A New Explicit Magnus Expansion for Nonlinear Stochastic Differential Equations
Abstract
:1. Introduction
2. The Nonlinear Stochastic Magnus Expansion
3. Numerical Schemes
3.1. Methods of Order 1/2
3.2. Methods of Order 1
4. Numerical Experiment for the Highly Oscillatory Nonlinear Stochastic Differential Equations
5. Application to the Stochastic Differential Equations with Boundary Conditions
6. Application to the Nonlinear Itô Scalar Stochastic Differential Equations
Cubic Stochastic Differential Equations
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tsiropoulou, E.E.; Vamvakas, P.; Papavassiliou, S. Joint utility-based uplink power and rate allocation in wireless networks: A non-cooperative game theoretic framework. Phys. Commun-Amst. 2013, 9, 299–307. [Google Scholar] [CrossRef]
- Rahman, A.; Mohammad, J.; AbdelRaheem, M.; MacKenzie, A.B. Stochastic resource allocation in opportunistic LTE-A networks with heterogeneous self-interference cancellation capabilities. In Proceedings of the 2015 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Stockholm, Sweden, 29 September–2 October 2015. [Google Scholar]
- Tsiropoulou, E.E.; Katsinis, G.K.; Papavassiliou, S. Utility-based power control via convex pricing for the uplink in CDMA wireless networks. In Proceedings of the 2010 European Wireless Conference, Lucca, Italy, 12–15 April 2010. [Google Scholar]
- Singhal, C.; De, S.; Trestian, R.; Muntean, G.M. Joint Optimization of User-Experience and Energy-Efficiency in Wireless Multimedia Broadcast. IEEE Trans. Mob. Comput. 2014, 13, 1522–1535. [Google Scholar] [CrossRef] [Green Version]
- Misawa, T. Numerical integration of stochastic differential equations by composition methods. Rims Kokyuroku 2000, 1180, 166–190. [Google Scholar]
- Burkardt, J.; Gunzburger, M.D.; Webster, C. Reduced order modeling of some nonlinear stochastic partial differential equations. Int. J Numer. Anal. Mod. 2007, 4, 368–391. [Google Scholar]
- Milstein, G.N.; Repin, M.; Tretyakov, M.V. Numerical methods for stochastic systems preserving symplectic structure. SIAM J. Number. Anal. 2002, 30, 2066–2088. [Google Scholar] [CrossRef]
- Malham, J.A.; Wiese, A. Stochastic Lie group integrators. SIAM J. Sci. Comput. 2008, 30, 597–617. [Google Scholar] [CrossRef] [Green Version]
- Chuluunbaatar, O.; Derbov, V.L.; Galtbayar, A. Explicit Magnus expansions for solving the time-dependent Schrödinger equation. J. Phys. A-Math. Theor. 2008, 41, 203–295. [Google Scholar] [CrossRef]
- Magnus, W. On the exponential solution of differential equations for a linear operator. Comm. Pure Appl. Math. 1954, 7, 649–673. [Google Scholar] [CrossRef]
- Casas, F.; Iserles, A. Explicit Magnus expansions for nonlinear equations. J. Phys. A Math. Gen. 2006, 39, 5445–5461. [Google Scholar] [CrossRef] [Green Version]
- Iserles, A.; Nørsett, S.P. On the solution of linear differential equations in Lie groups. Philos. Trans. Royal Soc. A 1999, 357, 983–1019. [Google Scholar] [CrossRef] [Green Version]
- Burrage, K.; Burrage, P.M. High strong order methods for non-commutative stochastic ordinary differential equation systems and the Magnus formula. Phys. D 1999, 33, 34–48. [Google Scholar] [CrossRef]
- Lord, G.; Malham, J.A.; Wiese, A. Efficient strong integrators for linear stochastic systems. SIAM J. Numer. Anal. 2008, 46, 2892–2919. [Google Scholar] [CrossRef] [Green Version]
