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1. Introduction

Tensor eigenvalue problems play an important role in numerical multilinear algebra [1–7],
and they have a wide range in medical resonance [8], imaging spectral hypergraph theory [9],
automatical control [10–13]. Particularly, the eigenvalue problem of the fourth-order elastic
modulus tensor was dealt with by Love for the isotropic tensor [14] and for the anisotropic
tensor [15–21]. A fourth-order real tensor A = (aijkl) is called a partially symmetric tensor, denoted by
A = (aijkl) ∈ E4,n, if

aijkl = ajikl = aijlk, i, j, k, l ∈ N = {1, 2, . . . , n}. (1)

A fourth-order partially symmetric tensor is useful in nonlinear elastic material analysis [3,16–27].
Ostrosablin [16] first constructed a complete system of eigentensors for the fourth rank tensor of elastic
modulus, and Nikabadze [18] generalized these results and constructed a full system of eigentensors
for a tensor of any even rank, as well as a complete system of eigentensor-columns for a tensor-block
matrix of any even rank [22,23]. For example, a fourth-order partially symmetric tensor with n = 2
or 3, called the elasticity tensor, can be used in the two/three-dimensional field equations for a
homogeneous compressible nonlinearly elastic material for static problems without body forces [27].
To identify the strong ellipticity in elastic mechanics, Han et al. [25] introduced M-eigenvalues of a
fourth-order partially symmetric tensor. For λ ∈ R, x, y ∈ Rn, if

A · xy2 = λx
Ax2y· = λy
x>x = 1
y>y = 1,

(2)
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where (A · xy2)i = ∑
j,k,l∈[n]

aijkl xjykyl , (Ax2y·)l = ∑
i,j,k∈[n]

aijkl xixjyk, then the scalar λ is called an

M-eigenvalue of the tensor A, and x and y are called left and right M-eigenvectors of A associated
with the M-eigenvalue. Then the M-spectral radius of A is denoted by

ρM(A) = max{|λ| : λ ∈ σM(A)}.

Recently, tensors with special structures, such as nonnegative tensors, M-tensors and
H-tensors, are becoming the focus in recent research [2,24,28–31]. Some effective algorithms
for finding eigenvalue and the corresponding eigenvector have been implemented [1,24,32–35].
For example, Bozorgmanesh et al. [32] propose an algorithm that can solve E-eigenvalue problem
faster. However, it is very difficult for these algorithms to compute all M-eigenvalues or
E-eigenvalues. Thus, some researchers turned to investigating eigenvalue inclusion sets [4,7,36–41].
Particularly, some bounds for the minimum H-eigenvalue of nonsingular M-tensors have been
proposed [2,28,30,42,43]. Ding et al. [24] introduced a structured partially symmetric tensor named
elasticity M-tensors and established important properties of elasticity M-tensors and nonsingular
elasticity M-tensors.

Definition 1. A ∈ E4,n is called an elasticity M-tensor if there exist a nonnegative tensor B ∈ E4,n and a real
number s ≥ ρM(B) such that

A = sIM −B,

where ρM(B) is the M-spectral radius and IM = (eijkl) ∈ E4,n is called elasticity identity tensor with its entries

eijkl =

{
1, if i = j and k = l
0, otherwise,

Furthermore, if s > ρ(B), then we call A a nonsingular elasticity M-tensor.

Based on structural properties of elasticity M-tensors, He et al. [26] proposed some bounds for
the minimum M-eigenvalue under irreducible conditions. However, some of information eigenvectors
x on elasticity M-tensors is not fully mined, such as max

i,j∈N,i 6=j
|xi||xj| ≤ 1

2 . Meanwhile, irreducibility is a

relatively strict condition for elasticity M-tensor. Inspired by these observations, we want to present
sharp bounds for the minimum M-eigenvalue of elasticity M-tensors by describing eigenvectors
precisely without irreducible conditions, which improve existing results in [26].

This paper is organized as follows. In Section 2, some preliminary results are recalled. In Section 3,
we establish an upper bound and two sharp lower bounds for the minimum M-eigenvalue of elasticity
M-tensors. Numerical examples are proposed to verify the efficiency of the obtained results.

2. Preliminaries

In this section, we firstly introduce some definitions and important properties of elasticity
M-tensors [24,26,27].

