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Abstract: In this paper, based on the iterative technique, a new explicit Magnus expansion is proposed
for the nonlinear stochastic equation dy = A(t, y)ydt + B(t, y)y ◦ dW. One of the most important
features of the explicit Magnus method is that it can preserve the positivity of the solution for the
above stochastic differential equation. We study the explicit Magnus method in which the drift term
only satisfies the one-sided Lipschitz condition, and discuss the numerical truncated algorithms.
Numerical simulation results are also given to support the theoretical predictions.

Keywords: explicit Magnus expansion; asymptotic stability; Stratonovich integral; Itô integral;
nonlinear stochastic equations

1. Introduction

Stochastic differential equations (SDE) have been widely applied in describing and understanding
the random phenomena in different areas, such as biology, chemical reaction engineering, physics,
finance and so on. The stochastic differential equations can also be applied in 5G wireless networks
to address the problem of joint transmission power [1,2], and the novel frameworks were showed
in [3,4]. However, in most cases, explicit solutions of stochastic differential equations are not easy to
get. Therefore, it is necessary and important to exploit the algorithms for the stochastic differential
equations. So far, there is a lot of literature on the numerical approximation of stochastic differential
equations [5,6]. One kind of approximation which aims to preserve the essential properties of
corresponding systems is getting more and more attention. For example, a conservative method
for stochastic Hamiltonian systems with additive and multiplicative noise [7], the stochastic Lie group
integrators [8]. In this paper, we will focus on the stochastic Magnus expansions [9].

As is well known, the deterministic Magnus expansion was first investigated by Magnus [10]
in 1960s. This topic was further pursued in [11,12]. With the development of stochastic differential
equations, the stochastic Magnus expansion got more and more attention when approximating
solutions of linear and nonlinear stochastic differential equations [13,14].

The linear stochastic differential equation is as follows

dY(t) = A(t)Ydt + B(t)Y ◦ dW(t), Y(0) = Y0, (1)

where A(t) and B(t) are n× n matrices, W(t) is the standard Wiener process, Y(t) is expressed by
Y(t) = exp(Ω(t))Y0, where Ω(t) can be represented by an infinite series Ω(t) = ∑∞

k=1 Ωk(t), whose
terms are linear combinations of multiple stochastic integrals.
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For example, the first two terms are as follows,

Ω1(t) =
∫ t

o
A(t1)dt1 +

∫ t

0
B(t1) ◦ dW(t1), (2)

Ω2(t) =
1
2

∫ t

0
dt1

∫ t1

0
dt2[A(t1), A(t2)] +

1
2

∫ t

0
dt1

∫ t1

0
◦dW(t2)[A(t1), B(t2)]

+
1
2

∫ t

0
◦dW(t1)

∫ t1

0
dt2[B(t1), A(t2)] +

1
2

∫ t

0
◦dW(t1)

∫ t1

0
◦dW(t2)[B(t1), B(t2)],

(3)

where [X, Y] = XY−YX is the matrix commutator of X and Y.
In this paper, we design explicit stochastic Magnus expansions [9] for the nonlinear equation

dy = A(t, y)ydt + B(t, y)y ◦ dW, y(t0) = y0 ∈ G, (4)

A, B : R+ × G → g,

where G denotes a matrix Lie group, and g is the corresponding Lie algebra of G. The Equation (4) has
lots of applications in the calculation of highly oscillatory systems of stochastic differential equations,
Hamiltonian dynamics and finance engineering. It is necessary to construct efficient numerical
integrators for the above equation. The general procedure of devising Magnus expansions for the
above stochastic Equation (4) was obtained by applying Picard’s iteration to the new derived stochastic
differential equation with the Lie algebra, which is an extension of the stochastic case [11]. G. Lord, J.A.
Malham and A.wiese [14] proposed the stochastic Magnus integrators using different techniques.

