial layers by using a thickness ratio
of 2:3:3 (see Figure 1c), and to modulate the AP morphology accordingly (see Figure 1d).

2.2. Numerical Modeling of Cardiac Electrical Activity

We model the electrical propagation within the cardiac domain () by using the monodomain
approach [58]. The time evolution of the transmembrane potential V,,: Q x [0,T] — R is then
represented by the balance of transmembrane and diffusive ionic currents, augmented by a set of local
kinetics variables, i.e.,

Vi 1 .
7 = E (V . (D va) +X (Iion(Vm, r) + IStlm(t))) m QO x [0, T] , (1a)
% —g(Vpr) in Qx[0,T], (1b)

where Ij,, is the sum of the ionic current that depend on the transmembrane potential and
r: ) x [0,T] — R™ is the set of state variables that characterize the selected cell model. x is the
surface-to-volume ratio and Iy, represents the external electrical impulse. The conductivity tensor
D e R{\JXN is assumed to be transversely isotropic and heterogeneous according to the identification
of the infarcted regions

D = h(x) [dLI+<dl—d”>f®f}, )

where d | ,d I represent the transversal and longitudinal conductivity, respectively, and f : O — R3
is the fiber direction vector field. The conductivity ratio d /d | varies typically between 4 and 9 [37].
We selected a conductivity ratio of 4, establishing the longitudinal conductivity d; = 0.1 mm? /ms,
with a corresponding transversal conductivity d; = 0.025 mm?/ms. These conductivities were
selected based on the standard values for the conduction velocity reported in the works of Fenton and
Karma (CV = 0.42 mm/ms) [37] and Ten Tusscher and Panfilov (CV & 0.67 mm/ms) [30]. We selected
these two models since they have been effectively used and validated in the study of VF formation
and dynamics, alongside applications of anatomical-based models with transmural fiber rotation and
ischemic heart disease [26,59,60].

2.2.1. The Fenton-Karma Model

The Fenton-Karma (FK) model is a 3-variable phenomenological model developed to study
arrhythmogenesis in cardiac tissue that reproduce restitution properties and spiral wave dynamics by
using a minimal set of field variables [37]. Model equations are formulated in dimensionless form,
defining the nondimensional membrane potential u = (V — Vy)/(Vy; — Vo), and scaling the ionic
currents as Jx = Ix/(Cu(Vy; — Vo)) (measured in 1/ ms). According to the monodomain approach,
Equation (1) becomes

0

8—1: =V- (DVM) — ]fi(u/ U) — Iso(u) - ]si(”/ w) + Jstim » (3a)
Z—::H(uc—u)(l—v)/’fy_—H(u—uc)v/T;r, (3b)
M H(ue— ) (1 — w) /iy — Hlu— u)w/ 7 (39

dt
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where
]f,v(u,v):—vH(u—uc)(l—u)(u—uc)/Td, (4a)
Jso (1) :uH(uC—u)—i-TlH(u—uc)/To, (4b)
Jsi(u,w) = —w(1 + tanh[k(u — uf)]) / (27) . (40)

Jstim = Jstim(t) represents the external electrical impulse, and H(x) is the Heaviside step function
defined as H(x) = 1 for x > 0 and H(x) = 0 for x < 0. Different parametrizations of the FK model
have been proposed [61,62]. In the current study, we refer to [37], with model parameters provided in
Table A3, Appendix A.

2.2.2. The TenTusscher-Panfilov 2006 Model

The TenTusscher-Panfilov 2006 (TP06) model is a 19-variable physiological model that includes an
extensive description of the intracellular calcium dynamics and is good at reproducing cardiac action
potentials of human epicardial, endocardial, and mid-myocardial cells [30]. In this case, the sum of
ionic currents in Equation (1a) is defined as

Lion = Ina + Ik1 + Ito + Ikr + Iks + IcaL + INaca + INak + Ipca + Ipk + Ipca + Iona + Lstim s @)

where Iy,c, is the Nat/Ca?* exchanger current, I,k the Na™ /K* pump current, Iycq and Iy are
the Ca?* and K* plateau currents, and I, and Iy, are the background Ca?* and Na* currents.
The description of each current and related gating variables is provided in Appendix A.1. Model
parameters and initial conditions are in Tables A1 and A2.

Layer-specific electrophysiological properties are included in this model through the transient
outward and slow delayed rectifier currents. In particular, epicardial cells show higher I;, current
(via Go) and higher inactivation recovery (via 7s). In constrast, mid-myocardial cells are characterized
by a lower Ik, current.