Definition 2. Let A = (ai1i2 ...im) ∈ R[m,n] be a square tensor, then A = (ai1i2 ...im) is called reducible if there
exists a nonempty proper index subset J ⊂ {1, 2, . . . , n}such that ai1i2 ...im = 0, ∀ i1 ∈ J, ∀ i2, . . . , im /∈ J. If A
is not reducible, then A is irreducible.

Lemma 1 (Theorem 1 of [27]). M-eigenvalues always exist. If x and y are left and right M-eigenvectors of A,
associated with an M-eigenvalue λ, then then λ = Ax2y2.
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Lemma 2 (Lemma 2.3 of [26]). Let A = (aijkl) ∈ E4,n be an irreducible elasticity tensor and τM(A) be the
minimal M-eigenvalues of A, then

τM(A) ≤ min
i,l∈N
{aiill}.

Lemma 3 (Lemma 2.3 of [26]). Let A = (aijkl) ∈ E4,n be an irreducible and elasticity M-tensors and τM(A)
be the minimal M-eigenvalue of A. Then τM(A) ≥ 0 is an M-eigenvalue of A with positive eigenvectors.

Lemma 4 (Theorem 4.1 of [24]). The M-spectral radius of any nonnegative tensor in E4,n is exactly its
greatest M-eigenvalue. Furthermore, there is a pair of nonnegative M-eigenvectors corresponding to the
M-spectral radius.

In the following, we characterize M-eigenvectors of elasticity M-tensors without irreducibility
conditions.

Lemma 5. Let A = (aijkl) ∈ E4,n be a elasticity M-tensor and τM(A) be the minimal M-eigenvalue. Then,
there is a nonnegative M-eigenvector corresponding to τM(A) ≥ 0.

Proof. Since A is a elasticity M-tensor, there exist a nonnegative tensor B ∈ E4,n and a real number
c ≥ ρM(B) such that

A = cIM −B,

where ρM(B) is the greatest M-eigenvalue of B with nonnegative eigenvectors by Theorem 4.1 in [24].
Setting τM(A) = c− ρM(B), we have τM(A) ≥ 0. It follows from Proposition 2.2 in [24] that τM(A)
and ρM(B) have the same eigenvectors. It follows from Lemma 4 that there exists a nonnegative
M-eigenvector corresponding to τM(A) ≥ 0. Thus, the conclusion follows. 2

3. Bounds for the Minimum M-Eigenvalue of Elasticity M-Tensors

In this section, we establish sharp bounds for τM(A). We begin our work by collecting the
information of max

i,j∈N,i 6=j
x2

i x2
j .

Lemma 6. For any x ∈ Rn, if
x2

1 + x2
2 + · · ·+ x2

n = 1,

then
max

i,j∈N,i 6=j
x2

i x2
j ≤

1
4

.

Further, max
i,j∈N,i 6=j

xixj ≤ 1
2 for all xi, xj ≥ 0.

Proof. Define
f (x1, · · · , xn) = x2

i x2
j − λ(x2

1 + x2
2 + · · ·+ x2

n − 1),

where λ denotes Lagrange multiplier. For all i 6= j, deriving the above equation xi and xj respectively,
we get {

2x2
j xi = 2λxi,

2x2
i xj = 2λxj.

Hence, we obtain x2
i = x2

j , λ = 1
2 . Particularly, set

xi = ±xj = ±
√

2
2

, xn = 0, n 6= i, j
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with x2
1 + x2

2 + · · ·+ x2
n = 1. So,

max
i,j∈N,i 6=j

x2
i x2

j ≤
1
4

.

Further,

max
i,j∈N,i 6=j

xixj ≤
1
2

, ∀xi, xj ≥ 0.

2

Remark 1. For the right M-eigenvector y ∈ Rn, we can establish similar conclusions that max
i,j∈N,i 6=j

yiyj ≤ 1
2

for all yi, yj ≥ 0.

Without irreducible conditions, we propose a sharp upper bound for the minimum M-eigenvalue
of elasticity M-tensors.

Theorem 1. Let A = (aijkl) ∈ E4,n be a elasticity M-tensor. Then,

τM(A) ≤ min{min
i,l∈N

aiill ,
∑

i∈N
Si(A)

n2 },

where Si(A) = ∑
j,k,l∈N

aijkl .