With the application of the stochastic Magnus methods, we can recapture some main features of
the stochastic differential Equations (4) successfully. When Equation (4) is used to describe the asset
pricing model in finance, the positivity of the solution is a very important factor to be maintained
in the numerical simulation. This task can be accomplished by the nonlinear Magnus methods.
We also notice that lots of works [15,16] have dealt with this issue using the methods of balancing and
dominating. However, the Magnus methods using the Lie group methods are essentially different
from the aforementioned methods. If Equation (4) has an almost sure exponential stable solution,
it is necessary to construct numerical methods to preserve this property. The numerical methods
which preserve the exponential stability usually have long-time numerical behavior. We prove that
the explicit Magnus methods succeed in reproducing the almost sure exponential stability for the
stochastic differential Equation (4) with a one-sided Lipschitz condition. Numerical simulation results
are also given to support the theoretical predictions.

This paper is organized as follows. We introduce and discuss the nonlinear Magnus in Section 2.
The numerical truncated algorithms are discussed in Section 3. Then several numerical applications
and experiments strongly support the theoretical analysis. In Section 4, we present the applications in
the highly oscillating nonlinear stochastic differential equations. Section 5 consists of the simulations
of processes for the dynamic asset pricing models. In Section 6, we show that the explicit Magnus
simulation can preserve the almost sure stability and numerical experiments are presented to support
the analysis.

Notation
In this paper, (Ω,F , {Ft}t≥0,P) is the complete probability space with the filtration {Ft}t≥0.

W(t) is the scalar Brownian motion defined on the probability space. ◦dW(t) denotes the Stratonovich
integral and dW(t) denotes the Itô integral. [X, Y] = XY − YX is the matrix commutator of X and
Y. A and B are n× n matrices and smooth in the domain, W(t) is the standard Wiener process and
E|y0|2 <∝.

2. The Nonlinear Stochastic Magnus Expansion

In this section, we consider a stochastic differential Equation (4).
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Here, A and B have uniformly bounded partial derivatives, A(t, y)y and B(t, y)y satisfy the global
Lipschtiz conditions. Therefore, Equation (4) has a unique strong solution [17].

The solution of Equation (4) is presented as follows

Y(t) = exp(Ω(t))Y0, (5)

and
dΩ(t) = Ω1(t)dt + Ω2(t) ◦ dW. (6)

Combining (5) with (4), we have

dY = A(t, Y)Ydt + B(t, Y)Y ◦ dW(t) = d exp(Ω(t))Y0 =
∞

∑
k=1

1
k!

k

∑
j=1

Ω(t)j−1dΩ(t)Ω(t)k−jY0. (7)

Equation (7) holds since the integral is in the Stratnovitch sense.
Inserting (6) into (7), we can get

∞

∑
k=1

1
k!

k

∑
j=1

Ω(t)j−1Ω1(t)Ω(t)k−j = A(t, exp(Ω(t))Y0) exp(Ω(t)), (8)

∞

∑
k=1

1
k!

k

∑
j=1

Ω(t)j−1Ω2(t)Ω(t)k−j = B(t, exp(Ω(t))Y0) exp(Ω(t)). (9)

According to Equation (8), we obtain

A(t, exp(Ω(t))Y0) =
∞

∑
k=1

1
k!
(

k

∑
j=1

Ω(t)j−1Ω1(t)Ω(t)k−j) exp(−Ω(t))

=
∞

∑
k=1

1
k!
(

k

∑
j=1

Ω(t)j−1Ω1(t)Ω(t)k−j)[
∞

∑
l=0

(−1)l

l!
Ω(t)l ]

=
∞

∑
l=1

(−1)l

l!

l

∑
j=1

[
l

∑
k=j

(−1)k

(
l
k

)
]Ω(t)j−lΩ1(t)Ω(t)l−j.

