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Abstract: This study is devoted to the description of the asymptotic expansions of solutions of linear
ordinary differential equations with holomorphic coefficients in the neighborhood of an infinitely
distant singular point. This is a classical problem of analytical theory of differential equations and
an important particular case of the general Poincare problem on constructing the asymptotics of
solutions of linear ordinary differential equations with holomorphic coefficients in the neighborhoods
of irregular singular points. In this study we consider such equations for which the principal symbol
of the differential operator has multiple roots. The asymptotics of a solution for the case of equations
with simple roots of the principal symbol were constructed earlier.

Keywords: differential equations with holomorphic coefficients; irregular singular points; Laplace–Borel
transform; resurgent analysis

1. Introduction

One of the fundamental problems of the analytic theory of ordinary differential equations with
holomorphic coefficients is the problem of constructing the asymptotics of their solutions in the
neighborhood of irregular singular points. This problem was formulated by Poincare in [1,2]. Poincare
considered infinity as an irregular singular point. The problem of constructing the asymptotics of
solutions in the neighborhood of an infinitely distant point was earlier considered by Thome in [3],
where it was shown that in a particular case, the asymptotics of a solution of the considered problem
can be represented in the form of an expression that contains a formal, generally speaking, divergent
power series. Poincare has proved that the obtained divergent series are asymptotic and the idea was
formulated that summation of the asymptotic series obtained can be performed by using an integral
transform; in a particular case, it may be the Laplace transform. With the help of this integral transform,
an attempt was made to construct uniform asymptotics of this problem. However, the integral Laplace
transform is applicable only in some particular cases. Therefore, the problem of constructing the
asymptotics of solutions for differential equations with holomorphic coefficients in the neighborhood
of an infinitely distant point formulated by Poincare is still unsolved in the general case. Our study is
devoted to solving this problem for a broad class of differential equations with holomorphic coefficients.
The class of the considered equations is described below; it is quite broad and comprises all ordinary
differential equations with holomorphic coefficients up to the 5th order inclusive. In this paper, the idea
of using the integral transform for summation of the asymptotic series and, thus, for constructing an
uniform asymptotics of a solution, is developed by applying the integral Laplace–Borel transform.

Namely, we consider the following equation with holomorphic coefficients:(
d

dx

)n
u (x) + an−1 (x)

(
d

dx

)n−1
u (x) + ... + ai (x)

(
d

dx

)i
u (x) + ... + a0 (x) u (x) = 0 . (1)
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The coefficients ai (x) , i = 0, 1, ..., n− 1 are the functions holomorphic at an infinitely distant point.
This means that there is the exterior of a circle |x| > R such that the function ai (x) , i = 0, 1...n− 1 can

be expanded in it into convergent power series ai (x) =
∞
∑

j=0

aj
i

xj . The goal of our study was constructing

the asymptotics of a solution to Equation (1) at x → ∞.
Generally speaking, infinity can be considered as an irregular singular point of Equation (1).

In the particular case, where infinity is a regular singular point, the problem of constructing the
asymptotics of solutions has already been solved. It is known that the asymptotics of solutions in the
neighborhood of regular singular points are conormal (see, for instance, [4]). Namely, their form is

∑j xsj
k
∑

i=0
aj

i lni x, where aj
i , sj are some complex numbers. Here, k is some natural number. A more

detailed consideration of asymptotics of linear differential equations in the neighborhood of regular
and irregular singular points can be found, for example, in [5–7].

The resurgent analysis methods which we will use in this study are applied for finite irregular
singular points. Therefore, by means of the substitution x = 1

r , we reduce the problem of constructing
the asymptotics of a solution in the neighborhood of an infinitely distant point to the problem of
constructing the asymptotics of the solution in the neighborhood of zero for the linear differential
equations with a cuspidal singularity of the second order. Namely, Equation (1) can be rewritten
in the form (

−r2 d
dr

)n
+

n−1

∑
i=0

a0
i (r)

(
−r2 d

dr

)i
u = 0 , (2)

where a0
i (r) =

∞
∑

j=1
aj

ir
j.

Let us consider the differential operator Ĥ =
n
∑

i=0
a0

i (r)
(
−r2 d

dr

)i
and put the function H(r, p) =

n
∑

i=0
a0

i (r)pi into correspondence with it; this function is called the symbol of the differential operator Ĥ.

The function H0(p) = H (0, p) =
n
∑

i=0
a0

i (0)pi is called the principal symbol of the differential operator Ĥ.

Using this notation, we can introduce a classification of ordinary differential equations with
holomorphic coefficients. This will be done below.

2. Review of Literature

The most studied class of equations is that for which the principal symbol has only simple roots.
In some papers, including [1,2] written by Poincare and, further, in [8], the asymptotics of solutions to
the equations belonging to this class in the neighborhood of an infinitely distant point are constructed.