Proof. Let τM(A) be the minimum M-eigenvalue of A. It follows Lemma 1 that

τM(A) = min
x,y
{ fA(x, y) = Ax2y2 : x>x = 1 and y>y = 1}. (3)

Setting a feasible solution of (3)

(x̄, ȳ) = (
1√
n

, . . . ,
1√
n

,
1√
n

, . . . ,
1√
n
),

we obtain

τM(A) ≤ fA(x̄, ȳ) = ∑
i,j∈N

∑
k,l∈N

aijkl

n2 =

∑
i∈[n]

Si(A)

n2 . (4)

From Lemma 2 and (4), it holds that

τM(A) ≤ min{min
i,l∈N

aiill ,
∑

i∈N
Si(A)

n2 }.

2

Next, we propose sharp lower bounds for the minimum M-eigenvalue of elasticity M-tensors.

Theorem 2. Let A = (aijkl) ∈ E4,n be a elasticity M-tensor. Then

τM(A) ≥ max{min
i∈N
{αi − Gi(A)}, min

l∈N
{βl −Ml(A)}}

where

Gi(A) = ωi(A)−
1
2

ri(A), αi = min
l∈N
{aiill}, ωi(A) = max

l∈N
(αi − aiill −

n

∑
j = 1,
j 6= i

aijll), ri(A) =
n

∑
j, k, l = 1,

k 6= l

aijkl ,
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Ml(A) = ml(A)−
1
2

cl(A), βl = min
i∈N
{aiill}, ml(A) = max

i∈N
(βl− aiill−

n

∑
k = 1,
k 6= l

aiikl), cl(A) =
n

∑
i, j, k = 1,

i 6= j

aijkl .

Proof. Let τM(A) be the minimum M-eigenvalue of A. By Lemma 5, there exist nonnegative left and
right M-eigenvectors (x, y) corresponding to τM(A). On one hand, setting xp = max

k∈N
{xk}, by x>x = 1,

one has 0 < |xp| ≤ 1. Recalling the p-th equation of τM(A)x = Axy2, we obtain

((app11y2
1 + · · ·+ appnny2

n)− τ(A))xp = −
n

∑
j, k, l = 1,

k 6= l

apjkl xjykyl −
n

∑
j, l = 1,
j 6= p

apjll xjy2
l , (5)

Setting αp = min
l∈N
{appll}, by (5) and Lemma 6, one has

(αp − τM(A))xp =
n

∑
l = 1,
j = p

(αp − appll)y2
l xp −

n

∑
j, k, l = 1,

k 6= l

apjkl xjykyl −
n

∑
j, l = 1,
j 6= p

apjll xjy2
l

≤
n

∑
l = 1,
j = p

(αp − appll)y2
l xp −

n

∑
j, k, l = 1,

k 6= l

apjkl xpykyl −
n

∑
j, l = 1,
j 6= p

apjll xpy2
l

=
n

∑
l=1

(αp − appll −
n

∑
j = 1,
j 6= p

apjll)y2
l xp −

n

∑
j, k, l = 1,

k 6= l

apjkl xpykyl

≤ max
l∈N

(αp − appll −
n

∑
j = 1,
j 6= p

apjll)xp −
1
2

n

∑
j, k, l = 1,

k 6= l

apjkl xp. (6)

It follows from (6) and definition of ωp that

(αp − τM(A))xp ≤ (ωp(A)−
1
2

rp(A))xp,

which implies

τM(A) ≥ αp −ωp(A) +
1
2

rp(A). (7)

On the other hand, setting yt = max
k∈N
{yk}, from the t-th equation of τM(A)y = Ax2y, we obtain

((a11tty2
1 + · · ·+ anntty2

n)− τ(A))yt = −
n

∑
i, j, k = 1,

i 6= j

aijktxixjyk −
n

∑
i, k = 1,

k 6= t

aiiktx2
i yk. (8)
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Letting βt = min
i∈N
{aiitt}, by (8) and Lemma 6, we have