2.3. Numerical Discretization

The monodomain model presented in Equation (1a) along with the evolution equations for the
gating variables were discretized in space using a standard Galerkin finite element (FE) approach,
as detailed in [10]. Linear tetrahedral elements were used in the FE discretization. The resulting
semi-discrete dynamical system was integrated using a Strang operator-splitting method, as detailed
in [63]. Time integration of the gating equations in all simulations was performed using the
Rush-Larsen method. All computational implementations were developed in Python, using the
Fenics library for the discretization and solution of the monodomain system. Given conduction velocity
dependency to the mesh size, a convergence test was carried out, finding that a characteristic mesh
size of ~0.8 mm provided a good approximation to the original conduction velocity at a normal pacing
(~0.42 mm/ms for the FK model and ~0.67 mm/ms for the TP06 model). This mesh size implied a set
of nonlinear equations of about 7 million degrees of freedom.

2.4. Stimulation Protocols and Post-Processing

We computed APD restitution distribution for both ionic models by applying repetitive electrical
stimulations at the apex of the bi-ventricular heart models (see S1 location in Figure 2a) with varying
pacing frequency. The total stimulation time corresponded to 17 s of physical time (32 electrical
stimulations) for each case. At every pacing cycle length (CL), the APD was computed locally to
obtain a regional distribution of the restitution curves. An empirical probability distribution function
(PDF) was estimated using APD data extracted from selected nodes of the finite element discretization
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highlighted in Figure 2b. Activation and repolarization times were obtained from unrefined mesh data
and interpolated over the finite element discretization.

(a) (b)

Figure 2. (a) Location of the S1 and S2 stimuli for the different electrophysiological models used in this
study. (b) Finite element nodes extracted to approximate the probability distribution function (PDF) of
action potential duration (APD). The inset provides the distribution of the extracted nodes within the
spatial mesh discretization.

We further implemented an S1-52 stimulation protocol to induce a sustainable VF within each
bi-ventricular heart geometry. The S1 stimulation site was located on the LV endocardium, and the S2
stimulus was delivered on the posterior epicardium layer in both models. We explored various S1-52
stimulation locations, performing a preliminary sensitivity analysis combined with stimulus strength,
finding no differences in VF dynamics when stimuli locations were varied. The results analyzed in
the following are referred to the cases requiring minimum stimulation current to induce sustained
fibrillation, i.e., the most high-risk scenarios. This is supported by previous research on the effects
of the initial site on VF formation in dog and human heart geometries concluding that, although the
stimulation site may affect VF onset, the number of filaments (e.g., VF signatures) reaches the same
steady-state value [26,50] such the underlying physics is preserved [64].

We calculated the vulnerability window for each electrophysiological model by measuring the
elapsed time between the S1 and S2 pulses for cases that resulted in sustained ventricular fibrillation
(i.e., VF duration > 2 s). To further characterize VF dynamics, we computed evolution of scroll wave
filaments during 10's of physical time with a time step of 10 ms. After identification of the intersection
between an isopotential line (—70 mV) and the constraint 4Vn/dt = 0, each intersection was related with
a finite element and filaments were labeled and counted using a density-based clustering algorithm.

To assess the global behavior of cardiac simulations, pseudo-ECGs were computed to study
VF Signatures such as the fundamental frequency for all of the ionic models analyzed. To this end,
surface potential was estimated during numerical simulations using the classical approximation

1
v:—/vv V- dO, with o= |xe—x|. ©)
e P

where p € R3 represents the distance from each point of the heart domain to the virtual external
electrode, located 2 cm away from the left ventricular wall. This setting is commonly used to mimic
precordial leads [65,66]. After the pseudo-ECG was constructed, the fundamental frequency was
identified by building up the power spectra of the signal [42].
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3. Results

3.1. Dispersion of APD Restitution

APD restitution curves were computed for the two electrophysiolgical models over four selected
cardiac surfaces (see Figure 3a): epicardium (EPI), left ventricular endocardium (LV), right ventricular
endocardium (RV), left ventricular mid-myocardium (LVMM). Accordingly, a numerical probability
density function (PDF) of the action potential duration was derived for each anatomical region
both for NC and HFC geometry models. The eight distributions of restitution curves computed are
shown in Figure 3b,c. For comparison purposes, APDs were normalized according to the formula
APD,, = (APD — APDnin)/(APDmax — APDpin), Where, APDpin and APDp,x are provided in Table 1 for
each anatomical surface.