Later, the case of simple roots for systems of linear differential equations was considered in many
studies and was already included in classical textbooks [5–7].

In those papers, the asymptotic expansions of solutions to ordinary differential equations were
obtained in the form of the sum of the products of the corresponding exponentials and asymptotic
series; namely,

u ≈
n

∑
i=1

eαi/rrσi
∞

∑
k=0

ak
i rk , (3)

where αi, i = 1, ..., n are the roots of the polynomial H0 (p); σi and ak
i are some complex numbers.

However, the question concerning interpretation of the obtained divergent series remained open;
i.e., a systematic method for summing up these divergent series did not exist. Let us call such
asymptotics the non-Fuchsian asymptotics.
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In the case where the asymptotic expansion

u ≈ u1 + u2 + . . . + un = eλ1/rrσ1
∞

∑
k=0

ak
1rk + eλ2/rrσ2

∞

∑
k=0

ak
2rk + . . . + eλn/rrσn

∞

∑
k=0

ak
nrk (4)

contains at least two terms corresponding to the values λ1 and λ2 with different real components (to be
more specific, let us assume that Re λ1 > Re λ2), a significant difficulty arises when interpreting the
obtained expansion. The fact of the matter is that all the terms of the first element that correspond
to the value λ1 (the dominant element) have a higher order at r → 0 than any term of the second
(recessive) element. Hence, for interpretation of expansion (4), it is necessary to sum up the series
(generally speaking, divergent) that corresponds to the dominant element. In particular, it is important
to consider the recessive components in the expansion of the solution u of Equation (1) to construct
uniform asymptotics of solutions for the complex case, when the point r moves on the complex plane,
since a recessive component in one of the sectors of the complex plane may become a dominant
component in other sector and vice versa. In other words, a plane is conventionally divided into
the sectors in which one of the components is dominant while another is recessive; when passing
from one sector to another, a change in their leadership occurs (the recessive component becomes
dominant and vice versa). However, in the neighborhood of these sectors’ boundaries of these
sectors, several components are of equal order and no one of them can be neglected. This is the
Stokes phenomenon.

This phenomenon occurs, for instance, when considering the Euler example (see [9]) and when
constructing the asymptotics of solutions for problem (1) in the neighborhood of an infinitely distant
point and for all the non-Fuchian asymptotics (3) in general. As a result, investigation of the asymptotic
expansions of solutions to Equation (1) requires introduction of a regular method for summation of
divergent series for constructing uniform asymptotics of solutions.

When introducing the method for summation of divergent series, we will obtain an algorithm
of constructing the uniform asymptotics, which will make it possible to consider the recessive
components without dividing the complex plane into sectors. This method for summation is described
in detail in [9].

In the late 1980s, an appropriate technique for summing up such series was proposed.
This technique is based on the Laplace–Borel transform and on the concept of the resurgent function
which was introduced for the first time by J. Ecalle [10]. Later, this technique was actively applied
in the B.-W. Schulze, B. Yu. Sternin, and V. E. Shatalov’s works to study the degenerating equations
obtained when considering elliptic equations on the manifolds with cuspidal singularities, as well as
for constructing the asymptotics of solutions to equations with a small parameter. In same cases in
the weighted Sobolev spaces, they have succeeded in constructing the asymptotics of solutions to the
equations with a parameter and to the equations with a cuspidal singularity [11–13].

However, later, one had to refuse consideration of asymptotics in the weighted Sobolev spaces.
The main reason is related to the fact that it is unnatural to consider the Laplace–Borel transform,
which is principal in resurgent analysis, in these spaces; therefore, the attempts to obtain significant
results by using this approach resulted in some principal difficulties.

Later, another approach proposed by Shatalov and Sternin in [9] was chosen. In this book, they
defined the Laplace–Borel transform that acts in the space of the functions of exponential growth.

The technique for interpreting and constructing the asymptotic expansions of the form (3) based
on the Laplace–Borel transform is called resurgent analysis. The main idea of resurgent analysis consists
in the fact that the formal Laplace–Borel transforms ũ1(p), ũ2(p), . . . are the power series with respect
to the dual variable p that converge in the vicinity of the points p = λj.

At that, the inverse Borel transform provides a regular technique for summation of series (3).
To apply the resurgent analysis methods, it is necessary to prove the resurgence of the functions ũj(p)
or, in other words, their infinite extendability along any path on the Riemann surface that does not
pass through some discrete set depending on the function (an exact definition of the resurgence
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is given in [9]). As a rule, the process of proving this fact represented considerable difficulties.
For ordinary differential equations with holomorphic coefficients and some types of equations with
partial derivatives, the proof of resurgence of their solutions was obtained by M. Korovina [14,15].
Owing to this result, some problems of constructing uniform asymptotics of solutions for some ordinary
differential equations with irregular points and for some classes of partial differential equations have
been solved. For example, in [13,15], uniform asymptotics of solutions were constructed for the case
when the principal symbol H0 (p) = H (0, p) has simple roots. Therefore, this problem is already
solved and we will consider in this study the equations for which the principal symbol has multiple
roots. In addition, in [16], the problem of constructing the asymptotics of solutions for the Laplace
equation on a manifold with a cuspidal singularity is also solved.

