
mathematics

Article

Algorithms for Instance Retrieval and Realization in
Fuzzy Ontologies

Ignacio Huitzil 1,*, Jorge Bernad 1,2 and Fernando Bobillo 1,2

1 Department of Computer Science and Systems Engineering, University of Zaragoza, 50009 Zaragoza, Spain;
jbernad@unizar.es (J.B.); fbobillo@unizar.es (F.B.)

2 Aragon Institute of Engineering Research (I3A), 50018 Zaragoza, Spain
* Correspondence: ihuitzil@unizar.es

Received: 31 December 2019; Accepted: 19 January 2020; Published: 22 January 2020
����������
�������

Abstract: Fuzzy description logics, the formalism behind fuzzy ontologies, are an important
mathematical method with applications in many artificial intelligence scenarios. This paper proposes
the first specific algorithms to solve two reasoning tasks with respect to a fuzzy ontology: the instance
retrieval and the realization problem. Our algorithms are based on a reduction of the number of
optimization problems to solve by merging some of them. Our experimental evaluation shows that
the novel algorithm to solve the instance retrieval outperforms the previous algorithm, and that in
practice it is common to be able to solve a single optimization problem.

Keywords: fuzzy ontologies; fuzzy description logics; semantic reasoning

1. Introduction

Description Logics (DLs for short) [1] are a popular family of logics to represent structured
knowledge, particularly in ontologies. They make it possible to capture the relevant knowledge in a
domain field and to infer implicit knowledge, providing a good balance between the expressiveness of
the language and the practical computational complexity of the reasoning. For example, the current
standard language OWL 2 (Web Ontology Language) is based on the DL SROIQ(D) [2,3].

Fuzzy DLs are an extension of classical DLs to deal with imprecise knowledge (see [4] for
an overview). The main idea is that axioms can be partially satisfied (typically measured using
a degree of truth in [0, 1]). Fuzzy DLs have proved to be a useful mathematical model in many
artificial intelligence applications, including the Semantic Web and the Internet [5], recommendation
systems [6,7], medicine [8], image interpretation [9], computational perception [10], robotics [11],
gait recognition [12], aerospace industry [13], transportation [14], Internet of Things-based healthcare
monitoring [15], automatic hotel reservation [16], and web content classification [17].

One of the most important reasoning tasks in classical ontologies is the instance retrieval problem,
which consists of retrieving all the individuals i that are known to belong to a given a concept C. In the
fuzzy setting, this reasoning task can be extended to retrieving pairs 〈i, α〉 such that each individual i
belongs to a given (possibly fuzzy) concept C with degree greater or equal than α > 0.

However, there are no specific reasoning algorithms to solve this problem in fuzzy ontologies.
Instead, one needs a best entailment degree test for each individual i in the fuzzy ontology, retrieving
a lower bound for its membership to C. For example, this is the algorithm implemented in the fuzzy
ontology reasoner fuzzyDL [18], which, to the best of our knowledge, is the only software supporting
instance retrieval with respect to a fuzzy ontology. Clearly, running several entailment tests is not an
optimal solution, and may take a dramatic increase in the running time for hard ontologies.

A similar problem happens with the realization problem. In classical ontologies, realization
consists of retrieving all the concepts C that a given individual i is an instance of. In fuzzy ontologies,

Mathematics 2020, 8, 154; doi:10.3390/math8020154 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math8020154
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/2/154?type=check_update&version=2

Mathematics 2020, 8, 154 2 of 16

it requires retrieving pairs 〈C, α〉 such that i belongs to C with degree greater or equal than α > 0.
Because this can be computed using a best entailment degree test for each concept C in the fuzzy
ontology, no specific algorithms have been designed.

In this paper, we propose two specific algorithms to solve the instance retrieval and the
realization problem with respect to a fuzzy ontology. Such algorithms are based on an extension of
an optimization technique called optimization partitioning, originally proposed in [19] and extended
in [20]. This optimization can be applied in a family of algorithms to reason with fuzzy DLs that are
based on a collaboration of classical tableaux rules and mathematical programming [21], as it is the case
of the algorithm implemented by fuzzyDL. In such cases, it is possible to compute a partition of the
single optimization problem into smaller optimization problems, called constraint group optimization
problems (CGO problems). The idea is to optimize independently, these CGO problems (perhaps
optimizing the same CGO problem several times, if necessary) rather than optimizing the whole
original problem several times.

The rest of this paper is organized as follows. Section 2 recalls some preliminaries on fuzzy DLs.
Then, we present two novel algorithms to solve the realization (Section 4) and the instance retrieval
(Section 3) given a fuzzy ontology. Next, Section 5 discusses an experimental evaluation of both
algorithms. Finally, Section 6 sets out some conclusions and ideas for future work.

2. Background on Fuzzy DLs

This section overviews some results on fuzzy DLs that will be used in this paper. We assume
that the reader is familiar with fuzzy logic [22,23] and with classical DLs [1]. We will define a fuzzy DL
(syntax and semantics), the main reasoning tasks, and some reasoning algorithms. For further details,
we refer the interested reader to [4,18]. Although our approach does not depend on the particular fuzzy
DL, this paper will consider a relatively simple language, fuzzyALC, to make the text more concrete.

2.1. Syntax

This section recalls the syntax of fuzzy ALC as originally proposed in [21]. Fuzzy DLs have three
elements: individuals, fuzzy concepts, and fuzzy properties (or roles). Fuzzy concepts are fuzzy sets of
individuals, and fuzzy properties are fuzzy binary relations between individuals.

Concepts (denoted C) of the language can be built inductively from atomic concepts (A),
top concept >, bottom concept ⊥, properties (R), and individuals (a) as follows:

C1, C2 → > | ⊥ | A | C1 u C2 | C1 t C2 | ¬C | ∀R.C | ∃R.C.

A Fuzzy Ontology (or fuzzy knowledge base) O = 〈A, T 〉 is composed of a fuzzy ABox A,
including axioms about individuals, and a fuzzy TBox T , including axioms about concepts.

A fuzzy ABox contains a finite set of fuzzy assertions of the following types:

• Concept assertions of the form 〈a:C ≥ α〉, with α ∈ [0, 1]. The intuitive idea is that individual a is
an instance of concept C with degree greater than or equal to α.

• Property assertions of the form 〈(a1, a2):R ≥ α〉, α ∈ [0, 1]. The intuition here is that the pair of
individuals (a1, a2) is an instance of property R with degree greater than or equal to α.

A fuzzy TBox consists of a finite set of fuzzy general concept inclusions (fuzzy GCIs). A fuzzy
GCI is an expression of the form 〈C1 v C2 ≥ α〉, α ∈ [0, 1]. The intuition here is that the degree of
concept C1 being subsumed by C2 is greater than or equal to α.

Two important types of axioms that will be mentioned in the rest of this paper are disjoint axioms
of the form 〈C1 u C2 v ⊥ ≥ 1〉, and range axioms of the form 〈> v ∀R.C ≥ 1〉.