(βt − τM(A))yt =
n

∑
i = 1,
k = t

(βt − aiitt)x2
i yt −

n

∑
i, j, k = 1,

i 6= j

aijktxixjyk −
n

∑
i, k = 1,

k 6= t

aiiktx2
i yk

≤
n

∑
i = 1,
k = t

(βt − aiitt)x2
i yt −

n

∑
i, k = 1,

k 6= t

aiiktytx2
i −

n

∑
i, j, k = 1,

i 6= j

aijktxixjyt

=
n

∑
l=1

(βt − aiitt −
n

∑
k = 1,
k 6= t

aiikt)x2
i yt −

n

∑
i, j, k = 1,

i 6= j

aijktxixjyt

≤ max
i∈N

(βt − aiitt −
n

∑
k = 1,
k 6= t

aiikt)yt −
1
2

n

∑
i, j, k = 1,

i 6= j

aijktyt. (9)

It follows from (9) and definition of mt that

(βt − τM(A))yt ≤ (mt(A)−
1
2

ct(A))yt,

which shows
τM(A) ≥ βt −mt(A) +

1
2

ct(A). (10)

From (7) and (10), the result follows. 2

Now, we are at a position to prove that the bound in Theorem 2 is tighter than that of Theorem 3.1
of [26].

Corollary 1. Let A = (aijkl) ∈ E4,n be a elasticity M-tensor. Then

max{min
i∈N
{αi − Gi(A)}, min

l∈N
{βl −Ml(A)}} ≥ max{min

i∈N
{αi − Ri(A)}, min

l∈N
{βl − Cl(A)}}.

Proof. On one hand, it follows from Theorem 3.1 of [26] that

αi − Ri(A) = αi − γi(A)− ri(A) = αi −max
l∈N
{

n

∑
j = 1,
j 6= i

|aijll |} −
n

∑
j, k, l = 1,

k 6= l

|aijkl |.

Since αi − aiill ≤ 0 and
n
∑

j = 1,
j 6= i

aijll ≤ 0, we can verify

max
l∈N
{

n

∑
j = 1,
j 6= i

|aijll |} ≥ max
l∈N

(αi − aiill −
n

∑
j = 1,
j 6= i

aijll),
1
2

n

∑
j, k, l = 1,

k 6= l

aijkl ≥ −
n

∑
j, k, l = 1,

k 6= l

|aijkl |,

which shows
αi − Gi(A) ≥ αi − Ri(A), ∀i ∈ N. (11)

On the other hand, it follows from Theorem 3.1 of [26] that

βl − Cl(A) = βl − δl(A)−
1
2

cl(A) = βl −max
i∈N

(βl − aiill −
n

∑
k = 1,
k 6= l

aijll) +
1
2

n

∑
i, j, k = 1,

i 6= j

aijkl .
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Following the similar arguments in the proof of (11), we obtain

βl −Ml(A) ≥ βl − Cl(A), ∀l ∈ N. (12)

It follows from (11) and (12) that

max{min
i∈N
{αi − Gi(A)}, min

l∈N
{βl −Ml(A)}} ≥ max{min

i∈N
{αi − Ri(A)}, min

l∈N
{βl − Cl(A)}}.

2

Choosing xq as a component of x with the second largest modulus, we obtain another sharp lower
bound for τM(A).

Theorem 3. Let A = (aijkl) ∈ E4,n be a elasticity M-tensor. Then

τM(A) ≥ max{φ1(A), φ2(A)},

where

φ1(A) = min
i,v∈N,v 6=i

{ 1
2{αi +

1
2 ri(A) + αv −ωi

v(A)− ∆
1
2
i,v(A)}, αi +

1
2 ri(A), αv −ωi

v(A)},

φ2(A) = min
u,l∈N,u 6=l

{ 1
2{βl +

1
2 cl(A) + βu −ml

u(A)− θ
1
2
l,u(A)}, βl +

1
2 cl(A), βu −ml

u(A)},

∆i,v(A) = (αi +
1
2 ri(A)− αv + ωi

v(A))2 + 4ωi(A)(γi
v(A)− 1

2 rv(A)),
θl,u(A) = (βl +

1
2 cl(A)− βu + ml

u(A))2 + 4ml(A)(δl
u(A)− 1

2 cu(A)),
γi

v(A) = max
l∈N

(−avill), ωi
v(A) = max

l∈N
(αv − avvll −

n
∑

j=1;j 6=v,i
avjll),

δl
u(A) = max

i∈N
(−aiilu), ml

u(A) = max
i∈N

(βu − aiiuu −
n
∑

k=1;k 6=u,l
aiikl).