- Kahl, C.; Schurz, H. Balanced Milstein Methods for Ordinary SDEs. Monte Carlo Methods Appl. 2006, 12, 143–170. [Google Scholar] [CrossRef]
- Moro, E.; Schurz, H. Boundary preserving semianalytic numerical algorithm for stochastic differential equations. SIAM J. Sci. Comput. 2017, 29, 1525–1540. [Google Scholar] [CrossRef] [Green Version]
- Donez, N.P.; Yurchenko, I.V.; Yasynskyy, V.K. Mean Square Behavior of the Strong Solution of a Linear non-Autonomous Stochastic Partial Differential Equation with Markov Parameters. Cybernet. Syst. 2014, 50, 930–939. [Google Scholar] [CrossRef]
- Jinran, Y.; Siqing, G. Stability of the drift-implicit and double-implicit Milstein schemes for nonlinear SDEs. AMC 2018, 339, 294–301. [Google Scholar]
- Kamont, Z.; Nadolski, A. Generalized euler method for nonlinear first order partial differential functional equations. Demonstr. Math. 2018, 38, 977–996. [Google Scholar]
- Połtowicz, J.; Tabor, E.; Pamin, K.; Haber, J. Effect of substituents in the manganese oxo porphyrins catalyzed oxidation of cyclooctane with molecular oxygen. Inorg. Chem. Communi. 2005, 8, 1125–1127. [Google Scholar] [CrossRef]
- Kloeden, P.E.; Platen, E. Numerical Solution of Stochastic Differential Equations; Springer-Verlag: New York, NY, USA, 1998. [Google Scholar]
- Milstein, G.N.; Planten, E.; Schurz, H. Balanced implicit methods for stiff stochastic systems. SIAM J. Numer. Anal. 1998, 35, 1010–1019. [Google Scholar] [CrossRef] [Green Version]
- Misawa, T.A. Lie algebraic approach to numerical integration of stochastic differential equations. SIAM J. Sci. Comput. 2001, 23, 866–890. [Google Scholar] [CrossRef]
- Kahl, C. Positive Numerical Integration of Stochatic Differential Equations. Master’s Thesis, Department of Mathematics, University of Wuppertal, Wuppertal, Germany, 2004. [Google Scholar]
- Higham, D.J.; Mao, X.R.; Yuan, C.G. Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations. SIAM J. Numer. Anal. 2014, 45, 592–609. [Google Scholar] [CrossRef] [Green Version]
Time | Stepsize | Euler | Milstein | BMM | NLM |
---|---|---|---|---|---|
T=1 | dT=1/2 | 27.35% | 22.12% | 0% | 0% |
dT=1/4 | 26.35% | 8.21% | 0% | 0% | |
dT=1/16 | 17.35% | 0.12% | 0% | 0% | |
T=4 | dT=1/2 | 69.35% | 53.45% | 0% | 0% |
dT=1/4 | 66.24% | 18.48% | 0% | 0% | |
dT=1/16 | 57.89% | 2.45% | 0% | 0% | |
T=16 | dT=1/2 | 98.67% | 94.25% | 0% | 0% |
dT=1/4 | 96.56% | 58.48% | 0% | 0% | |
dT=1/16 | 95.72% | 9.08% | 0% | 0% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Guan, X.; Yin, P. A New Explicit Magnus Expansion for Nonlinear Stochastic Differential Equations. Mathematics 2020, 8, 183. https://doi.org/10.3390/math8020183
Wang X, Guan X, Yin P. A New Explicit Magnus Expansion for Nonlinear Stochastic Differential Equations. Mathematics. 2020; 8(2):183. https://doi.org/10.3390/math8020183
Chicago/Turabian StyleWang, Xiaoling, Xiaofei Guan, and Pei Yin. 2020. "A New Explicit Magnus Expansion for Nonlinear Stochastic Differential Equations" Mathematics 8, no. 2: 183. https://doi.org/10.3390/math8020183
APA StyleWang, X., Guan, X., & Yin, P. (2020). A New Explicit Magnus Expansion for Nonlinear Stochastic Differential Equations. Mathematics, 8(2), 183. https://doi.org/10.3390/math8020183