(10)

It is not difficult to check that

l

∑
k=j

(−1)k

(
l
k

)
= (−1)j

(
l − 1
j− 1

)
, (11)

and

ad[(Ω(t))l , Ω1(t)] =
l

∑
j=0

(−1)l−j

(
l
j

)
Ω(t)jΩ1(t)Ω(t)l−j, l ∈ Z+, (12)

where ad[p0, q] = q and ad[pk, q] = [p, ad[pk−1, q]] for k ∈ N.
Then it is true that

∞

∑
l=0

1
(l + 1)!

ad[Ω(t)l , Ω1(t)] = A(t, exp(Ω(t))Y0), (13)

∞

∑
l=0

1
(l + 1)!

ad[Ω(t)l , Ω2(t)] = B(t, exp(Ω(t))Y0). (14)
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Equations (13) and (14) indicate that

Ω1(t) =
∞

∑
m=0

fmad[Ωm, A(t, exp(Ω(t))Y0)], (15)

Ω2(t) =
∞

∑
m=0

fmad[Ωm(t), B(t, exp(Ω(t))Y0)], (16)

where

d(z) =
exp(z)− 1

z
,

fm =
∞

∑
m=0

fmzm =
1

d(z)
.

Finally, we get

dΩ(t) =
∞

∑
m=0

fmad[Ωm(t), A(t, exp(Ω(t))Y0)]dt

+
∞

∑
m=0

fmad[Ωm(t), B(t, exp(Ω(t))Y0)] ◦ dW(t).
(17)

Then, applying the Picard’s iteration to (17), we obtain

Ω(m+1)(t) =
∫ t

0

∞

∑
k=0

Bk
k!

ad[Ωm(t)k, A(s, exp(Ωm(t))Y0)]ds

+
∫ t

0

∞

∑
k=0

Bk
k!

ad[Ωm(t)k, B(s, exp(Ωm(t))Y0)] ◦ dW(s), m ≥ 0.
(18)

In order to get explicit numerical methods which can be implemented in the computer, we need to
truncate the infinite series in (18). The iterate function series Ω(m+1)(t) only reproduce the expansion
of the solution Ω(t) up to certain orders in the mean-square sense.

For example, if m = 0, we obtain

Ω1(t) =
∫ t

0
A(s, Y0)ds +

∫ t

0
B(s, Y0) ◦ dW(s) = Ω(t) +O(t). (19)

From
A(s, exp(Ω1(s))Y0) = A(0, Y0) +O(s),

B(s, exp(Ω1(s))Y0) = B(0, Y0) +O(s),

we can get

−1
2

∫ t

0
[Ω1(s), A(s, exp(Ω1(s))Y0)]ds = O(t3),

−1
2

∫ t

0
[Ω1(s), B(s, exp(Ω1(s))Y0)] ◦ dW = O(t2.5).

Finally, we devise the following general Magnus expansion

Ω1(t) =
∫ t

0
A(s, Y0)ds +

∫ t

0
B(s, Y0) ◦ dW(s), (20)
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Ωm(t) =
m−2

∑
k=0

∫ t

0
ad[Ω(m−1)(t)

k
, A(s, exp(Ω(m−1)(t))Y0)]ds

+
m−2

∑
k=0

∫ t

0
ad[Ω(m−1)(t)

k
, B(s, exp(Ω(m−1)(t))Y0)] ◦ dW(s).

(21)

Obviously, Equation (21) consists of a linear combination of multiple stochastic integrals of nested
commutators. It is easy to prove that Ωm(t) succeeds in reproducing the sum of the Ω(t) series with
the Magnus expansion. This scheme is called an explicit stochastic Magnus expansion for the nonlinear
stochastic differential equation.

Remark 1. We let Ω(t) be the exact solution of the problem (17) and Ωm(t) be the approximate solution given
by (21).

It is true that
Ω(t)−Ωm(t) = O(t

m
2 ), (22)

we can write the exact solution of Equation (17) as

Ω(t) =
∞

∑
l=1

∑
J=(i1,i2,··· ,il),ik∈(0,1)

∫
∆J [0,t]

◦dW Jω J .

where ω(0) = A(Y0), ω(1) = B(Y0), dW J = dWi1 ◦ dWi2 · · · ◦ dWil , and

dWij =

{
dt, ij = 0,

dW, ij = 1.