The case of the equations with multiple roots of the principal symbol has appeared to be
significantly more complicated.

Recently, to solve the problem of multiple roots, the re-quantization method [17] was proposed.
It is applied in the case when an integro-differential equation in the dual space cannot be solved by the
method of successive approximations and, in its turn, can be reduced to an equation with cuspidal
degeneracies. In this case, the theorem about the infinite extendability of its solution (this is proved
for ordinary differential equations) is proved; the Laplace–Borel transform is applied one more time,
and the asymptotics of a solution for the equation obtained are constructed; they allow finding the
asymtotics of the initial equation. Nowadays, with the help of this method, some problems are solved
for the equations with degeneracies in the case of multiple roots. This method will be used in our
study to construct uniform asymtotics of solutions.

Earlier, the re-quantization method was used in [18,19]. In [18] a particular case of Equation (1),
i.e., a model problem, was considered. For this particular case, the asymptotics of the solution of the
model equation are constructed in the neighborhood of an infinitely distant point by the re-quantization
method. Despite the fact that in this study we consider a significantly more general case that comprises
a broad class of equations, including the model equation of [18], some stages of the proof for this
model problem coincide with those presented in [18]. Therefore, we make references to [18] at the
points where the proofs are identical. It is possible to read about the model problem below.

3. The Main Results

First, let us consider the case when the principal symbol of the differential operator has the
only one root. Without loss of generality, we assume that this root is located at zero. In this case,

the coefficients of Equation (2) can be represented in the form ai (r) =
∞
∑

j=1
aj

ir
j. Let the first li − 1

coefficients of the power series
∞
∑

j=1
aj

ir
j, i = 0, ..., n be zero; i.e., the left-hand side of Equation (2) can be

represented as a sum of the terms of the form
(
−r2 d

dr

)n
and

(
∞
∑

j=li
aj

ir
j

)(
−r2 d

dr

)i
, i = 0, ..., n− 1. Let

us select among these terms those for which the number h = li + i is minimal; in the corresponding
power series, we designate the coefficient at the minimal power of r by ãi, i = 0, ..., h.(

−r2 d
dr

)n
u + ã0rm

(
−r2 d

dr

)k
u + ã1rm+1

(
−r2 d

dr

)k−1
u + ã2rm+2

(
−r2 d

dr

)k−2
u + ...

+ãkrm+ku +
h
∑

j=1
rj

n−1
∑

i=hj

ai
j (r)

(
−r2 d

dr

)i
u + rh+1

n−1
∑

i=0
ai (r)

(
−r2 d

dr

)i
u = 0 .

(5)

Here, ã0 6= 0; ai
j (r) denotes the corresponding holomorphic functions. The numbers hj and j are

chosen so that the inequality hj + j > m + k is fulfilled. Let us call h = m + k the index of singularity of

Equation (2). Let us call the terms of the form ai
jr

j
(

r2 d
dr

)i
under the condition j + i > h the lower-order
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terms of Equation (5). We subdivide the lower-order terms into two types. Let as attribute the terms
for which h ≥ j to the first type; those for which h < j, to the second type.

In [18], the model problem, which is Equation (5), was considered in the case when the index of
singularity is k + 1, i.e., the case when m = 1. In this study, we generalize this result. Let us subdivide
the equations with a multiple root of the principal symbol at zero into two types. We attribute to the
first type the equations for which the inequality

hi + j− h > (m− j)
n− h

m
(6)

is fulfilled for all the lower-order terms. It is obvious that the model equation considered in [18] is a
particular case of the equation of the first type.

We attribute to the second type the equations for which there are the lower-order terms such
that for them, this inequality is not fulfilled. In this paper we consider the equations of the first type.
The goal of this study was constructing the asymptotics of solutions of the equations of the first type in
the neighborhood of an infinitely distant point. For them, the following theorem is valid.

Theorem 1. Let n > h, then, the asymptotics of the solution to Equation (1) in the neighborhood of an infinitely
distant point has the form

u(x) ≈
n−k

∑
j=1

exp

(
n−k−m

∑
i=1

α
j
i x

i
n−k

)
x−

σi
n−k

∞

∑
l

Aj
l x
− l

n−k +
k0

∑
j=0

(
ln

1
x

)j
xαj

∞

∑
i=0

bj
i x
−i ,

where α
j
n−k−m, j = 1, ..., n− k are the roots of the polynomial pn−k +

(
n−k

n−k−m

)n−k
a0 ; Aj

l , σi , bj
i , k0 and

α
j
i , j = 1, ..., n− k− 1 are some numbers.