Proof. Let τM(A) be the minimal M-eigenvalue of A. By Lemma 5, there exist nonnegative left and
right M-eigenvectors (x, y) corresponding to τM(A). On one hand, set xp ≥ xq ≥ max

k∈N,k 6=p,q
{xk}. By the

p-th equation of τM(A)x = Axy2, one has

((app11y2
1 + · · ·+ appnny2

n)− τM(A))xp = −
n

∑
j, k, l = 1,

k 6= l

apjkl xjykyl −
n

∑
j, l = 1,
j 6= p

apjll xjy2
l . (13)

Setting αp = min
l∈N
{appll}, from (13) and Lemma 6, we obtain

(αp − τM(A))xp =
n

∑
l = 1,
j = p

(αp − appll)y2
l xp −

n

∑
j, l = 1,
j 6= p

apjll xjy2
l −

n

∑
j, k, l = 1,

k 6= l

apjkl xjykyl

≤
n

∑
l = 1,
j = p

(αp − appll)y2
l xq −

n

∑
j, l = 1,
j 6= p

apjll xqy2
l −

n

∑
j, k, l = 1,

k 6= l

apjkl xpykyl

=
n

∑
l=1

(αp − appll −
n

∑
j = 1,
j 6= p

apjll)y2
l xq −

n

∑
j, k, l = 1,

k 6= l

apjkl xpykyl

≤ max
l∈N

(αp − appll −
n

∑
j = 1,
j 6= p

apjll)xq −
1
2

n

∑
j, k, l = 1,

k 6= l

apjkl xp,
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which implies

(αp − τM(A) + 1
2

rp(A))xp ≤ ωp(A)xq. (14)

From the q-th equation of τM(A)x = Axy2 and αq = min
l∈N
{aqqll}, we yield

(αq − τM(A))xq =
n

∑
l = 1,
j = q

(αq − aqqll)y2
l xq −

n

∑
j, l = 1,
j 6= q

aqjll xjy2
l −

n

∑
j, k, l = 1,

k 6= l

aqjkl xjykyl

≤
n

∑
l = 1,
j = q

(αq − aqqll)y2
l xq −

n

∑
j, l = 1,
j 6= q, p

aqjll xqy2
l −

n

∑
l = 1,
j = p

aqpll xpy2
l −

n

∑
j, k, l = 1,

k 6= l

aqjkl xpykyl

=
n

∑
l=1

(αq − aqqll −
n

∑
j = 1,

j 6= q, p

aqjll)y2
l xq −

n

∑
l = 1,
j = p

aqpll xpy2
l −

n

∑
j, k, l = 1,

k 6= l

aqjkl xpykyl

≤ max
l∈N

(αq − aqqll −
n

∑
j = 1,

j 6= q, p

aqjll)xq + max
l∈N

(−aqpll)xp −
1
2

n

∑
j, k, l = 1,

k 6= l

aqjkl xp, (15)

which implies

(αq − τM(A)−ω
p
q (A))xq ≤ (γ

p
q (A)−

1
2

rq(A))xp. (16)

When αp − τM(A) + 1
2 rp(A) ≥ 0 or αq − τM(A) − ω

p
q (A) ≥ 0, multiplying inequalities (14)

with (16), one has

(αp − τM(A) + 1
2

rp(A))(αq − τM(A)−ω
p
q (A)) ≤ ωp(A)(γp

q (A)−
1
2

rq(A)).

Then, solving for τM(A), we have

τM(A) ≥ 1
2
(αp +

1
2

rp(A) + αq −ω
p
q (A)− ∆

1
2
p,q(A)), (17)

where ∆p,q(A) = (αp +
1
2 rp(A)− αq + ω

p
q (A))2 + 4ωp(A)(γp

q (A)− 1
2 rq(A)).

When αp − τM(A) + 1
2 rp(A) < 0 and αq − τM(A)−ω

p
q (A) < 0, one has

τM(A) > αp +
1
2

rp(A) and τM(A) > αq −ω
p
q (A). (18)

It follows from (17) and (18) that

τM(A) ≥ min
p,q∈N,q 6=p

{1
2
{αp +

1
2

rp(A) + αq −ω
p
q (A)− ∆

1
2
p,q(A)}, αp +

1
2

rp(A), αq −ω
p
q (A)}.