Mathematics 2020, 8, 154 3 of 16

2.2. Semantics

This section recalls the semantics of fuzzy ALC as originally proposed in [21]. The semantics is
defined using a fuzzy interpretation and a fuzzy logic, composed of a t-norm ⊗, t-conorm ⊕, negation
function 	, and implication function⇒. Table 1 summarizes the definitions of those fuzzy operators
in the main four fuzzy logics; namely, Gödel, Łukasiewicz, Product, and Zadeh.

Table 1. Combination functions of various fuzzy logics [24].

Gödel Logic Łukasiewicz Logic Product Logic Zadeh Logic

α⊗ β min(α, β) max(α + β− 1, 0) α · β min(α, β)
α⊕ β max(α, β) min(α + β, 1) α + β− α · β max(α, β)

α⇒ β

{
1 if α ≤ β

β otherwise
min(1− α + β, 1)

{
1 if α ≤ β

β/α otherwise
max(1− α, β)

	 α

{
1 if α = 0
0 otherwise

1− α

{
1 if α = 0
0 otherwise

1− α

A fuzzy interpretation (or model) I = (∆I , ·I) consists of a nonempty set ∆I (the domain) and of
a fuzzy interpretation function ·I that assigns:

• To each individual a an element aI ∈ ∆I .
• To each fuzzy concept C a function CI : ∆I → [0, 1].
• To each fuzzy property R a function RI : ∆I × ∆I → [0, 1].

Table 2 shows how to extend the interpretation function to complex concepts and fuzzy axioms.

Table 2. Semantics of fuzzy concepts and axioms [21].

Concept Semantics

(>)I (x) = 1
(⊥)I (x) = 0
(A)I (x) = AI (x)

(C1 u C2)
I (x) = CI1 (x)⊗ CI2 (x)

(C1 t C2)
I (x) = CI1 (x)⊕ CI2 (x)

(¬C)I (x) = 	CI (x)
(∀R.C)I (x) = infy∈∆I {RI (x, y)⇒ CI (y)}
(∃R.C)I (x) = supy∈∆I {RI (x, y)⊗ CI (y)}

Axiom Semantics

(a:C)I = CI (aI)
((a1, a2):R)I = RI (aI1 , aI2)
(C1 v C2)

I = infx∈∆I {CI1 (x)⇒ CI2 (x)}

Let φ ∈ {a:C, (a1, a2):R, C v D}. A fuzzy interpretation I satisfies (is a model of) a fuzzy axiom
τ = 〈φ ≥ α〉, denoted I |= τ, iff φI ≥ α. An interpretation satisfies (is a model of) a fuzzy ontology if
it satisfies each axiom in it. A fuzzy ontology O entails an axiom τ, denoted O |= τ, if any model of O
satisfies τ.

2.3. Reasoning Tasks

Common reasoning tasks on DLs include consistency (checking if an ontology has a model),
concept satisfiability (checking if a concept can have instances), entailment (checking if an ontology
necessarily entails an axiom), realization (retrieving all the concepts an individual belongs to),
and instance retrieval (retrieving all the instances of a concept). In fuzzy DLs, we have extensions

Mathematics 2020, 8, 154 4 of 16

of those tasks and some new ones, such as the best entailment degree (BED). The BED of an axiom
φ ∈ {a:C, (a1, a2):R, C v D} with respect to a fuzzy ontology O is defined as [24]:

bed(O, φ) = sup {α | O |= 〈φ ≥ α〉} .

These reasoning tasks are usually inter-definable (depending on the expressivity of the language
and the semantics of the fuzzy operators).

Some popular fuzzy ontology reasoners are fuzzyDL [18], Fire [25], FPLGERDS [26], YADLR [27],
DeLorean [28], GURDL [19], FRESG [29], LiFR [30], and SMT-based solver [31]. To the best of our
knowledge, fuzzyDL, FRESG and YADLR are the only ones supporting instance retrieval, while FRESG,
and YADLR are the only ones supporting realization.

The fuzzyDL reasoner reduces the previous reasoning services to the variable minimization
problem, that is, to minimize a [0, 1]-variable x, given a consistent fuzzy ontology O [18]. For instance,
bed(O, a:C) is computed as:

min{x | O ∪ {〈a : ¬ŁC ≥ 1− x〉} is consistent , x ∈ [0, 1] , (1)

where ¬Ł denotes Łukasiewicz negation. Then, fuzzyDL solves the instance retrieval of C with respect
to O by computing bed(O, a:C) for every individual a ∈ O.

Regarding FRESG and YADLR, no specific reasoning algorithms to solve those tasks are reported.
FRESG computes instance retrieval and realization by reducing to several tableaux algorithm tasks,
and YADLR to several BEDs. (Strictly speaking, YADLR checks if an individual is a member of a given
concept with an unknown degree of truth, represented using a variable).

That is, if the fuzzy ontology has ni individuals and nc atomic concepts, existing algorithms
require ni tests to solve the instance retrieval and nc tests to solve the realization problem.

2.4. The fuzzyDL Reasoning Algorithm

In the rest of this section, we will give some more details about fuzzyDL reasoning algorithm [18],
as we will extend it in the next sections. The algorithm is based on a combination of a tableaux
algorithm and an optimization problem with respect to a constraint set C.

• Firstly, there is some pre-processing. For example, in Łukasiewicz and Zadeh fuzzy DLs, each
concept is transformed into its negation normal form [18], where the negation only appears before
atomic concepts.

• Then, for each concept assertion 〈a : C ≥ α〉 ∈ O, it considers a node va, ensures that L(va) ←
L(va) ∪ {C}, and sets C← C∪ {xva :C ≥ α}.

• Similarly, for each property assertion 〈(a1, a2) : R ≥ α〉 ∈ O, it considers two nodes va1 , va2 ,
creates an edge 〈va1 , va2〉 if it does not exist, and sets L(〈va1 , va2〉) ← L(〈va1 , va2〉) ∪ {R} and
C← C∪ {x(va1 ,va2):R

≥ α}.
• Next, it applies some tableau rules. As usual in classical DLs, rules transform complex concept

expressions into simpler ones, but in the fuzzy case they also create a set of linear in-equation
constraints. Table 3 shows the rules for ALC, and the encoding of the fuzzy operators is shown
in Table 4 for Łukasiewicz (Ł), Gödel (G), and Zadeh (Z) fuzzy logics, where ε > 0. These
inequations have to hold in order to respect the semantics of the DL constructors.

• When no more rules can be applied, the reasoner solves an optimization problem with respect to
C. This problem has a solution iff the fuzzy ontology is consistent [18]. To solve the optimization
problem, fuzzyDL uses Gurobi (http://www.gurobi.com) optimization problem solver.