If n ≤ h, then the asymptotics of the solution will be conormal.

Proof. We can subdivide the process of proving this theorem into several stages. At the first stage,
we consider the case n ≤ h. It is evident that all the equations for which this inequality is fulfilled
belong to the equations of the first type. In this case, it is shown that the singular point is regular,
hence, the asymptotics are conormal. At the second stage, by using the Laplace–Borel transform,
we transform the equation and determine the singular points of the solution of the transformed
equation. At the third stage, using the re-quantization method, we construct the asymptotics of the
solution in the neighborhood of the singular points and then perform the inverse Laplace–Borel
transform of these asymptotics.

Let us prove this theorem for the case when the equation contains only one term of the first type
and one term of the second type. Namely, the equation can be written in the form

(
−r2 d

dr

)n
u + a0rm

(
−r2 d

dr

)k
u + a1rm+1

(
−r2 d

dr

)k−1
u + ... + airm+i

(
−r2 d

dr

)k−i
u + ...

+akrk+mu + b1ri
(
−r2 d

dr

)k−i+m+β1
u + b2rk+m+β2

(
−r2 d

dr

)m0
u = 0 ,

(7)

where β1 ∈ N, β2 ∈ N. Here, two last terms are the lower-order terms; one of them is of the first type,
another is of the second type. In the general case, the proof is analogous to that presented below. If the
degree of the differential equation is smaller or equal to the index of singularity, then, dividing this
equation by rn we obtain the following equation

H1

(
r,−r

d
dr

)
u = 0 ,
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where

H1

(
r,−r

d
dr

)
=

(
−r

d
dr

)n
+

n−1

∑
i=0

bi (r)
(
−r

d
dr

)i
.

Here, bi (r) denote the corresponding holomorphic functions. The latter equation is an equation of
Fuchs type with a singularity at zero and, as is known, the asymptotics of its solution have a conormal
form. Therefore, here and in what follows, we assume that the index on singularity of Equation (7) is
smaller than n.

Let us search for the asymptotics of the solution of Equation (7) in the neighborhood of zero by
the re-quantization method (see [17]).

Let us remind the definition of the Laplace–Borel transform.
Let us denote by SR,ε the sector SR,ε = {r |−ε < arg r < ε, |r| < R}. We will say that the function

f is of k-exponential growth, if f is analytical on SR,ε and there are nonnegatie constants C and α such
that in the sector SR,ε, the following inequality is valid:

| f | < Ce
α 1
|r|k .

Let us search for the solution to Equation (7) in the space Ek (SR,ε) of the functions holomorphic
in the domain SR,ε, and of k-exponential growth at zero.

Let us denote by E
(
Ω̃R,ε

)
the space of holomorphic functions in the domain

Ω̃R,ε =
{

p
∣∣−π

2 − ε < arg p < π
2 + ε, |p| > R

}
, and by E (C) the space of holomorphic functions

with exponential growth.

Definition 1. We will call k-transform of Laplace–Borel of the function f (r) ∈ Ek (SR,ε) the mapping Bk :
Ek (SR,ε)→ E( Ω̃R,ε)/E(C)

f̂ (p) = Bk f =

r0∫
0

e−p/rk
f (r)

dr
rk+1 .

The inverse k-transform of Laplace–Borel is defined by the formula

B−1
k f =

k
2πi

∫
γ̃

ep/rk
f̂ (p) dp .

The contour γ̃ is depicted in Figure 1. This contour was first described in the book [9].

Figure 1. Integration contour.
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The properties of the Laplace–Borel transform are as follows:

Bk

(
−1

k
rn+1 d

dr

)
f (r) = pBk f

d
dp

Bk f = −Bk

(
1
rk f (r)

)

BkrkB−1
k f̂ = −1

k

p∫
p0

f̂ (p′)dp′ .

After performing the Laplace–Borel transform, we write Equation (7) in the form

pnû(p) + a0(−1)m
p∫

1
...

p2∫
1

pk
1û(p1)dp1...dpm+

+a1(−1)m+1
p∫

1
...

p2∫
1

pk−1
1 û(p1)dp1...dpm+1 + ...

+ak(−1)m+k
p∫

1
...

p2∫
1

û(p1)dp1...dpk+m

+b1(−1)i
p∫

1
...

p2∫
1

pk−i+m+β1
1 û(p1)dp1...dpi+

+b2(−1)k+m+β2

p∫
1

...
p2∫
1

pm0
1 û(p1)dp1...dpk+m+β2 = f .