On the other hand, set yt ≥ ys ≥ max
k∈N,k 6=t

{yk}. From the t-th equation of τM(A)y = Ax2y, it

follows that

((a11ttx2
1 + · · ·+ annttx2

n)− τM(A))yt = −
n

∑
i, j, k = 1,

i 6= j

aijktxixjyk −
n

∑
i, k = 1,

k 6= t

aiiktx2
i yk. (19)
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Letting βt = min
i∈N
{aiitt}, by (19) and Lemma 6, we obtain

(βt − τM(A))yt =
n

∑
i = 1,
k = t

(βt − aiitt)x2
i yt −

n

∑
i, k = 1,

k 6= t

aiiktx2
i yk −

n

∑
i, j, k = 1,

i 6= j

aijktxixjyk

≤
n

∑
i = 1,
k = t

(βt − aiitt)x2
i ys −

n

∑
i, k = 1,

k 6= t

aiiktx2
i ys −

n

∑
i, j, k = 1,

i 6= j

aijktxixjyt

=
n

∑
i=1

(βt − aiitt −
n

∑
k = 1,
k 6= t

aiikt)x2
i ys −

n

∑
i, j, k = 1,

i 6= j

aijktxixjyt

≤ max
i∈N

(βt − aiitt −
n

∑
k = 1,
k 6= t

aiikt)ys −
1
2

n

∑
i, j, k = 1,

i 6= j

aijktyt. (20)

Using (20), we yield

(βt − τM(A) + 1
2

ct(A))yt ≤ mt(A)ys. (21)

Recalling s-th equation of τ(A)y = Ax2y and βs = min
i∈N
{aiiss}, we have

(βs − τM(A))ys =
n

∑
i = 1,
k = s

(βs − aiiss)x2
i ys −

n

∑
i, k = 1,

k 6= s

aiiksx2
i yk −

n

∑
i, j, k = 1,

i 6= j

aijksxixjyk

≤
n

∑
i = 1,
k = s

(βs − aiiss)x2
i yt −

n

∑
i, k = 1,
k 6= s, t

aiiksx2
i ys −

2

∑
i = 1,
k = t

aiitsx2
i yt −

n

∑
i, j, k = 1,

i 6= j

aijksxixjyt

=
n

∑
i=1

(βs − aiiss −
n

∑
k = 1,
k 6= s, t

aiiks)x2
i ys −

n

∑
i = 1,
k = t

aiitsx2
i yt −

n

∑
i, j, k = 1,

i 6= j

aijksxixjyt

≤ max
i∈N

(βs − aiiss −
n

∑
k = 1,
k 6= s, t

aiiks)yt + max
i∈N

(−aiits)yt −
1
2

n

∑
i, j, k = 1,

i 6= j

aijksyt,

which implies

(βs − τM(A)−mt
s(A))ys ≤ (δt

s(A)−
1
2

cs(A))yt. (22)

When βt − τM(A) + 1
2 ct(A) ≥ 0 or βs − τM(A) − mt

s(A) ≥ 0, multiplying inequalities (21)
with (22), one has

(βt − τM(A) + 1
2

ct(A))(βs − τM(A)−mt
s(A)) ≤ mt(A)(δt

s(A)−
1
2

cs(A)).

Then, solving for τ(A), we obtain

τM(A) ≥ 1
2
{βt +

1
2

ct(A) + βs −mt
s(A)− θ

1
2
t,s(A)}, (23)

where θt,s(A) = (βt +
1
2 ct(A)− βs + mt

s(A))2 + 4mt(A)(δt
s(A)− 1

2 cs(A)).
When βt − τM(A) + 1

2 ct(A) < 0 and βs − τM(A)−mt
s(A) < 0, then we have

τM(A) > βt +
1
2

ct(A) and τM(A) > βs −mt
s(A). (24)
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From (23) and (24), it holds that

τM(A) ≥ min
t,s∈N,s 6=t

{1
2
{βt +

1
2

ct(A) + βs −mt
s(A)− θ

1
2
t,s(A)}, βt +

1
2

ct(A), βs −mt
s(A)}.

Thus, the desired result holds. 2

In the following, we use Example 3.1 of [26] to show the superiority of our results.

Example 1. Let A = (aijkl) ∈ E4,2 be an elasticity M-tensor, whose entries are

aijkl =


a1111 = a1122 = 4.1, a2211 = a2222 = 5,
a1112 = a1121 = −1, a2212 = a2221 = −1,
a2111 = a1211 = −1, a1222 = a2122 = −1,
aijkl = 0, otherwise.