Remark 1. For simplicity, Table 3 assumes that standard Łukasiewicz negation is representable, so that concepts
can be represented in negation normal form (NNF). This is obviously the case in Zadeh and Łukasiewicz fuzzy
DLs, but in Gódel ALCit requires extending the logic with standard negation, as fuzzyDL does. Similar rules
can be defined when concepts cannot be represented in NNF (e.g., in Gódel DLs); see, e.g., [4]. Please also note

http://www.gurobi.com

Mathematics 2020, 8, 154 5 of 16

that in Zadeh DLs it is usual to consider two different fuzzy implications, one for universal restriction concepts
∀R.C and another one for subclass axioms C1 v C2 [32].

In Łukasiewicz, Gödel, and Zadeh fuzzy DLs, we obtain a bounded mixed integer linear
programming (MILP) problem [21]; in other fuzzy DLs more complex optimization problems can be
obtained. A MILP problem consists of minimizing a linear function with respect to a set of constraints
C that are linear inequations in which rational and integer variables can occur [24]. In particular,
a constraint set C can contain linear equations w1x1 + · · ·+ wnxn ./ w0 or restrictions of the form
xi ∈ {0, 1} (forcing xi to be a binary value), where xi denotes a variable taking values in R ∩ [0, 1],
wi denotes a rational number, and ./∈ {≤,≥,=}.

Table 3. Rules of the tableaux algorithm combined with an optimization problem [33].

Rule Preconditions Actions

(⊥) ⊥ ∈ L(v) C = C∪ {xv:⊥ = 0}

(>) > ∈ L(v) C = C∪ {xv:> = 1}

(¬) ¬A ∈ L(v) C = C∪ {xv:¬C = 	xv:C}

(u) C1 u C2 ∈ L(v) L(v) = L(v) ∪ {C1, C2}
C = C∪ {xv:C ⊗ xv:D = xv:C1 u C2

}

(t) C1 t C2 ∈ L(v) L(v) = L(v) ∪ {C1, C2}
C = C∪ {xv:C ⊕ xv:D = xv:C1 t C2

}

(∃) ∃R.C ∈ L(v) create a new node w
L(〈v, w〉) = L(〈v, w〉) ∪ {R}, and
L(w) = L(w) ∪ {C}, and
C = C∪ {x(v, w):R ⊗ xw:C = z, z ≥ xv:∃R.C}

(∀) ∀R.C ∈ L(v) L(w) = L(w) ∪ {C}
R ∈ L(〈v, w〉) C = C∪ {xw:C ≥ z, z = xv:∀R.C ⊗ x(v, w):R}

(→) C1 → C2 ∈ L(v) L(v) = L(v) ∪ {¬C1, C2}
C = C∪ {xv:C1

⇒ xv:C2
= xv:C1 → C2

}

Table 4. Encoding of some popular fuzzy logic operators [33].

Restriction Logic Encoding

	x = z G
{

z ≤ 1− x, x + z ≥ ε, z ∈ {0, 1}
}

Ł, Z
{

1− x = z
}

x1 ⊗ x2 = z G, Z
{

z ≤ x1, z ≤ x2, x1 ≤ z + y, x2 ≤ z + (1− y), y ∈ {0, 1}
}

Ł
{

x1 + x2 − 1 ≤ z, x1 + x2 − 1 ≥ z− y, z ≤ 1− y, y ∈ {0, 1}
}

G, Z
{

z ≥ x1, z ≥ x2, x1 + y ≥ z, x2 + (1− y) ≥ z, y ∈ {0, 1}
}

x1 ⊕ x2 = z Ł
{

x1 + x2 ≤ z + y, y ≤ z, x1 + x2 ≥ z, y ∈ {0, 1}
}

G
{

2y + x1 ≥ x2 + ε, x1 ≤ x2 + (1− y), y + x2 ≥ z, x2 ≤ z + y, z ≥ y, y ∈ {0, 1}
}

x1 ⇒ x2 = z Ł
{

1− x1 + x2 ≤ z + y, y ≤ z, 1− x1 + x2 ≥ z, y ∈ {0, 1}
}

Z
{

z ≥ 1− x1, z ≥ x2, (1− x1) + y ≥ z, x2 + (1− y) ≥ z, y ∈ {0, 1}
}

Let the connection relation ;C between two variables z1, z2 be defined as follows: define
z1 ;C z2 if ∃ψ ∈ C with a term w1z1 and a term w2z2, and then, extend ;C to its transitive closure.
The following result can be shown:

Lemma 1 ([20]). A constraint set C can be partitioned into a set of constraint sets {C1, C2, . . . , Cm} verifying
the following conditions:

(OP1) If z occurs in Ci, then z does not occur in Cj, ∀i, j ∈ {1, . . . , m}, i 6= j;

Mathematics 2020, 8, 154 6 of 16

(OP2)
⋃

i∈{1,...,m} Ci = C;
(OP3) ∀zj, zk occurring in Ci, zj ;C zk. ∀i ∈ {1, . . . , m}.

C has a solution iff the Ci has a solution for every i ∈ {1, . . . , m}. Furthermore, given the MILP
problem of minimizing an objective variable z with respect to C, the solution is the same as the solution
of minimizing with respect to Cj, where Cj is the optimization problem where z appears.

Computing the partition can be reduced to the problem of computing all the connected subgraphs
of a graph. Given a constraint set C, it is possible to build an undirected graph with as many nodes as
variables in C and an edge linking two nodes nz1 , nz2 for every pair of variables z1 and z2 appearing in
the same constraint ψ ∈ C. The connected subgraphs indicate the contraint sets; i.e., if a variable z is in
the i-th connected component, then the constraints where z occurs should be placed in Ci [20].

3. Realization in Fuzzy Ontologies

The intuition behind our algorithm is to reduce the number of optimization problems to be solved
by merging them. Clearly, optimization problems cannot be merged in general, as Example 1 shows.

Example 1. Consider an ontology O with the axiom

〈johnSmith : DemocratVotert RepublicanVoter ≥ 1〉

stating that citizen JohnSmith either voted for the Democratic Party or for the Republican Party in the last USA
elections. If we want to retrieve all the concepts johnSmith belongs to, the answer should be an empty set, because
we cannot infer that he is a DemocratVoter and we cannot infer that he is a RepublicanVoter. In Łukasiewicz
fuzzy DLs, the axiom in O leads to a constraint

xjohnSmith:DemocratVoter + xjohnSmith:RepublicanVoter ≥ 1 (2)

We can indeed compute the realization problem by (i) adding 〈johnSmith : ¬C ≥ xC〉 to O, where xC is a new
variable, for one of the atomic concepts C ∈ KB, (ii) minimizing xC, and (iii) repeating the process for each of the
atomic concepts inO. For example, adding 〈johnSmith : ¬DemocratVoter ≥ xDemocratVoter〉 leads to a constraint

xjohnSmith:DemocratVoter ≤ xDemocratVoter (3)

and the minimum value of xDemocratVoter with respect to Equations (2) and (3) is 0; i.e., there is a solution to
the MILP problem such that xDemocratVoter = 0 (and xjohnSmith:RepublicanVoter = 1). However, if we also added
〈johnSmith : ¬RepublicanVoter ≥ xRepublicanVoter〉, we would have a constraint

xjohnSmith:RepublicanVoter. ≤ xRepublicanVoter (4)

Now, in any of the solutions of the optimization problem in Equations (2)–(4), xDemocratVoter > 0 or
xRepublicanVoter > 0 hold, it is incorrect.