In the FK case, APD,, distributions stabilize around 0.78 + 0.07 for CL > 500 ms, whereas, in the
TP06 case, PDF restitutions show different average values and a non-uniform variance. In addition,
a steeper and narrower distribution is observed for the FK model for CL < 400 ms, whereas a gradual
reduction is noted for TP06. Interestingly, the FK distribution display peaks at the center of the
distributions that remain stable during the whole restitution curve. The four anatomical surfaces show
similar trends in both healthy and diseased conditions. Unlike FK, TP06 presents a strong dependence
of the distribution peaks on the selected region. In particular, LV and RV surfaces show severe
differences among NC and HFC models. Moreover, the left ventricle shows the highest dispersion of
repolarization, i.e., higher variance, in the pathological case. Median and standard deviations of the
distributions are provided in Table 2 for CL = 400 ms. Using 62 CPUs within a parallel computing
platform, the restitution protocol simulation took around 55 h of wall-clock to compute the FK model
and 82 h for the TP06 model.

Table 1. Normalization values for FK and TP06 models.

FK TP06
APDpin 250 ms 250 ms
APDEPL 273 ms 335 ms
APDLY  273ms 350 ms
APDRY ~ 273ms 350 ms

APDLVMM 273 ms 390 ms

Table 2. Medians and standard deviations for FK and TP06 model, corresponding to Figure 4 (CL =

400 ms).
NC HFC
Median SD Median SD
FK Model
EPI 0.41 +0.07 0.39 +0.08
LV 0.41 +0.08 0.41 +0.06
RV 0.39 +0.07 0.41 +0.07
LVMM 0.41 +0.05 0.41 +0.06
TP06 Model
EPI 0.27 +0.08 0.26 +0.07
LV 0.29 +0.08 0.36 +0.11
RV 0.37 +0.10 0.23 +0.06

LVMM 0.41 +0.05 0.43 +0.06
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Figure 3. (a) Anatomical surfaces for restitution quantification: epicardium (EPI), left ventricular
endocardium (LV), right ventricular endocardium (RV), left ventricular mid-myocardium (LVMM).
Normalized APD restitution distribution (APD;,) for (b) FK and (c) TP06 model comparing healthy
(NC-blue) and myocardiacl infarcted (HFC-red) hearts.

To better quantify the previous observations, a detailed overview of the computed numerical
PDFs is shown in Figure 4 and Table 2 at CL = 400 ms. Remarkable discrepancies in density
distributions between the two electrophysiological models can be seen among the NC and HFC
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geometries. In particular, the FK model displays larger median values and narrower distribution
profiles in both healthy and disease cases (Figure 4a). Medians and standard deviations do not vary
significantly at different myocardial layers. The TP06 model shows bimodal distributions on the two
endocardial surfaces (LV and RV) and the epicardial region, resulting in smaller median values and
larger variance (Figure 4b). On the LVMM surface, the PDF median values are similar among the
two ionic models, and negligible differences arise between healthy and pathological cases for the
TP06 model. In particular, the expected median value is ~0.41, and the standard deviation is +0.05.
In Appendix A.3 we provide the same statistical analysis at CL = 500ms and CL = 600 ms further
confirming these features.

EPI Lv RV LVMM

— NC
0.4 T

0.3 4

PDF

0.1+

0.0 1

T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

APDnN
(a) FK model

EPI LV RV VMM

0.12 A b
— NC

0.10 4 = HFC g

0.08 R

0.06 q

0.04 4 b
0.02 4 R
0.00 1
T T T T T T T T T T T T T T T T
00 02 04 06 08 1000 02 04 06 08 1000 02 04 06 08 1000 0.2 04 06 08 1.0

APDn
(b) TP06 model

PDF

Figure 4. Normalized probability distribution function of normalized action potential duration at
cycle length (CL) = 400 ms for (a) FK and (b) TP06 model, respectively. Blue and red traces refer to
healthy (NC) and myocardyal infarction (HFC) cases, respectively. Median values are depicted with
solid vertical lines.

3.2. VF Sustainability

We studied cardiac arrhythmia signatures by implementing an 51-52 stimulation protocol to
induce sustained VF, i.e., multiple scroll wave formations. Figure 5 shows a qualitative visual
assessment of the scroll wave evolution for the two ionic models within the HFC geometry.
Three selected times of transmembrane activation, V;; > —75 mV, are compared where the intramural
transparency of the excitation highlights both the complexity of the dynamics and the differences
among the two ionic models (Figure 5a for FK and Figure 5b for TP06). The ratio of the amplitude
for the two S1-52 stimuli differed. The FK model had an equal 1:1 ratio with a vulnerable window of
345 ms in both NC and HFC subjects. In contrast, the TP06 model required a much higher stimulation
amplitude ratio of 11:2 for the NC case and 15:2 for the HFC case, with a higher vulnerable window of
408 ms.