Ω(t)−Ωm(t) =
∞

∑
l=m+1

∑
J=(i1,i2,··· ,il),ik∈(0,1)

∫
∆J [0,t]

◦dW Jω J .), (23)

The general Magnus expansion is

Ωm(t) =
m−2

∑
k=0

∫ t

0
ad[Ω(m−1)(t)

k
, A(s, exp(Ω(m−1)(t))Y0)]ds

+
m−2

∑
k=0

∫ t

0
ad[Ω(m−1)(t)

k
, B(s, exp(Ω(m−1)(t))Y0)] ◦ dW(s)

.
Comparing the Taylor expansion of the Ωm(t) with the expansion of Ω(t) [12], the conclusion is proven.

3. Numerical Schemes

In this section, we present a new way of constructing efficient numerical methods based on
the nonlinear stochastic Magnus expansion. It should be mentioned that highly efficient schemes
always involve multiple stochastic integrals. In most cases, however, the half-order approximation of
Ω1(t) (21) can only be exactly evaluated. In order to get higher order integrator, more complicated
multiple stochastic integrals, which are hard to approximate, must be included.

We will investigate the schemes of order (mean-square order) 1/2 and 1 concretely, and choose
the quadrature rules with equispaced points along the interval [tn, tn + h].

3.1. Methods of Order 1/2

When m = 1, the expansion (21) turns into

Ω1(t) =
∫ t

tn
A(s, Yn)ds +

∫ t

tn
B(s, Yn) ◦ dW(s). (24)
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Using the Taylor formula, we can get the expansion of the solution

y(tn + h) = y(tn) + A(tn, y(tn))y(tn)h + B(tn, y(tn))y(tn)∆Wn + R1
n, (25)

and the approximate solution can be expanded in the following form

ȳ(tn + h) = exp(Ω1(tn + h))y(tn) = y(tn) + A(tn, y(tn))y(tn)h + B(tn, y(tn))y(tn)∆Wn + R2
n, (26)

where,

R2
n =

∫ tn+h

tn

∫ s

tn

∂A
∂t

ds1ds +
∫ tn+h

tn

∫ s

tn

∂B
∂t

ds1 ◦ dW(s) + B(tn, y(tn))
2∆W2

n +O(h3/2).

It is easy to check that
E|y(tn + h)− ȳ(tn + h)| = O(h3/2),

(E|y(tn + h)− ȳ(tn + h)|2)1/2 = O(h1).

According to the Milstein mean-square convergence theorem [18], the strong convergence order
is 1/2.

Remark 2. If Ω1(t) cannot be evaluated exactly, we need to approximate it with a quadrature rule of order 1/2.

For example, using the Euler method (see reference [19]), we can get

Ω1(t) = A(tn, Yn)∆t + B(tn, Yn)∆W(t). (27)

Notice that other numerical methods can also be used to approximate (24). we can get the strong
convergence order is 1/2.

3.2. Methods of Order 1

When m = 2, the expansion (21) becomes

Ω1(t) =
∫ t

tn
A(s, Yn)ds +

∫ t

tn
B(s, Yn) ◦ dW(s), (28)

Ω2(t) =
∫ t

tn
A(s, exp(Ω1(s))Yn)ds +

∫ t

tn
B(s, exp(Ω1(s))Yn) ◦ dW(s). (29)

The proof of the convergence order is the same as the method of order 1/2.

Remark 3. Note that if (28) can be computed exactly, all that is required is to replace (29) with a quadrature of
order 1. Using the stochastic Taylor expansion, we approximate Ω2(t) in the following way

Ω2(t) = A(tn, Yn)∆t + B(tn, Yn)∆W(t) +
∂B
∂y

(tn, Yn)B(tn, Yn)Yn∆W(t)2/2. (30)

As a matter of fact, there is no need to compute (28) or (29) exactly. If we approximate (28) or (29) with the
methods of order 1,

Ω1(t) = A(tn, Yn)∆t + B(tn, Yn)∆W(t).

The convergence order will also be order 1.
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4. Numerical Experiment for the Highly Oscillatory Nonlinear Stochastic Differential Equations

We consider the following stochastic system

dy = A(t, y)ydt + B(t, y)y ◦ dW, y(0) = y0, (31)

where A and B are matrices, W is the Wiener process. It is supposed that the solution of (31)
oscillates rapidly.