However, we can merge optimization problems as long as the involved variables are independent.
Based on this idea, Algorithm 1 solves the realization problem of an individual a given a fuzzy ontology
O. The output is a (possibly empty) list of pairs of the form 〈A, α〉, where A ∈ O is an atomic concept,
α > 0 and O |= 〈a : A ≥ α〉.

Lines 1–6 add a new assertion (involving a new variable) for each named concept in the ontology,
create an empty list of results L, and apply some reasoning rules that create a set of MILP constraints.
The new assertions are similar to those in the previous algorithm implemented in fuzzyDL [18], but
now we create them in the same step.

Mathematics 2020, 8, 154 7 of 16

Algorithm 1 Algorithm to compute the realization problem given a fuzzy ontology O.
Input: A fuzzy ontology O and an individual a

Output: A set of pairs individual–membership degree
{
〈A1, α1〉, . . . , 〈An, αn〉

}
1: for each atomic concept A ∈ O do

2: xa:A = new variable
3: O ∪ 〈a : ¬A, 1− xa:A〉
4: end for
5: L← ∅
6: C← ApplyReasoningRules(O)
7: Ci ← Partition(C)
8: for each Ci do

9: v[i]← number of variables xa:A ∈ Ci
10: end for
11: Czero ←

⋃
Ci s.t. v[i] = 0

12: if Czero does not have a solution then

13: return ∅
14: end if
15: Cone ←

⋃
Ci s.t. v[i] = 1

16: if Cone does not have a solution then

17: return ∅
18: end if
19: Minimize z s.t. Cone ∪ {z = ∑ xa:A}
20: for each solution xa:A in the model of the solution do

21: if xa:A > 0 then

22: L← L ∪ 〈A, α〉
23: end if
24: end for
25: Ctwo_or_more ← (C \Czero) \Cone
26: if Ctwo_or_more does not have a solution then

27: return ∅
28: end if
29: for each xa:A ∈ Ctwo_or_more do

30: α← min xa:A s.t. Ctwo_or_more
31: if α > 0 then

32: L← L ∪ 〈A, α〉
33: end if
34: end for
35: return L

Lines 7–10 partitions the single constraint set with respect to C into a set of constraint sets Ci.
This is similar to the approach in [20]. However, we also compute the number of variables to be
minimized xa:C in each of the problems so that we can consider three cases:

• Constraint sets without an objective variable (so that we only need to check if they have a solution);
• Constraint sets with exactly one objective variable of the form xa:C;
• Constraint sets with more than one objective variable of the form xa:C (so they are dependent

variables).

Lines 11–14 address the first case. Constraint sets are merged and we check if there is a solution
to the merged constraint set to guarantee that there are not inconsistencies. We could also solve the

Mathematics 2020, 8, 154 8 of 16

problems independently, but some experiments showed empirically that it is faster to solve a single
problem [20].

Lines 15–24 address the second case. Constraint sets are merged and we optimize with respect
to a variable with a value equal to the sum of all the variables xa:C to be minimized. This is possible
only because all variables xa:C are independent: in this case the minimum of the sum occurs when all the
variables have its minimum value. The value of each xa:C is added to the list of results if it is greater than 0.

Finally, Lines 25–34 address the third case. In this case, constraint sets are merged, but the merged
problem is optimized independently with respect to a single variable, and this is repeated for each
variable xa:C introduced in Lines 1–6 that belongs to Ctwo_or_more. The minimal value of each xa:C is
added to the list of results if it is greater than 0.

An alternative to the third case is not to merge all the constraint sets into a single one and optimize
them independently with respect to each xa:C. Note that each independent constraint set would need
to be optimized two or more times.

Another alternative is to merge the first and the second case to optimize a single optimization
problem. This seems more promising in practice, as the evaluation in [20] showed that solving a
problem is not more expensive than solving two simpler ones, disjoint subsets of the original one.

A particularly interesting case happens when Ctwo_or_more is empty. In this case, we can solve a
single optimization problem (with the union of the first and the second case). However, in practice,
those cases might not happen very often. For example, Example 2 shows that having disjoint concept
axioms introduces dependencies.

Example 2. If there is an axiom stating that two concepts C1 and C2 are disjoint, this introduces a constraint
xa:C1 ⊗ xa:C2 = 0 for each individual a in the ontology, so variables xa:C1 and xa:C2 are dependent. Computing
the realization of any individual a requires adding two assertions ∪〈a : ¬ŁC1, 1− x1〉 and ∪〈a : ¬ŁC2, 1− x2〉,
Then, the variables xa:C1 and xa:C2 are connected (xa:C1 ;C xa:C2) and so are x1, x2, so Ctwo_or_more is not
empty (there is a partition that contains at least two objective variables, x1, x2).

4. Instance Retrieval in Fuzzy Ontologies

Algorithm 1 can be easily adapted to the instance retrieval problem. Algorithm 2 solves the
instance retrieval of a fuzzy concept C given a fuzzy ontology O. The output is a (possibly empty) list
of pairs of the form 〈a, α〉, where a ∈ O is an individual, α > 0 and O |= 〈a : C ≥ α〉.

Lines 1–6 are similar to the same lines in Algorithm 1, but now we add a new assertion for each
named concept in the ontology. Then, Lines 7–10 partitions the single constraint set into several sets Ci.
Next, we address the same cases: Lines 11–14 address the first case, Lines 15–24 address the second
case, and Lines 25–34 address the third case.

We can also consider the same alternatives as in the realization problem: in the third case it is
possible not to merge all the constraint sets, and the constraint sets in the first and the second cases can
be merged.

As our experiments show, the particularly interesting case when Ctwo_or_more is empty happens
relatively often. In this case, we can solve a single optimization problem (with the union of Czero

and Cone). However, we have identified some cases where Ctwo_or_more is not empty, described in
Examples 3 and 4.

Example 3. Assume that a fuzzy ontology O has a range axiom (stating that the range of an object property R
is C) and two object property assertions stating that individuals a1, a2 are related via R with an individual a3.
Assume also that we want to retrieve the instances of a concept D such that 〈D v C ≥ α〉 ∈ O, so that we need
to add assertions 〈a1 : ¬ŁD, 1− x1〉 and 〈a2 : ¬ŁD, 1− x2〉. Then, the variables xa1 :D and xa2 :D are connected
(xa1 :D ;C xa2 :D) and so are x1, x2, so Ctwo_or_more is not empty (there is a partition that contains at least two
objective variables, x1, x2). Note that this does not happen if both a1, a2 are related via R to a3 but there is not a

Mathematics 2020, 8, 154 9 of 16

range axiom. Although a1, a2, and a3 belong to the same ABox partition in the sense of [19], they do not belong
to the same optimization problem partitioning.