(8)

Here, f denotes an arbitrary holomorphic function. Let us differentiate this equation k+m times,

and multiplying the obtained equation by p
k(n−k−m)

m , transform Equation (8) to the form

p
k(n−k−m)

m

(
d

dp

)k+m
pnû (p) +

+a0 (−1)m p
k(n−k−m)

m

(
d

dp

)k
pkû (p) + a1 (−1)m+1 p

k(n−k−m)
m

(
d

dp

)k−1
pk−1û (p) + ...

+ak (−1)m+k pk (n−k−m)
m û (p) + b1 (−1)i

(
d

dp

)k+m−i
pk−i+m+β1+

k(n−k−m)
m û (p) +

+pk (n−k−m)
m b2 (−1)k+m+β2

p∫
1

...
p2∫
1

pm0
1 û (p1) dp1...dpβ2 = p

k(n−k−m)
m

(
d

dp

)k+m
f .

(9)
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We can easily demonstrate that Equation (9) can be reduced to the form

(− m
n−k−m p

n−k
m d

dp )
k+mû(p)+

+a0 (−1)2m
(

m
n−k−m

)m (
− m

n−k−m p
n−k

m d
dp

)k
û (p) +

+a1
1 p

n−k−m
m

(
− m

n−k−m p
n−k

m d
dp

)k−1
û (p) +

+a1
2 p2 n−k−m

m

(
− m

n−k−m p
n−k

m d
dp

)k−2
û (p) + ... + a1

k pk (n−k−m)
m û (p) +

+
k+m−i

∑
j=0

bj
1 pβ1−(m−j−i) n−k−m

m

(
− m

n−k−m p
n−k

m d
dp

)k+m−i−j
û(p)+

+p
k(n−k−m)

m b2 (−1)k+m+β2
p∫

1
...

p2∫
1

pm0
1 û (p1) dp1...dpβ2 = p

k(n−k−m)
m

(
d

dp

)k+m
f .

(10)

Here, a1
i , bj

1, i = 1, ..., k , j = 0, ..., k + m− i denote the corresponding constants.
Let inequality (6) hold. It is equivalent to the inequality

β1 − (m− i)
n− k−m

m
> 0 . (11)

By analogy with [18], we can demonstrate that if condition (11) is satisfied, the solution to
Equation (10) is a resurgent function.

Let us introduce the following designation: c = a0(
n−k−m

m )m. Let us assume that a1
1 = 0, otherwise,

we zeroize it by the substitution u (p) = pσu1 (p).
The principal symbol of the operator in Equation (10) is qk (qm + c). This polynomial has a

multiple root at zero and nonzero simple roots qi = ci, i = 1, ..., m, where ci = c
1
m e

2πi
m . In the case

where inequality (11) is fulfilled, Equation (10) is analogous to Equation (11) in [18], therefore, we will
construct the asymptotics of the solutions to Equation (10) by analogy to that paper. First, let us
construct the asymptotics of the solution to Equation (10) in the neighborhood of the point ci. Let us
apply the re-quantization method to Equation (10). For that, we perform the Laplace–Borel transform
of Equation (10):

qk (qm + c) ũ(q) + a1
2

q∫
1

q2∫
1

qk−2
1 ũ (q1) dq1dq2 + ...

+a1
k

q∫
1

...
q2∫
1

ũ (q1) dq1...dqk+

+B n−k
m

m−i
∑

j=0
bj

1 pβ1−(m−i−j) n−k−m
m B−1

n−k
m

qk+m−i−jũ (q) +

+b2 (−1)k+m+β2 B n−k
m

p
k(n−k−m)

m

p∫
1

...
p2∫
1

pm0
1 û (p1) dp1...dpβ2 =

= g (q) ln q +
n−k−m

∑
i=0

qi m
n−k−m gi

1 (q) .

(12)
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Here, ũ(q) = B n−k
m

û(p) and gi
1 (q), g (q) are the corresponding holomorphic functions. It is evident,

that points qi = ci, i = 1, ..., m are the points of holomorphy of the right-hand side of Equation (12)
and each root is a singular point of the solution of this equation. Let us construct the asymptotics of
the solution to Equation (12) at points ci. We rewrite Equation (12) in the form

ũ(q) = − a2
qk(qm+c)

q∫
1

q2∫
1

qk−2
1 ũ (q1) dq1dq2 − ...− ak−1

qk(qm+c)

q∫
1

...
q2∫
1

q1ũ (q1) dq1...dqk−1−

− ak
qk(qm+c)

q∫
1

...
q2∫
1

ũ (q1) dq1...dqk−

− 1
qk(qm+c)

B n−k
m

m−i
∑

j=0
bj

1 pβ1−(m−i−j) n−k−m
m B−1

n−k
m

qk+m−i−jũ (q)−

− b2(−1)k+m+β2

qk(qm+c)
B n−k

m
p

k(n−k−m)
m

p∫
1

...
p2∫
1

pm0
1 û (p1) dp1...dpβ2 +

g(q) ln q+
n−k−m

∑
i=0

qi m
n−k−m gi

1(q)

qk(qm+c)
.