If A and B are commutative, in order to compute the value of y(t), a new Z(x) is considered,

y(tn + x) = exp(xA(tn, yn) + W(x)B(tn, yn))Z(x). (32)

yn ≈ y(tn), tn+1 = tn + h, (33)

and
dZ(x) = A(x, Z(x))Z(x)dx + B(x, Z(x))Z(x) ◦ dW(x), Z(0) = yn, (34)

A(x, Z(x)) = F−1(x)[A(tn + x, F(x)Z(x))− A(tn, yn)]F(x), (35)

B(x, Z(x)) = F−1(x)[B(tn + x, F(x)Z(x))− B(tn, yn)]F(x), (36)

where F(x) = exp[xA(tn, yn) + W(x)B(tn, yn)], B(0, Z(0)) = 0.
We can consider Z(x) as a correction of the solution provided by Ω[1]. For this reason,

if Equation (34) is solved by the method of the nonlinear Magnus expansion, the errors corresponding
will be much smaller than the previous algorithms [13,14].

When A and B are not commutative with each other, we have [20]

y(tn + x) = exp(xA(tn, yn)) exp(W(x)B(tn, yn))Z1(x), (37)

and

dZ1(x) = A1(x, Z1(x))Z1(x)dx + B1(x, Z1(x))Z1(x) ◦ dW(tn + x)

− B2(x, Z1(x))Z1(x) ◦ dW(x), Z1(0) = yn,
(38)

with
A1(x, Z1(x)) = F−1

1 (x)[A(tn + x, F1(x)Z1(x))− A(tn, yn)]F1(x), (39)

B1(x, Z1(x)) = F−1
1 (x)[B(tn + x, F1(x)Z1(x))]F1(x), (40)

B2(x, Z1(x)) = F−1
1 (x)[B(tn, F1(x)Z1(x))]F1(x), (41)

here, F1(x) = exp(xA(tn, yn)) exp(W(x)B(tn, yn)).
To illustrate the main feature of the nonlinear modified Magnus expansion, we consider a system

ÿ + a(t, y, ẏ)y + b(t, y, ẏ)yẆ = 0, (42)

where, W is the standard Wiener process.

If ẏ = x, Equation (42) becomes

dZ = A(t, Z)Zdt + B(t, Z)Z ◦ dW, (43)

Z = (y, y
′
)T ,

A(t, Z) =

(
0 1

−a(t, Z) 0

)
,
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B(t, Z) =

(
0 0

−b(t, Z) 0

)
.

It is easy to check that A and B are not commutative. By the use of the scheme (37), we obtain the
following scheme

exp(xA(tn, Zn)) =

(
cos(xθn) θ−1

n sin(xθn)

−θn sin(xθn) cos(xθn)

)
,

exp(W(x)A(tn, Zn)) =

(
1 0

−w(x)b(tn, Zn) 1

)
,

F1(x) =

(
cos(xθn)−W(x)θ−1

n b(tn, Zn) sin(xθn) θ−1
n sin(xθn)

−θn sin(xθn)−W(x)b(tn, Zn) cos(xθn) cos(xθn)

)
,

F−1
1 (x) =

(
cos(xθn)−W(x)θ−1

n b(tn, Zn) sin(xθn) −θ−1
n sin(xθn)

θn sin(xθn) + W(x)b(tn, Zn) cos(xθn) cos(xθn)

)
,

and

dZ1(x) = A1(x, Z1(x))Z1(x)dx + B1(x, Z1(x))Z1(x) ◦ dW(tn + x)

− B2(x, Z1(x))Z1(x) ◦ dW(x), Z1(0) = yn,
(44)

where Ā1, B̄1, B̄2 are computed by (39), (40), (42) and θn =
√

a(tn, Zn).
Applying the scheme (27) to Equation (44), we get the algorithm

Z1(x) = exp(B(tn, yn)(W(tn + x)−W(tn)) + B(tn, yn)∆W(x))yn. (45)

Then, inserting (45) into (37), we can get the one-step approximate algorithm.
In Figure 1, we can see that the two points (±1, 0) initially attract the noisy trajectories, and after

some time, the trajectories switch to the other point which coincides with the tunneling phenomena
described in [21].