Algorithm 2 Algorithm to compute the instance retrieval problem given a fuzzy ontology O.
Input: A fuzzy ontology O and a fuzzy concept C

Output: A set of pairs individual–membership degree
{
〈a1, α1〉, . . . , 〈an, αn〉

}
1: for each individual a ∈ O do

2: xa:C = new variable
3: O ∪ 〈a : ¬C, 1− xa:C〉
4: end for
5: L← ∅
6: C← ApplyReasoningRules(O)
7: Ci ← Partition(C)
8: for each Ci do

9: v[i]← number of variables xa:C ∈ Ci
10: end for
11: Czero ←

⋃
Ci s.t. v[i] = 0

12: if Czero does not have a solution then

13: return ∅
14: end if
15: Cone ←

⋃
Ci s.t. v[i] = 1

16: if Cone does not have a solution then

17: return ∅
18: end if
19: Minimize z s.t. Cone ∪ {z = ∑ xa:C}
20: for each solution xa:C in the model of the solution do

21: if xa:C > 0 then

22: L← L ∪ 〈a, α〉
23: end if
24: end for
25: Ctwo_or_more ← (C \Czero) \Cone
26: if Ctwo_or_more does not have a solution then

27: return ∅
28: end if
29: for each xa:C ∈ Ctwo_or_more do

30: α← min xa:C s.t. Ctwo_or_more
31: if α > 0 then

32: L← L ∪ 〈a, α〉
33: end if
34: end for
35: return L

Example 4. Assume again that we want to retrieve the instances of a concept D. In more expressive languages
with nominals, there is an additional rule called ∃a [34] that adds a constraint of the form xa:{a} ⇒ (xai :∃R.{a} ⇒
x(ai ,a):R) ≥ 1 for each individual ai related to a. If there are two individuals a1, a2 related via R to a3,
xa1 :D ;C xa2 :D, because both of them are connected to xa:{a}. Therefore, Ctwo_or_more is not empty.

Mathematics 2020, 8, 154 10 of 16

5. Evaluation of the Instance Retrieval Algorithm

To evaluate our novel algorithms, we compare the new implementation of the instance retrieval
algorithm with the previous algorithm implemented in the fuzzyDL ontology reasoner. In our
implementation, we chose to merge Czero and Cone, so if Ctwo_or_more is empty, we only need to solve
one optimization problem. Because fuzzyDL did not previously implement an algorithm for concept
realization, the evaluation of that algorithm is left as future work.

5.1. Datasets

We firstly considered Fuzzy Beer, a fuzzy ontology with information about beers used in
GimmeHop, a knowledge-based recommender system for mobile devices [7]. Fuzzy Beer ontology is
able to represent concepts (e.g., beer types or breweries), object properties (e.g., between beers and
breweries), data properties (e.g., alcohol level ABV, color, or bitterness), instances (e.g., beers and
countries), and fuzzy datatypes. In particular, Fuzzy Beer has 15,317 beer individuals.

Fuzzy datatypes are the only fuzzy element of the ontology, and make it possible to associate
linguistic labels to some data properties. For instance, it is possible to define the fuzzy datatypes
VeryLowAlcohol, LowAlcohol, NeutralAlcohol, HighAlcohol, and VeryHighAlcohol, as illustrated in Figure 1.
Those fuzzy datatypes values were obtained using Datil [35], a software to learn fuzzy datatypes from
real data using different clustering algorithms.

Figure 1. Linguistic labels for the alcohol level data property.

Fuzzy Beer was originally developed in the language Fuzzy OWL 2 [36], which extends classical
OWL 2 with OWL 2 annotations encoding the fuzzy information (only those parts that cannot be
represented in OWL 2 using an XML-like syntax). For the experiments in this paper, we firstly
translated the ontology into FDL format, the native syntax supported by fuzzyDL, using an existing
parser [36]. The parser discarded a few axioms that fuzzyDL was not able to support (one for each
instance of the class Country), making it possible to deduce the country associated to a beer given the
brewery associated to a beer, and the country associated to a brewery [7].

Because of the number of individuals, running time is very high. Indeed, the old approach takes
several days to finish an instance retrieval query. Therefore, we restricted the run to several subsets of
the Fuzzy Beer ontology, with different numbers of beers. In the following, we use Beern to denote the
subset of Fuzzy Beer with n beer individuals. Note that the number of individuals is higher than n,
as there are also breweries and countries.

First, we solved Beer500 20 times and studied the standard deviation. In particular, we repeated, 20
times, the process of randomly selecting a subset of Fuzzy Beer with 500 beers and solved the instance
retrieval problem. The average, standard deviation, and coefficient of variation (or CV, defined as
the ratio of the standard deviation to the mean) are shown in Table 5 for both the old and the new
algorithm. The new algorithm has a slightly higher CV (6.6% versus 4.3%) but it is still rather stable.
Therefore, for the rest of the fuzzy ontologies Beeri we just solved once the instance retrieval problem
in order to decrease the time needed to finish our experiments.

Mathematics 2020, 8, 154 11 of 16

Table 5. Coefficient of variation for the Fuzzy Beer500 ontology.

Measure Old New

Average (ms) 80,126.0 2047.7
Standard deviation 3438.7 135.3

Coefficient of variation 4.3% 6.6%

In Fuzzy Beer (and in its subsets Fuzzy Beeri), Ctwo_or_more is empty, so it is possible to solve the
instance retrieval with a single optimization problem. However, we have considered a harder version,
Fuzzy Beerh (with its corresponding subsets Beerh

i), with two additional axioms, stating the range of
two object properties (brewedBy and country).

We also considered the 50 fuzzy ontologies in the Absorption dataset developed in [37]. Although
there are several fuzzy versions of each crisp ontology, we considered here fuzzy ontologies of the
form l.66, with a semantics given by Łukasiewicz fuzzy logic and 66% fuzzy axioms.

To make the comparison fair, we slightly optimized the previous algorithm implemented in
fuzzyDL. The existing approach simply looped over all concept assertion entailment problems, and for
each of them expanded both the original fuzzy ABox and the new fuzzy concept assertions. However,
we made sure that the original fuzzy ABox is expanded only the first time and a cloned copy was
shared by the next tests.

All experiments were performed on a laptop computer with Intel Core i7-8550U 1.8 GHz, 16 GB
RAM under Windows 7 64-bits. We used Java 1.8 and Gurobi 8.1.0 build V8.1.0rc1 (Academic License).
In general, we randomly selected an atomic concept to retrieve their instances, but for Fuzzy Beeri
we also considered a complex concept (the list of queries can be found in the Appendix. During
our experiments, we set a timeout of six hours to solve the instance retrieval problem using the new
algorithm (as the old seems to take more time).