(13)

Investigating this equation by the method of successive approximations as it was done in
paper [18], we come to the following.

Lemma 1. The asymptotics of function ũ (q) in the neighborhood of the point q = ck has the form

n−k−m−1

∑
j=0

(q− ck)
jm

n−k−m Gj (q− ck) + ln (q− ck) G (q− ck) . (14)

where G (q), Gj (q) , j = 0, ..., n− k−m− 1 are holomorphic functions.

The proof of this lemma is identical to the proof of the corresponding lemma for Equation (13)
from paper [18].

Now let us consider the singularity at zero. We have the equation

qk+mũ (q) + cqkũ (q) +

+a1
1
∫

qk−1ũ (q) dq + a1
2

q∫
1

q2∫
1

qk−2
1 ũ (q1) dq1dq2 + ...

+a1
k

q∫
1

...
q2∫
1

ũ (q1) dq1...dqk+

+
k+m−i

∑
j=0

bj
1B n−k

m
pβ1−(m−j−i) n−k−m

m

(
pn−k d

dp

)k+m−i−j
ũ (q) +

+B n−k
m

p
k(n−k−m)

m (−1)k+m+β2 b2

p∫
1

...
p2∫
1

pm0
1 û (p1) dp1...dpβ2

= a0qk−1 ln q +
∞
∑

i=1
aiq

k−1+ i
n−k−1 .

(15)
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It should be noted that in the absence of the integral lower-order terms, differentiating this
equation k times with respect to q, we can transform it to the equation with a conic singularity whose
right-hand side has a conormal asymptotics. As is known, the solutions of such equations have
conormal asymptotics. It would be reasonable to suppose that in the general case, i.e., in the presence
of the lower-order terms, the solution will also have the form of a conormal asymptotics. Let us prove
this. As was demonstrated in [18], the following equation holds:

c qkũ (q) + a1
∫

qk−1ũ (q) dq + a2

q∫
1

q2∫
1

qk−2
1 ũ (q1) dq1dq2 + ...

+ak−1

q∫
1

...
q2∫
1

q1ũ (q1) dq1...dqk−1+

+ak

q∫
1

...
q2∫
1

ũ (q1) dq1...dqk =

c
q∫

1
....

q2∫
1

qk+σ1+σ2+...+σk
1

d
dq1

1
q

σk
1

... d
dq1

1
qσ2

1

d
dq1

1
q

σ1
1

ũ (q1) dq1...dqk .

Here, σk are some constants. Let us introduce the designation

ũk (q1) =
d

dq1

1
qσk

1
...

d
dq1

1
qσ2

1

d
dq1

1
qσ1

1
ũ (q1) ,

Using this designation, we can rewrite Equation (15) in the form

ũk (q) = − 1
c q
−k−

k
∑

i=1
σi
(

d
dq

)k
(

a0qk−1 ln q +
∞
∑

i=1
aiq

k−1+ i
n−k−1

)
+

+ 1
c q
−k−

k
∑

i=1
σi
(

d
dq

)k
qk+mqσ1

q∫
1

...
q4∫
1

qσk−1
3

q3∫
1

qσk
2

q2∫
1

ũk (q1) dq1dq2...dqk+

+ 1
c

k+m−i
∑

j=0
bj

1q
−k−

k
∑

i=1
σi
(

d
dq

)k
B n−k

m
pβ1−(m−j−i) n−k−m

m ×

×
(
− m

n−k−m p
n−k

m d
dp

)k+m−i−j
B−1

n−k
m

(
qσ1

q∫
1

...
q4∫
1

qσk−1
3

q3∫
1

qσk
2

q2∫
1

ũk (q1) dq1...dqk

)
+

+ b2(−1)k+m+β2

c q
−k−

k
∑

i=1
σi
×

×( d
dq )

kB n−k
m

p
k(n−k−m)

m

p∫
1

...
p2∫
1

pm0
1 B−1

n−k

(
qσ1

q∫
1

...
q4∫
1

qσk−1
3

q3∫
1

qσk
2

q2∫
1

ũk(q1)dq1...dqk

)
dp1...dpβ2 .

(16)

To find the asymptotics of function ũk (q) at q → 0, we apply the method of successive
approximations. Using this method, we can prove the following

Lemma 2. The asymptotics of function ũk (q) at q→ 0 is conormal.

The proof of this lemma is performed using the successive approximation method, by substituting
the absolute term of Equation (15), which at q → 0 has a conormal asymptotics with no logarithms
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as multipliers, sequentially into all the integral operators of the right-hand side of Equation (15) and
performing the corresponding estimations of the power series obtained. The proof of this lemma is
identical to the proof of the similar lemma in [18].