−2 −1 0 1 2 3 4
−10

−5

0

5

10

(a)Phase plane for NLM

0 2 4 6
−2

−1

0

1

2

3

4

(b)Displacement−time plot
0 2 4 6

−10

−5

0

5

10

(c)Velocity−time plot

Figure 1. The numerical scheme for the stochastic Duffing-Van der Pol oscillator equation with the
nonlinear Magnus method (NLM), ẍ + ẋ − (1− x2)x = 2xξ, x(0) = −2, ẋ(0) = 6. The stepsize is
h = 2−4.
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5. Application to the Stochastic Differential Equations with Boundary Conditions

In this section, we will deal with the Itô-type stochastic differential equation

dx(t) = f (x(t))dt + σ(x(t))dw(t), x(0) = x0 ∈ D, (46)

we assume Equation (46) is well-defined with a certain boundary condition, that is, x(t) lies in the
domain D.

There are lots of works on the efficient approximate solution of (46) [15,16,22]. Most of them use
the balancing or dominating technique to restrict the numerical solution to stay in the domain. In this
paper, the proposed explicit nonlinear Magnus methods based on the stochastic Lie group are efficient
at approximating the solutions of stochastic differential Equations (46) with unattainable boundary
conditions. Our methods are really different from the methods proposed in [23].

In the following, we will approximate two types of finance models using the nonlinear stochastic
Magnus methods.

Firstly, we study the financial model defined as:

dX(t) = a(b− X(t))dt + σXrdw(t). (47)

This model has been widely used in financial engineering. For example, when 2ab > σ2, r = 1
2 ,

the solution is strictly positive. As well known, the traditional Euler method fails to preserve the
positivity of the solution. We also notice that several methods such as the balanced implicit method
(BIM) [22] have been proposed. The explicit or implicit Milstein method needs stepsize control [24].
In the following, we show that the nonlinear Magnus methods preserve the positivity independent of
the stepsize.

For Equation (47), its equivalent Stratonovich form is defined as:

dX(t) = [a(b− X(t))− rσ2

2
X2r−1]dt + σXr ◦ dw(t). (48)

To simulate the above equation, we split the system (48) into two subsystems

dX1(t) = −aX1(t)dt + σX1(t)r ◦ dw(t), (49)

and

dX2(t) = [ab− rσ2

2
X2r−1

2 ]dt. (50)

The system (49) is simulated with the nonlinear stochastic Magnus method and (50) is
approximated with Euler method.

Combining the nonlinear Magnus method (27) and the Euler method, we obtain one step method
on the interval [tn, tn+1]

Ω1
n+1 = −a∆tn + ∆w(h)

σ

(Xn
1 )

r−1 ,

Xn+1
1 = exp(Ω1

n+1)Xn
1 ,

Xn+1
2 = Xn+1

1 + (ab− rσ2

2
(Xn+1

1 )2r−1)∆tn.

(51)

In the numerical experiments, we use the scheme (51) to simulate the financial models.
When r = 0.5, it is the famous interest rate model of Cox, Ingeesoll, and Ross (for more detail, see [16]).

Table 1 illustrates that both the Euler and the Milstein methods have a certain percentage of
negative paths. When the stepsize decreases, the number of negative paths also decreases. However,



Mathematics 2020, 8, 183 10 of 17

the nonlinear Magnus method (NLM) is as good as the balanced Milstein method (BMM) preserving
the positivity of the solution independent of time interval [0, T] and the time stepsize dT.

Table 1. Numerical simulation for the equation dX(t) = (1− X(t))dt + 1.4
√

X(t)dW(t), the time
interval: [0, T], stepsize: dT, weight functions of balanced Milstein method (BMM): d0(x) = 1 + 0.5 ∗
1.42, d1(x) = 0, the number of simulated paths: 1500.