5.2. Results

Table 6 shows the results for 15 fuzzy ontologies of the Absorption dataset. For each ontology we
include the number of individuals, the running time (in seconds) of the previous algorithm (denoted
Old), the running time (in s) of the novel algorithm (denoted New), and some optional observations.

We can see that the new algorithm outperforms the previous one in the case of consistent
ontologies. However, in inconsistent ontologies (process.l.66 and propreo.l.66), the old algorithm
solves a simpler case (as it only needs to add a single axiom to find the inconsistency) and finishes
faster. In general, all the partitions were independent, so Ctwo_or_more was empty and it was enough to
solve a single MILP problem. There were only two exceptions: FuzzyWine.l.66, and lubm.l.66.

Table 6. Running time (s) for the Absorption dataset.

Ontology Name #Individuals Old (s) New (s) Comments

cancer_my.l.66 20 13 3
earthrealm.l.66 167 6 0.8
Economy.l.66 482 9 0.5

fmaOwlDlComponent_1_4_0.l.66 98 1 0.6
FuzzyWine.l.66 138 5165 384 9 objective dependent variables

goslim.l.66 79 1 0.2
GRO.l.66 1 0.4 0.2
lubm.l.66 115 9409 6027 719 objective dependent variables

people.fd.l.66 22 5 1
pizza.l.66 5 0.3 0.2

po.l.66 20 3 0.5
process.l.66 167 0.68 1.40 Inconsistent ontology
propreo.l.66 46 20,402 20,544 Inconsistent ontology

thesaurus.l.66 8 5 2
Transportation.l.66 181 4 0.3

Mathematics 2020, 8, 154 12 of 16

Table 7 shows some information about the fuzzy ontologies in the Absorption dataset that could
not be considered: 29 ontologies did not have any individual and seven reached a timeout; in four
cases the timeout was not surprising as there were more than 25,000 individuals.

Table 7. Problems found in the Absorption dataset.

Ontology Name #Individuals Problem

AirSystem.l.66 0 No individuals
amino-acid.l.66 0 No individuals

atom-common.l.66 0 No individuals
biochemistry-complex.l.66 0 No individuals

chebi.l.66 487,944 Timeout (many individuals)
chemical.l.66 0 No individuals

chemistry-complex.l.66 0 No individuals
cton.l.66 0 No individuals

EMAP.obo.l.66 0 No individuals
FBbt_XP.l.66 25,148 Timeout (many individuals)

FMA.l.66 94,228 Timeout (many individuals)
galen-ians-full-doctored.l.66 0 No individuals
gene_ontology_edit.obo.l.66 0 No individuals

heart.l.66 0 No individuals
legal-action.l.66 0 No individuals

matchmaking.l.66 0 No individuals
mosquito_insecticide_resistance.obo..l.66 0 No individuals

mygrid-moby-service.l.66 0 No individuals
NCI.l.66 0 No individuals

norm.l.66 0 No individuals
ontology.l.66 0 No individuals

organic-compound-complex.l.66 0 No individuals
pathway.obo.l.66 0 No individuals

periodic-table-complex.l.66 0 No individuals
photography.l.66 46 Timeout

PRO.l.66 277,804 Timeout (many individuals)
reaction.l.66 27 Timeout

relative-places.l.66 0 No individuals
SIGKDD-EKAW.l.66 0 No individuals

so-xp.obo.l.66 0 No individuals
spatial.obo.l.66 0 No individuals

subatomic-particle-complex.l.66 0 No individuals
teleost_taxonomy.obo.l.66 0 No individuals

time-modification.l.66 0 No individuals
worm_phenotype_xp.obo.l.66 0 No individuals

yowl-complex.l.66 79 Timeout

Table 8 shows the results for the Fuzzy Beeri and Fuzzy Beerh
i ontologies. In this case, we show

the number of individuals, the running time (in s) for Beeri using the old algorithm and the new one,
the running time (in s) for Beerh

i using the new algorithm, and the number of objective dependent
variables to solve Beerh

i . The table does not include the number of variables to solve Beeri because
Ctwo_or_more was always empty and it was enough to solve a single MILP problem. Also, the table does
not show the time needed by the old algorithm to solve Beeri because it is very similar to the time to
solve the harder version Beerh

i . We show the results for a query involving an atomic concept, but we
also tried a complex concept obtaining a similar trend (see Appendix for details).

Similarly as for the Absorption dataset, we can observe that the new algorithm outperforms the
previous one, and the improvement gets more spectacular as the number of individuals grows. This is
illustrated in Figure 2. The three functions exhibit quadratic growth, but the new algorithms grow in a
notably slower way. We can also observe that when it is possible to solve a single MILP problem (in
Beeri), the running time of the new algorithm is much smaller than in the harder case (Beerh

i).

Mathematics 2020, 8, 154 13 of 16

Next, we did some experiments with inconsistent versions of the Beeri and Beerh
i fuzzy ontologies,

obtained by asserting that one the beer instances has two different alcohol levels. The results are
shown in Table 9. We can see that the old algorithm is faster than the new one, as with the Absorption
dataset. Furthermore, we can observe that the new algorithm performs similarly for Beeri and Beerh

i .
The reason is that although the hard versions of the ontologies require solving several optimization
problems; after one of them is found to be inconsistent there is no need to solve the remaining ones.
Furthermore, the problems solved by Beerh

i are smaller than the single problem solved by Beeri.

Table 8. Running time (s) for subsets of the Fuzzy Beer ontology.

Fuzzy Beeri Fuzzy Beerh
i

#Individuals Old (s) New (s) New (s) Comments

500 80 2 15 110 objective dependent variables
1000 432 6 125 212 objective dependent variables
2000 2719 23 1371 427 objective dependent variables
3000 8197 68 5155 641 objective dependent variables
4000 20,434 158 11,184 866 objective dependent variables
5000 36,128 263 18,329 1093 objective dependent variables

Figure 2. Running time for subsets of the Fuzzy Beer ontology.

Table 9. Running time (s) for subsets of the inconsistent Fuzzy Beer ontology.

Fuzzy Beeri Fuzzy Beerh
i

#Individuals Old (s) New (s) New (s)

500 1 2 2
1000 4 5 5
2000 13 22 21
3000 33 62 58
4000 75 121 130
5000 160 222 220

6. Conclusions and Future Work

Fuzzy description logics, the formalism behind fuzzy ontologies, are an important mathematical
method for many artificial intelligence scenarios requiring knowledge representation and automate
reasoning. In this paper, we have proposed two specific algorithms to solve two important reasoning
services given a fuzzy ontology, the instance retrieval and the realization problems. To the best of our
knowledge, this is the first work not repeating a (best entailment degree) test for all individuals or
concepts of the ontology.

Our approach is based on merging the optimization problems into three optimization problems
according to the number of variables to be optimized: zero, one, or more than one. The key is that
the first two problems can be solved just once. Furthermore, our experience shows that in practice,

Mathematics 2020, 8, 154 14 of 16

the latter problem is often empty, i.e., instance retrieval often leads to independent optimization
problems that can be merged to be solved as a single problem.