To provide a quantitative indication of VF dynamics and sustainability, we assessed the time
evolution of scroll waves by identifying the total number of 3D filaments during 10 s of physical
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time (see Figure 6b). Employing the same computational settings adopted for the restitution protocol,
the VF wall-clock time was 34 h for the FK and 48 h for the TP06 model.

The two ionic models are similar in terms of rolling averages computed with a time window of
500ms. In all cases, the number of filaments stabilizes after about 2.5 s from arrhythmia induction
(see Figure 6¢). Mean value of filaments , mean and variance, and maximum and minimum values
are compared in Table 3. We computed the L; error between the number of filaments since it is less
sensitive to extreme values compared with the L error. The L; error between the mean number of
filaments in the FK and TP06 models was 14.2% and 11.4% for NC and HFC, respectively.

Finally, the quantification of pseudo-ECG provides the time course of the computed signal
for both models in healthy (Figure 7a) and diseased (Figure 7b) heart geometries. The resulting
fundamental frequencies were about 11 Hz for FK and 5 Hz for TP06 independently of the anatomical
model considered.

510 ms 1430 ms 2550 ms

[30
Lo E
(]

(o))

-408

[¢]

>

f—

[30
Lo %
(]

(o))

-40 8

¢}

>

p—

(b) TPO6 model-HFC geometry

Figure 5. Ventricular fibrillation evolution for (a) FK and (b) TP06 ionic model within the heart failure
case (HFC) heart induced via an S1-S2 protocol. Active regions (V;;; > —75 mV) are shown with
colobar while infarcted zone (IZ) is depicted in light gray. Three times are selected showing the increase
of scroll waves in accordance with the number of filaments shown in Figure 6.

Table 3. Rolling averages of the number of filaments: mean and variance, maximum and minimum
values after 2.5s from arrhythmia induction. Comparison among ionic (FK and TP06) and geometry
(NC, HFC) models.

NC HFC
Mean Max Min Mean Max Min
FK 25+5 44 10 33+ 6 52 15
TP06 27 +6 46 11 34+8 60 14
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Figure 6. (a) Number of filaments for the NC heart, (b) number of filaments for the HFC heart,
and (c) rolling mean for the FK and TP06 models during 10s of sustained VF. Mean values are depicted
with dashed lines in panel (b) after 2.5s.
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Figure 7. Pseudo-ECG computation for the (a) FK model and (b) the TP06 model. The fundamental
frequency is also shown for each case studied.



Mathematics 2020, 8, 2242 12 of 19

4. Discussion

In this work, we investigated how the choice of ionic models affects the repolarization properties
and VF signatures of computational models of normal and failing hearts. Numerical analyses allowed
us to build up probability distribution functions of APD restitution curves for four selected anatomical
surfaces. Accordingly, we identified left and right ventricular endocardium as the anatomical regions
characterized by a higher degree of dispersion of repolarization (multimodal PDFs) for the myocardial
infarction case. On the other hand, strong electrotonic effects within the mid-myocardial layer
homogenize the resulting electrical behavior, thus providing coherent PDFs among the two ionic
models for healthy and diseased cases, although non-negligible differences appear for epicardium,
left and right endocardium.

This result, consistent with the literature and specific kinetics described by the TP06 ionic
model, was further confirmed by long-run simulations conducted for ventricular fibrillation.
The statistical examination of the evolution and the number of vortex filaments provided an enhanced
arrhythmogenicity in the diseased case. Constitutive differences among the two electrophysiological
models appear in terms of restitution dynamics at large cycle lengths, stimulus intensity, and vulnerable
windows. Such a discrepancy is due to the intrinsic complexity of the ionic models in delivering an
external stimulation current signal among the different gating variables. The membrane capacitance
and the surface-to-volume coefficients regulate the electrical current’s spreading, with a predominant
role in ionic modeling cases. Therefore, we highlight the necessity of fine-tuning these parameters when
using a physiological approach other than a phenomenological one. However, dissimalirities were
negligible for ventricular fibrillation signature. Specifically, irrespective of the healthy or pathological
geometry model, the fundamental frequency of the pseudo-ECG during sustained VF is constant.
Moreover, the number of filaments in the HFC case was statistically equal among FK and TP06 models.