Time Stepsize Euler Milstein BMM NLM

T=1 dT=1/2 27.35% 22.12% 0% 0%

dT=1/4 26.35% 8.21% 0% 0%

dT=1/16 17.35% 0.12% 0% 0%

T=4 dT=1/2 69.35% 53.45% 0% 0%

dT=1/4 66.24% 18.48% 0% 0%

dT=1/16 57.89% 2.45% 0% 0%

T=16 dT=1/2 98.67% 94.25% 0% 0%

dT=1/4 96.56% 58.48% 0% 0%

dT=1/16 95.72% 9.08% 0% 0%

In Figures 2 and 3, we present the numerical simulations for two finance equations. We can see
that both the Euler and the Milstein methods fail to preserve the positivity. However, the NLM is as
good as the BMM and the BIM at preserving the positivity of the solution.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time:t

x(
t)

Exaple:dx=1−xdt+1.4sqrt(x)dw(t)

 

 
BMM
Euler
Milstein
NLM

Figure 2. Numerical simulation for the equation: dx = (1− x)dt + 1.4
√

xdW, the time interval: [0,4],
the stepsize: dt = 0.5, a = 1, b = −1, σ = 1.4, a ≥ σ2/2.
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x(
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NLM
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Figure 3. Numerical simulation for the equation: dx = (1− x)dt + 1.4xdW, the time interval: [0,4],
the stepsize: dt = 0.5, a = 1, b = −1, σ = 1.4.

In Figure 4, we see that the explicit NLM which is of the order 1/2 in mean square sense verifies
the analysis in Section 3. In Figure 5, we can see clearly that the simulation is of the order 1 in mean
square sense with the linear model, which is the same order as in the BMM.
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E
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computational Error:dx=1−xdt+1.4sqrt(x)dw(t)

 

 

EM
NLM
Reference line of slope 1/2

Figure 4. L2-error for the equation: dx = (1− x)dt + 1.4
√

xdW. The time interval: [0, 1], the number
of simulated paths: 1000.
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Figure 5. L2-error for the equation: dx = (1− x)dt + 1.4xdW. The time interval: [0, 1], the number of
simulated paths: 1000.

6. Application to the Nonlinear Itô Scalar Stochastic Differential Equations

In this part, we will focus on the nonlinear Itô scalar stochastic differential equation

dy = a(y)ydt + σydW(t), (52)

where σ is independent of y. The Equation (52) satisfies the following conditions

|a(y)| ≤ Ki, ∀y ∈ R with |y| ≤ i, (53)

and

− λ = sup
y∈R,y 6=0

(a(y)− σ2

2
) < 0. (54)

For convenience, we transform it into its Stratonovich form

dy = (a(y)− σ2/2)ydt + σy ◦ dW(t). (55)

Theorem 1. Suppose that (52) satisfies (53) and (54), then the solution of (52) obeys

lim
t−>∞

sup
1
t

log |y(t)| ≤ −λ a.s. (56)

Proof. According to the Itô Taylor formula, we have

log(y2) = log(y(0)2) +
∫ t

0
2σ2dW(s)

+
∫ t

0
2(a(y)− σ2/2)dt.

(57)

It is easy to prove that

lim
t−>∞

∫ t
0 2σ2dW(s)

t
= 0, a.s. (58)
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By the use of the condition (54), we obtain

log(y(t)2)

2t
≤ log(y(0)2)

2t
+

∫ t
0 2σ2dW(s)

2t
− λ. (59)

Let t− > ∞, (56) is proven.
It means that the solution of the stochastic differential equation is almost surely stable.
In the following, we will approximate the model using the nonlinear stochastic Magnus methods.
Applying (27) to Equation (55), we can get the approximation Yk ≈ Y(k∆t) with Y0 = y(0),

Yk+1 = exp((a(Yk)− σ2/2)∆t + σ∆Wn)Yk, (60)

∆Wn = W((n + 1)∆t)−W(n∆t).