It is worth noting that the results of [20] involve reasoning tasks where just one optimization
problem needs to be solved. In such cases, splitting the optimization problem into several does not
decrease, in general, the running time. In this paper, however, we address problems that require
solving several (n) optimization problems. In realization, the basic algorithm requires as many tests
as atomic concepts in the ontology; in instance retrieval, as many tests as individuals in the ontology.
With our novel algorithm, we decrease the number of optimization problems, and in some particular
cases we are able to solve a single one.

Our approach has been implemented in the fuzzyDL fuzzy ontology reasoner and we performed
an empirical evaluation with several fuzzy ontologies, some of them with an important number
of individuals. Our experiments confirm that our novel algorithm to compute instance retrieval
outperforms the previous implementation in all cases involving consistent ontologies, and the
reduction of the reasoning time is more important as the number of individuals in the ontology
grows. Furthermore, in almost all cases, it was enough to solve a single optimization problem.
However, in inconsistent ontologies, the basic algorithm finds the inconsistency faster.

In future work we would like to test the instance retrieval with more fuzzy ontologies, either real
or artificial, with more dependent variables. In such cases, we would like to study the best strategy
to solve the optimization problems (i.e., merging all problems in Ctwo_or_more, solving all of them
independently, or using a hybrid approach). Furthermore, we would like to implement and evaluate
the realization algorithm as well.

Author Contributions: Conceptualization, I.H. and F.B.; methodology, I.H., J.B., and F.B.; software, I.H. and F.B.;
validation, I.H., J.B., and F.B.; investigation, I.H.; writing—original draft preparation, I.H. and F.B.; writing—review
and editing, I.H., J.B., and F.B.; visualization, I.H.; supervision, F.B. All authors have read and agreed to the published
version of the manuscript.

Funding: I.H. was partially funded by Universidad de Zaragoza—Santander Universidades (Ayudas de
Movilidad para Latinoamericanos—Estudios de Doctorado). I. Huitzil and F. Bobillo were partially supported by
the projects TIN2016-78011-C4-3-R and JIUZ-2018-TEC-02.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Appendix A. List of Queries

Ontology Query

cancer_my.l.66 WomanUnderIncreasedBRCRisk
earthrealm.l.66 IgeneousRock
Economy.l.66 ElectricDevice

fmaOwlDlComponent_1_4_0.l.66 Right_humerus
FuzzyBeer Lager
FuzzyBeer ∃ hasABV.LowABV

FuzzyWine.l.66 SweetWine
goslim.l.66 Cytoskeleton
GRO.l.66 BindingToProtein
lubm.l.66 Employee

people.fd.l.66 cat_liker
pizza.l.66 SpicyPizza

po.l.66 Person
process.l.66 Communications
propreo.l.66 HPLC_experimental_data_collection

thesaurus.l.66 astric_Body_Carcinoma
Transportation.l.66 Waterway

Mathematics 2020, 8, 154 15 of 16

References

1. Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; Patel-Schneider, P.F. The Description Logic Handbook:
Theory, Implementation, and Applications; Cambridge University Press: Cambridge, UK, 2003.

2. Cuenca-Grau, B.; Horrocks, I.; Motik, B.; Parsia, B.; Patel-Schneider, P.F.; Sattler, U. OWL 2: The Next Step
for OWL. J. Web Semant. 2008, 6, 309–322. [CrossRef]

3. Horrocks, I.; Kutz, O.; Sattler, U. The Even More Irresistible SROIQ. In Proceedings of the 10th International
Conference of Knowledge Representation and Reasoning (KR 2006), Lake District, UK, 2–5 June 2006; pp. 452–457.

4. Bobillo, F.; Cerami, M.; Esteva, F.; García-Cerdaña, À.; Peñaloza, R.; Straccia, U. Fuzzy Description Logics.
In Handbook of Mathematical Fuzzy Logic Volume III; Cintula, P., Fermüller, C., Noguera, C., Eds.; College
Publications: London, UK, 2015; Chapter XVI, Volume 58, pp. 1105–1181.

5. Sanchez, E. (Ed.) Capturing Intelligence. In Fuzzy Logic and the Semantic Web; Elsevier: Amsterdam,
The Netherlands, 2006; Volume 1.

6. Carlsson, C.; Brunelli, M.; Mezei, J. Decision making with a fuzzy ontology. Soft Comput. 2012, 16, 1143–1152.
[CrossRef]

7. Huitzil, I.; Alegre, F.; Bobillo, F. GimmeHop: A Recommender System for Mobile Devices using Ontology
Reasoners and Fuzzy Logic. Fuzzy Sets Syst. 2020. [CrossRef]

8. El-Sappagh, S.H.A.; Alonso, J.M.; Ali, F.; Ali, A.; Jang, J.; Kwak, K.S. An Ontology-Based Interpretable Fuzzy
Decision Support System for Diabetes Diagnosis. IEEE Access 2018, 6, 37371–37394. [CrossRef]

9. Dasiopoulou, S.; Kompatsiaris, I.; Strintzis, M.G. Investigating Fuzzy DLs-Based Reasoning in Semantic
Image Analysis. Multimed. Tools Appl. 2010, 46, 331–370. [CrossRef]

10. Martínez-Cruz, C.; van der Heide, A.; Sánchez, D.; Triviño, G. An approximation to the computational
theory of perceptions using ontologies. Expert Syst. Appl. 2012, 39, 9494–9503. [CrossRef]

11. Eich, M.; Hartanto, R.; Kasperski, S.; Natarajan, S.; Wollenberg, J. Towards Coordinated Multirobot Missions
for Lunar Sample Collection in an Unknown Environment. J. Field Robot. 2014, 31, 35–74. [CrossRef]

12. Huitzil, I.; Dranca, L.; Bernad, J.; Bobillo, F. Gait Recognition using Fuzzy Ontologies and Kinect Sensor
Data. Int. J. Approx. Reason. 2019, 113, 354–371. [CrossRef]

13. Rodger, J.A. A fuzzy linguistic ontology payoff method for aerospace real options valuation. Expert Syst.
Appl. 2013, 40, 2828–2840. [CrossRef]

14. Ali, F.; Kwak, D.; Khan, P.; El-Sappagh, S.H.A.; Ali, A.; Ullah, S.; Kim, K.; Kwak, K.S. Transportation sentiment
analysis using word embedding and ontology-based topic modeling. Knowl.-Based Syst. 2019, 174, 27–42.
[CrossRef]

15. Ali, F.; Islam, S.M.R.; Kwak, D.; Khan, P.; Ullah, N.; Yoo, S.; Kwak, K.S. Type-2 fuzzy ontology-aided
recommendation systems for IoT-based healthcare. Comput. Commun. 2018, 119, 138–155. [CrossRef]

16. Ali, F.; Kim, E.K.; Kim, Y. Type-2 fuzzy ontology-based opinion mining and information extraction:
A proposal to automate the hotel reservation system. Appl. Intell. 2015, 42, 481–500. [CrossRef]

17. Ali, F.; Khan, P.; Riaz, K.; Kwak, D.; AbuHmed, T.; Park, D.; Kwak, K.S. A Fuzzy Ontology and SVM-Based
Web Content Classification System. IEEE Access 2017, 5, 25781–25797. [CrossRef]

18. Bobillo, F.; Straccia, U. The fuzzy ontology reasoner fuzzyDL. Knowl.-Based Syst. 2016, 95, 12–34. [CrossRef]
19. Haarslev, V.; Pai, H.I.; Shiri, N. Optimizing Tableau Reasoning in ALC Extended with Uncertainty.