Accordingly, our results suggest that VF signatures are mainly controlled by anatomical and
structural features rather than regional restitution properties. Therefore, given the large-scale
computational models and clinical translation, the choice of a simplified phenomenological description
seems favorable. From a computational point of view, phenomenological models allow the
implementation of highly efficient and simple integration schemes, whereas biophysical-based models,
such as the TP06, require specialized and adequate time integration schemes that demand a complex
implementation. Several studies have tackled the development of time-integration strategies to cope
with the stiff nature of these models [34,67]. Besides the high computational demand for solving
the electrophysiology equations, the used programming language (Python) is limited by its lack of
performance and scalability. Moreover, more efficient numerical approaches, like spatio-temporal
adaptivity or strong scalable solvers, are also needed to cope with the computational burden
imposed by high-resolution electrophysiological problems. Future research may use a programming
language better suited in terms of scalability and performance, such as C++, which may be used in
conjunction with Python and highly advanced numerical techniques [60,68]. Despite this, we solved
a highly computational demanding problem in a relatively modest amount of time. Moreover,
several parameters required for postprocessing (i.e., pseudo-ECG, APD distribution, and filaments)
were computed during simulation time, saving time for analysis.

The current work can be extended in several directions. First, a general comparison between
phenomenological and biophysical models requires the investigation of the bidomain theoretical
framework to emphasize the role of structural material heterogeneities during defibrillation
procedures [69-71]. In this direction, a proper mathematical and computational modeling of torso will
be critical for obtaining clinically relevant ECG signals, i.e., acceleration of forward ECG numerical
modeling with the use of personalized torso geometries [72]. Second, comparing linear, nonlinear,
and fractional diffusion formulations would significantly help to identify the best computational
approach to apply in subject-specific cardiac studies [10,73-75]. Third, characterization of the border
zone of the scar and gray zones in the infarcted myocardium is related to small-scale components [9,76]
that are accurately modeled by detailed biophysical constitutive models reproducing modified ion
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channel dynamics (electrical remodeling). However, reduced-order models have been shown to
provide a viable alternative also in this context [77]. This is key in clinical-related applications such as
drug delivery and stem cell delivery in which disease characterization and treatment depend on the
electrochemical dynamics of the cell membrane and the associated local heterogeneities.
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Appendix A.

Appendix A.1. Equations and Parameters of the TP06 Model

L-type Ca*? current reads:
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Table Al. Parameter values used during VF simulations for the TP06 model. Parameters not included
in this table take the same values reported in [30]. Modified parameters are the maximum conductance
of the Ix;,Ixs, Ipc, and Ipk currents. The time constant of the f gate was also modified.

Section Gkr Gks Gpca Gy Tf Inactivation
Midmyocardium 0.172 0.0515 1.8545 0.00073 x2
Epicardium 0.172  0.2205 1.8545 0.00073 x2
Endocardium 0.172 0.2205 1.8545 0.00073 x2

Table A2. Initial conditions used for the TP06 model.

1% Xr X1y Xs m h i d
—85.23  0.00621 0.4712 0.0095 0.00172 0.7444 0.7045 3.373 x 10°

f f2 feass s r Ca; R Casg Cass Na; K;
0.7888 0.9755  0.9953 0.999998 2.42 x10~% 0.000126 0.9073 3.64 0.00036 8.604 136.89

Appendix A.2. FK Parameters

Table A3. Parameters used in the FK electrophysiologycal model.

> - -+ - o+
Uc Uy 8fi Tl To2 To 7o Tr k T Ui Tw Tw Cin

013 004 4 1250 196 333 125 3333 10 29 08 41 870 1

Appendix A.3. Medians and Standard Deviations for Different Cycle Lenghts

Table A4. Medians and standard deviations (SD) for the FK model and the TP06 model at CL. = 500 ms
and CL = 600 ms, respectively.

CL =500 ms CL =600 ms
NC HFC NC HFC
Median SD Median SD Median SD Median SD
FK Model
EPI 0.78 +0.07 0.74 +0.09 0.80 +0.07 0.76 +0.09
LV 0.78 +0.08 0.76 +0.06 0.80 +0.08 0.78 +0.06
RV 0.74 +0.07 0.78 +0.07 0.76 +0.07 0.80 +0.07
LVMM 0.76 +0.06 0.76 +0.06 0.78 +0.06 0.78 +0.06
TP06 Model
EPI 0.53 +0.10 0.52 +0.09 0.66 +0.11 0.65 +0.10
LV 0.54 +0.10 0.62 +0.14 0.6 +0.11 0.75 +0.15
RV 0.64 +0.12 0.47 +0.07 0.77 +0.13 0.57 +0.08

LVMM 0.63 +0.06 0.65 +0.08 0.74 +0.07 0.77 +0.10
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