Theorem 2. Suppose that (52) satisfies (53) and (54), for any ∆t, the scheme (60) satisfies

lim
t−>∞

sup
1

k∆t
log |Yk| ≤ −λ, a.s. (61)

Proof. By using of the scheme (60), we get

Yn+1 = exp(
n

∑
i=0

(a(Yi)− σ2/2) + σW(n∆))Y0, (62)

log |Yn+1| = log |Y0|+
n

∑
i=0

log exp((a(Yi − σ2/2))∆t) + log exp(σW(n∆t))

≤ log |Y0|+
n

∑
i=0

log exp(−λ∆t) + σW(n∆t).
(63)

Based on (63), we can get

lim
t−>∞

sup
1

(n + 1)∆t
log |Yn+1| ≤ log |Y0|/((n + 1)∆t)− λ + σW(n∆t)/((n + 1)∆t)

≤ −λ.
(64)

Then the theorem is proven.
We prove that the proposed Magnus method succeeds in preserving the exponential stability

which is independent of the time-step size.

Cubic Stochastic Differential Equations

For the cubic stochastic differential equation with the form

dx(t) = (x(t)− x(t)3)dt + 2x(t)dw(t). (65)

We can get [25]

lim
t−>∞

sup
1
t

log |x(t)| ≤ −1 a.s. (66)
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Equation (66) implies that the solution has asymptotic stability. It is well-known that the EM
method fails to preserve this property (see reference [25]).

Applying (27) to Equation (65), we get the one-step nonlinear Magnus scheme

Xn+1 = exp((−1− X2
n)∆t + 2∆Wn)Xn. (67)

Theorem 3. Let ∆t be any stepsize, the scheme (67) satisfies

lim
n−>∞

log |Xn|
n∆t

≤ −1. (68)

Proof. According to (67), we get

Xn+1 = exp(
i=n

∑
i=0

(−1− X2
i )∆t + 2W(n∆t))X0. (69)

(69) implies

1
(n + 1)∆t

log(|Xn+1|) = [log |X0|+
i=n

∑
i=0

log exp((−1− X2
i )∆t) + 2W(n∆t)]/((n + 1)∆t)

=
log |X0|
(n + 1)∆t

+
i=n

∑
i=0

(−1− X2
i )/(n + 1) + 2W(n∆t)/((n + 1)∆t)

=
log |X0|
(n + 1)∆t

− 1− ∑i=n
i=0 X2

i
n + 1

+ 2W(n∆t)/((n + 1)∆t

≤ log |X0|
(n + 1)∆t

− 1 + 2W(n∆t)/((n + 1)∆t.

(70)

lim
n−>∞

2W(n∆t)/((n + 1)∆t = 0, a.s,

it follows

lim
n−>∞

log |Xn|
n∆t

≤ −1. (71)

Equation (68) is obtained. Almost sure exponential stability analysis which is independent of the
time-step size is proven.

In Figure 6, a single trajectory is simulated using the Euler method and the proposed NLM,
respectively. One can see that the Euler method fails to preserve the asymptotic stability. However,
the NLM can exactly preserve this property.
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Figure 6. Numerical simulation for the equation: dx = (x− x3)dt + xdW(t). The time interval: [0,10],
the stepsize: dt = 0.1, the initial value: X(0) = 1.

In Figure 7 and 8, we simulate the function log |x(t)|/t using the NLM. As proved in theorem
6.11, the property (68) can be exactly preserved independent of the stepsize.
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Figure 7. Numerical simulation of log |x(t)|/t for the equation: dx = (x − x3)dt + xdW(t).
The time-interval: [0,500], the stepsize: dt = 0.1, the initial value: X(0) = 1.
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Figure 8. Numerical simulation of log |x(t)|/t for the stochastic differential equation: dx = (x −
x3)dt + xdW(t). The time interval: [0,500], the stepsize: dt = 0.5, the initial value X(0) = 1.

7. Conclusions

In this paper, we introduce the nonlinear Magnus expansion and present a new way of
constructing numerical Magnus methods. Based on the new Magnus method, we discuss the numerical
truncated algorithms, and prove that the errors of the corresponding approximations will be smaller
than the previous algorithms. Several numerical applications and experiments strongly support the
theoretical analysis. For more applications of the new Magnus method, we believe that they can be
applied to the semi-discretized stochastic partial differential equations such as stochastic Korteweg–de
Vries equations.
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