In Proceedings of the 20th International Workshop on Description Logics (DL 2007), Brixen/Bressanone,
Italy, 8–10 June 2007; Volume 250, pp. 307–314.

20. Bobillo, F.; Straccia, U. On Partitioning-Based Optimisations in Expressive Fuzzy Description Logics.
In Proceedings of the 24th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2015), Istanbul,
Turkey, 2–5 August 2015.

21. Straccia, U. Description Logics with Fuzzy Concrete Domains. In Proceedings of the 21st Conference on
Uncertainty in Artificial Intelligence (UAI 2005), Edinburgh, UK, 26–29 July 2005.

22. Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [CrossRef]
23. Klir, G.J.; Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications; Prentice-Hall, Inc.: Upper Saddle River,

NJ, USA, 1995.
24. Bobillo, F.; Straccia, U. Fuzzy Description Logics with General T-norms and Datatypes. Fuzzy Sets Syst. 2009,

160, 3382–3402. [CrossRef]

http://dx.doi.org/10.1016/j.websem.2008.05.001
http://dx.doi.org/10.1007/s00500-011-0789-x
http://dx.doi.org/10.1016/j.fss.2019.12.001
http://dx.doi.org/10.1109/ACCESS.2018.2852004
http://dx.doi.org/10.1007/s11042-009-0387-4
http://dx.doi.org/10.1016/j.eswa.2012.02.107
http://dx.doi.org/10.1002/rob.21491
http://dx.doi.org/10.1016/j.ijar.2019.07.012
http://dx.doi.org/10.1016/j.eswa.2012.12.001
http://dx.doi.org/10.1016/j.knosys.2019.02.033
http://dx.doi.org/10.1016/j.comcom.2017.10.005
http://dx.doi.org/10.1007/s10489-014-0609-y
http://dx.doi.org/10.1109/ACCESS.2017.2768564
http://dx.doi.org/10.1016/j.knosys.2015.11.017
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/j.fss.2009.03.006

Mathematics 2020, 8, 154 16 of 16

25. Stoilos, G.; Simou, N.; Stamou, G.; Kollias, S. Uncertainty and the Semantic Web. IEEE Intell. Syst. 2006, 21, 84–87.
[CrossRef]

26. Habiballa, H. Resolution Strategies for Fuzzy Description Logic. In Proceedings of the 5th Conference of
the European Society for Fuzzy Logic and Technology (EUSFLAT 2007), Ostrava, Czech Republic, 11–14
September 2007; Volume 2, pp. 27–36.

27. Konstantopoulos, S.; Apostolikas, G. Fuzzy-DL Reasoning over Unknown Fuzzy Degrees. In Proceedings of
the 3rd International Workshop on Semantic Web and Web Semantics (SWWS 07), Albufeira, Portugal, 25–30
November 2007; Volume 4806, pp. 1312–1318.

28. Bobillo, F.; Delgado, M.; Gómez-Romero, J. DeLorean: A Reasoner for Fuzzy OWL 2. Expert Syst. Appl. 2012,
39, 258–272. [CrossRef]

29. Wang, H.; Ma, Z.M.; Yin, J. FRESG: A Kind of Fuzzy Description Logic Reasoner. In Proceedings of the
20th International Conference on Database and Expert Systems Applications (DEXA 2009), Linz, Austria,
31 August–4 September 2009; Volume 5690, pp. 443–450.

30. Tsatsou, D.; Dasiopoulou, S.; Kompatsiaris, I.; Mezaris, V. LiFR: A Lightweight Fuzzy DL Reasoner. In Proceedings
of the 11th Extended Semantic Web Conference (ESWC 2014), Anissaras, Greece, 25–29 May 2014.

31. Alsinet, T.; Barroso, D.; Béjar, R.; Bou, F.; Cerami, M.; Esteva, F. On the Implementation of a Fuzzy DL Solver
over Infinite-Valued Product Logic with SMT Solvers. In Proceedings of the 7th International Conference on
Scalable Uncertainty Management (SUM 2013), Washington, DC, USA, 16–18 September 2013; Volume 8078,
pp. 325–330.

32. Bobillo, F.; Delgado, M.; Gómez-Romero, J. Crisp Representations and Reasoning for Fuzzy Ontologies.
Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2009, 17, 501–530. [CrossRef]

33. Bobillo, F.; Straccia, U. Generalizing Type-2 Fuzzy Ontologies and Type-2 Fuzzy Description Logics. Int. J.
Approx. Reason. 2017, 87, 40–66. [CrossRef]

34. Bobillo, F.; Straccia, U. A MILP-based decision procedure for the (Fuzzy) Description Logic ALCB.
In Proceedings of the 27th International Workshop on Description Logics (DL 2014), Vienna, Austria,
17–20 July 2014; Volume 1193, pp. 378–390.

35. Huitzil, I.; Straccia, U.; Díaz-Rodríguez, N.; Bobillo, F. Datil: Learning Fuzzy Ontology Datatypes.
In Proceedings of the 17th International Conference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems (IPMU 2018), Cádiz, Spain, 11–15 June 2018; pp. 100–112.

36. Bobillo, F.; Straccia, U. Fuzzy Ontology Representation using OWL 2. Int. J. Approx. Reason. 2011, 52, 1073–1094.
[CrossRef]

37. Bobillo, F.; Straccia, U. Optimising Fuzzy Description Logic Reasoners with General Concept Inclusions
Absorption. Fuzzy Sets Syst. 2016, 292, 98–129. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MIS.2006.105
http://dx.doi.org/10.1016/j.eswa.2011.07.016
http://dx.doi.org/10.1142/S0218488509006121
http://dx.doi.org/10.1016/j.ijar.2017.04.012
http://dx.doi.org/10.1016/j.ijar.2011.05.003
http://dx.doi.org/10.1016/j.fss.2014.10.029
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background on Fuzzy DLs
	Syntax
	Semantics
	Reasoning Tasks
	The fuzzyDL Reasoning Algorithm

	Realization in Fuzzy Ontologies
	Instance Retrieval in Fuzzy Ontologies
	Evaluation of the Instance Retrieval Algorithm
	Datasets
	Results

	Conclusions and Future Work
	List of Queries
	References