As is known [20], the inverse transform of a conormal asymptotics is also a conormal asymptotics.
Thus, the asymptotic term corresponding to the singular point q = 0 is a conormal asymptotics.
Now we have to construct the inverse transform of the asymptotic terms corresponding to the singular
points q = ck.

Calculating the inverse Laplace–Borel transform of expression (14), we obtain

B−1
n−k

m

(
n−k−m−1

∑
j=0

(q− ck)
jm

n−k−m Gj (q− ck) + ln (q− ck) G (q− ck)

)

= e
ck

p
n−k−m

m pσ
∞
∑

i=0
Ck

i pi.

Here, σ is the corresponding number, and
∞
∑

i=0
Ck

i pi is an asymptotic series. In [21], the following

theorem was proved.

Theorem 2. The asymptotics of the function B−1e
− α

p
k
n g (p) in the vicinity of zero have the form

n+k

∑
j=1

exp

(
k

∑
i=1

α
j
i

r
i

n+k

)
r

σj
n+k ∑

l
cj

lr
l

n+k .

Here, α
j
k, j = 1, ..., k + n are the roots of the polynomial pn+k +

(
n+k

k

)n+k
(−1)n+1

(
αk
n

)n
; coefficients

α
j
i for i < k, cj

i are some constants.
It follows from this theorem that

B−1e
c

p
n−k−m

m pσ
∞

∑
i=0

Ci pi ≈
n−k

∑
j=1

e

n−k−m
∑

i=1

α
j
i

r
i

n−k r−
σi

n−k
∞

∑
l

Aj
lr
− l

n−k .

Finally, we have obtained that the asymptotics of the solution of Equation (5) in the neighborhood
of an infinitely distant point have the form

u(x) ≈
n−k

∑
j=1

e

n−k−m
∑

i=1

α
j
i

r
i

n−k r−
σi

n−k
∞

∑
l

Aj
lr
− l

n−k +
k0

∑
j=0

(
ln

1
r

)j
rαj

∞

∑
i=0

bj
ir
−i,

where α
j
n−k−m, j = 1, ..., n − k are the roots of the polynomial pn−k +

(
n−k

n−k−m

)n−k
a0; σi, αi, k0 and

α
j
i , i < n− k−m are some numbers.

Earlier we supposed that the principal symbol of the differential operator has one root, now let it
be not the case. Let the principal symbol have two roots, i.e.,

H0 (p) = pn + c1 pn−1 + c2 pn−2 + ... + cn pn−n1 = pn−n1 (p− b)n1 .



Mathematics 2020, 8, 2249 12 of 15

Here, ci are the corresponding numbers. In this case the equation has the form(
−r2 d

dr

)n
u + c1

(
−r2 d

dr

)n−1
u + c2

(
−r2 d

dr

)n−2
u + ... + cn

(
−r2 d

dr

)n−n1
u+

+a0rm
(
−r2 d

dr

)k
u + a1rm+1

(
−r2 d

dr

)k−1
u + ... + ai−1ri

(
−r2 d

dr

)k−i+m
+ ...

+akrk+mu + b1ri
(
−r2 d

dr

)k−i+m+β1
u + b2rk+m+β2

(
−r2 d

dr

)m0
u = 0.

Now we perform the Laplace–Borel transform

pn−n1 (p + b)n1 û (p) + a0 (−1)m
p∫

1
...

p2∫
1

pk
1û (p1) dp1...dpm

+a1 (−1)m+1
p∫

1
...

p2∫
1

pk−1
1 û (p1) dp1...dpm+1 + ...+

+ak (−1)m+k
p∫

1
...

p2∫
1

û (p1) dp1...dpm+k+

+b1 (−1)i
p∫

1
...

p2∫
1

pk−i+1+β1
1 û (p1) dp1...dpi

+b2 (−1)k+m+β2
p∫

1
...

p2∫
1

pm0
1 û (p1) dp1...dpk+β2+m = f .

(17)

Let us find the asymptotics of solution of Equation (17) in the neighborhood of the point p = 0.
With this purpose, let us rewrite Equation (17) in the form

pn1 û (p) + (−1)ma0
(p+b)n1 (−1)m

p∫
1

...
p2∫
1

pk
1û (p1) dp1...dpm + (−1)m+1a1

(p+b)n1

p∫
1

...
p2∫
1

pk−1
1 û (p1) dp1...dpm+1 + ...

+ ak(−1)m+k

(p+b)n1

p∫
1

...
p2∫
1

û (p1) dp1...dpk+m+

+ b1(−1)i

(p+b)n1

p∫
1

...
p2∫
1

pk−i+1+β1
1 û (p1) dp1...dpi

+ b2
(p+b)n1 (−1)k+m+β2

p∫
1

...
p2∫
1

pm0
1 û (p1) dp1...dpk+β2+m = f (p)

(p+b)n1 .