The bounds via different estimations given in the literature are shown in Table 1:

Table 1. Bound estimations of the minimum M-eigenvalue with different methods

References Interval

Lemma 2 and Theorem 3.1 of [26] 1.10 ≤ τM(A) ≤ 4.10
Lemma 2 and Theorem 3.2 of [26] 1.29 ≤ τM(A) ≤ 4.10

Theorem 1 and Theorem 2 2.10 ≤ τM(A) ≤ 2.55
Theorem 1 and Theorem 3 2.35 ≤ τM(A) ≤ 2.55

By computations, we obtain that the minimum M-eigenvalue and corresponding with left and
right M-eigenvectors are(τM(A), x̄, ȳ) = (2.4534, (0.8398, 0.5430), (0.7071, 0.7071)). It is easy to see
that the results given in Theorems 3.1–3.3 are sharper than some existing results [26]. It is noted
that Theorems 2 and 3 have their own advantages. Theorem 3 can estimate the lower bound of the
minimum M-eigenvalue more accurately, but the calculation of Theorem 2 is simpler.

Ding et al. [24] pointed out that a tensor is M-positive if and only if its smallest M-eigenvalue is
positive. In the following, the results given in Theorems 2 and 3 can exactly check the positiveness of
the elasticity M-tensor A.

Example 2. Consider the elasticity M-tensor A = (aijkl) ∈ E4,2 defined by

aijkl =


a1111 = 3.1, a1122 = 4.1, a2211 = 5, a2222 = 6,
a1112 = a1121 = −1, a2212 = a2221 = −1,
a2111 = a1211 = −1, a1222 = a2122 = −2,
a1221 = a1212 = a2121 = a2112 = −0.5.

The bounds via different estimations given in the literature are shown in Table 2.

Table 2. Bound estimations of the minimum M-eigenvalue and testing the M-positive definiteness

References Interval

Lemma 2 and Theorem 3.1 of [26] −1.90 ≤ τM(A) ≤ 3.10
Lemma 2 and Theorem 3.2 of [26] −1.45 ≤ τM(A) ≤ 3.10

Theorems 1 and 2 0.60 ≤ τM(A) ≤ 1.55
Theorems 1 and 3 0.77 ≤ τM(A) ≤ 1.55

By computations, we obtain that the minimum M-eigenvalue and corresponding with
left and right M-eigenvectors are (τM(A), x̄, ȳ) = (1.3350, (0.8462, 0.5329), (0.7190, 0.6951)).
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From Theorems 2 and 3, we obtain 0.77 ≤ τM(A) ≤ 1.55, which shows that A is M-positive definite.
However, the existing results of [26] cannot identify the M-positiveness of A.

For the medium-sized tensors, we show the validity of the estimations by our theorems.

Example 3. All testing elasticity M-tensors A = (aijkl) ∈ E4,n are generated as follows: aiijj = n2 + 4i + 4j
and other elements are generated randomly in [−0.5, 0] by MATLAB R2014a, where n denotes variable
dimension. For different dimensions elasticity M-tensors, the values presented in the table are the average values
of 10 examples. The bounds via different estimations given in the literature are shown in Table 3.

Table 3. Comparison estimations of the minimum M-eigenvalue with random elasticity M-tensors

References n = 10 n = 20 n = 30
Bounds Bounds Bounds

Lemma 2.2 and Theorem 3.1 of [9] [−129.8, 105] [−1561.9, 408] [−5660.2, 908]
Lemma 2.2 and Theorem 3.2 of [9] [−102.4, 105] [−1324.4, 408] [−4975.5, 908]

Theorems 1 and 2 [−8.9, 102.6] [−530.4, 383.9] [−2173.7, 799.7]
Theorems 1 and 3 [3.8, 102.6] [−419.3, 383.9] [−1956.8, 799.7]

4. Conclusions

In this paper, we exactly characterized the information of eigenvectors without irreducible
conditions. Further, we proposed a new upper bound and two sharp lower bounds for the minimum
M-eigenvalue of elasticity M-tensors by establishing new eigenvalue inequality. Numerical examples
were proposed to verify the efficiency of the obtained results.
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