Since the functions 1
(p+b)n1 have no singularities at zero, the asymptotics of the solution of

Equation (17) in the vicinity of the point p = 0 is obtained by using the method of successive
approximations as it was done for Equation (5). To find the asymptotics corresponding to the root −b,
we must shift this root to zero. This can be done by substitution u (r) = e−

b
r u1 (r). Then we can find

the asymptotics in the neighborhood of zero as it was done above.
Note that if k + m + 1 ≥ n1, solution will not have a singularity at zero; if k = n1 −m, then the

asymptotics of this solution is conormal.
The results of Theorem 1 can be applied for some equations of mathematical physics.
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The second-order differential equations with singular points are used in various domains of
mechanics. For instance, Laplace operator written in spherical coordinate system has a singular point
at zero. The second-order equation of this type is also used for solving the planar problem of finding the
stress–strain state of a body of rectangular cross section with a cylindrical cavity along which an ideal
incompressible fluid moves [22]. Papers [23–25] are also worth mentioning. In them, the asymptotic
expansions of the solutions of the main boundary-value problems for the elasticity system and the
biharmonic (polyharmonic) equation in the exterior of a compact set and in a half-space, including
that in the form of a conormal asymptotics, were obtained.

Let us demonstrate the application of the result of Theorem 1 to constructing uniform asymptotics
of solutions by an example of the boundary-value problem for the Klein–Gordon–Fock equation with
holomorphic coefficients at t→ ∞. Namely, let us consider the following problem:(

d
dt

)2
u (x, t)− a0 (t)∆u (x, t) + c0 (t) u (t, x) = 0

αu (x, t) + β
∂u(x,t)

∂n |S = 0
α (x) ≥ 0, β (x) ≥ 0
α (x) + β (x) > 0, x ∈ S
a0(t) > 0 .

Here, a0 (t) , c0(t) are holomorphic functions in the neighborhood of an infinitely distant point,
S – the smooth boundary of the domain.

Let us apply the method of separation of variables

u (x, t) = Y (x) v (t) .

We get the problem
∆Y (x) + λY (x) = 0
αY + β ∂Y

∂n |S = 0 (18)

and the equation (
d
dt

)2
v (t)− a0 (t) λv (t) + c0 (t) v (t) = 0 . (19)

Let us designate by λi the eigenvalues of the Sturm–Liouville problem (18); by Yλi (x),
the eigenfunction of this problem corresponding to this eigenvalue. Equation (19) is an equation
of the first type; therefore, the asymptotics of its solution in the neighborhood of an infinitely
distant point are determined by Theorem 1. Let us designate the asymptotics of the solution to
this equation corresponding to the eigenvalue λi by νi (t). Then, the asymptotics of any solution of
the boundary-value problem for the Klein–Gordon–Fock equation can be represented in the form
u(x, t) ≈ ∑

i
Yλi (x) νi (t).

It should be noted that in some studies, the asymptotics of solutions of linear differential equations
at λi → ∞ were constructed. For instance, equations similar to (19) with the condition t ∈ [0, 1], a0(t) ∈
W−1

2 (0, 1) were considered in [26,27]. In [28], an asymptotic formula for the eigenvalues of the
second-order differential operators with continuous coefficients was obtained.

4. Conclusions

As a result of Theorem 1, we have constructed the uniform asymptotics of solutions of ordinary
differential equations with holomorphic coefficients in the neighborhood of an infinitely distant point
for the equations of the first type. It should be noted that there is quite a broad class of equations of
the first type. For instance, all equations from the first to the fifth order inclusive are the equations
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of the first type. Therefore, the results of this study can be applied to constructing the asymptotics
of solutions to equations with holomorphic coefficients in the neighborhood of an infinitely distant
point for a broad class of ordinary differential equations, as well as for some equations of mathematical
physics. For example, we have considered above the problem of constructing the uniform asymptotics
of solutions by an example of the boundary value problem for the Klein–Gordon–Fock equation with
holomorphic coefficients.

Analogously, the asymptotics of a solution for the boundary-value problem can be constructed
for the wave equation at t→ ∞, for the Helmholtz equation at large values of the radius and for many
other problems, as well as for some elliptic equations that are set on manifolds with singularities.
An example of such a problem is constructing the asymptotics of the solution to the Laplace equation
on a manifold with a cuspidal singularity in the neighborhood of the singular point of the manifold.
This problem was solved in [16].

In our further investigations, we would like to construct the asymptotics of solutions for equations
of the second type; i.e., to lift the constraint imposed by inequality (6) and definitely solve the problem
formulated by Poincare—the problem of constructing the uniform asymptotics of solutions to ordinary
differential equations in the neighborhood of an infinitely distant point. The ultimate goal of our
investigations was solving the fundamental Poincare problem of constructing regular asymptotics of
solutions of ordinary differential equations with holomorphic coefficients in the neighborhoods of
irregular singular points.
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