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Abstract: The Holt–Winters models are one of the most popular forecasting algorithms.
As well-known, these models are recursive and thus, an initialization value is needed to feed
the model, being that a proper initialization of the Holt–Winters models is crucial for obtaining a good
accuracy of the predictions. Moreover, the introduction of multiple seasonal Holt–Winters models
requires a new development of methods for seed initialization and obtaining initial values. This work
proposes new initialization methods based on the adaptation of the traditional methods developed
for a single seasonality in order to include multiple seasonalities. Thus, new methods to initialize the
level, trend, and seasonality in multiple seasonal Holt–Winters models are presented. These new
methods are tested with an application for electricity demand in Spain and analyzed for their impact
on the accuracy of forecasts. As a consequence of the analysis carried out, which initialization method
to use for the level, trend, and seasonality in multiple seasonal Holt–Winters models with an additive
and multiplicative trend is provided.

Keywords: forecasting; multiple seasonal periods; Holt–Winters, initialization

1. Introduction

Exponential smoothing methods are widely used worldwide in time series forecasting, especially
in financial and energy forecasting [1,2]. These methods smooth the observed values of a time series,
using an exponentially downward weighting strategy giving more weight to recent values compared
to older values. Weights decrease geometrically over past observations. The most commonly used
methods are: Simple exponential smoothing for the series that does not show any trend, or with a
locally stable mean, having a single smoothing parameter α; double seasonal exponential smoothing
(also known as Holt’s method [3]) for trend-having series with two smoothing parameters: α and
γ; finally, triple exponential smoothing (also known as Holt–Winters [4]) for the series with a trend
and seasonal component, with α, γ, and δ as smoothing parameters. The smoothing parameters are
bounded in the interval [0, 1], where the closer to 0 means the more weight of the old values against
the newer ones.

The multiple seasonal Holt–Winters models (nHWT) outperform former Holt–Winters methods by
including several seasonalities nested in the model. This development has been driven by the necessity
of improving forecasts, especially in energy planning, where system operators need accurate forecasts.
Hong [5] determines how a 1% improvement in the forecast accuracy can save up to $600,000 per year
in a 1 GW power station.

However, these new forecasting methods are recursive and based on initial values, and the
performance of the models highly depend on those initial values. Thus, new initialization methods to
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include multiple seasonality must be developed. Another question is then raised: Is there any method
that outperforms the rest?

This article intends to provide answers to these questions. Hence, new initialization methods
are proposed for nHWT models and their performance is analyzed for forecast accuracy by using the
Spanish hourly electricity demand.

Holt–Winters models were formerly introduced in the 1960s and have been very commonly
used in forecasting techniques and signal processing. The Holt–Winters model (also known as
triple exponential smoothing) introduced by Winters [4] consists of three smoothing equations and a
forecasting equation as shown in Equations (1)–(4):

Level : St = α
( Xt

It−s

)
+ (1− α)(St−1 + Tt−1) (1)

Trend : Tt = γ(St − St−1) + (1− γ)Tt−1 (2)

Seasonality : It = δ
(Xt

St

)
+ (1− δ)It−1 (3)

Forecasting : X̂t(k) = (St + k Tt)It−s+k (4)

where α, γ, and δ are the smoothing parameters, and St, Tt, and It are the smoothing equations known
as level, trend, and seasonality. The information from the observed values (Xt) is projected through a
forecasting Equation (4) k steps ahead to obtain predictions (X̂t (k)).

Taylor [6,7] introduced the double and triple seasonal Holt–Winters models (HWT). These models
are characterized by capturing the information contained in the seasonal component, split into several
seasonalities of different lengths, as well as including an adjustment of the forecast including the first
autocorrelation error. García-Díaz and Trull [8] generalized these models to adapt to an indeterminate
number of seasonalities, proposing the multiple seasonal Holt–Winters models (nHWT).

The trend and seasonal equations can be expressed in an additive or multiplicative form. The way
the equations are combined allow a total of 30 possible combinations. The nomenclature used to name
the models is based on three letters: The first to indicate the trend method, the second to indicate
the seasonality method, and a third to indicate if the model has an adjustment using the first order
autocorrelation error, as shown in Table 1. Additionally, the seasonalities used are indicated by adding
subscripts with period lengths.

Table 1. Multiple seasonal Holt–Winters models’ nomenclature according to the trend and
seasonal method.

Trend

Seasonal

AR (1) Adjusted Non-Adjusted

None Additive Multiplicative None Additive Multiplicative

None NNC NAC NMC NNL NAL NML
Additive ANC AAC AMC ANL AAL AML

Damped Additive dNC dAC dMC dNL dAL dML
Multiplicative MNC MAC MMC MNL MAL MML

Damped Multiplicative DNC DAC DMC DNL DAL DML

The notation used is based on the following criteria: The first letter stands for the trend method
(N: None, A: Additive, M: Multiplicative, d: Damped Additive, and D: Damped Multiplicative).
The second letter stands for the seasonality method (N: None, A: Additive, and M: Multiplicative).
The third letter is used to designate if the model has an AR (1) adjustment (C: Adjusted, L: Not
adjusted).

As an example, the AMC24,168 model is a model with an additive trend and multiplicative
seasonality; the model is adjusted by using the first-order autocorrelation error, and it has two
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seasonalities: One daily (subscript 24) and one weekly (subscript 168). The equations defining the
AMC24,168 model are described in Equations (5)–(9). The general formulae of all possible models
depending on the trend and seasonal type can be found in Appendix A:

St = α

 Xt

I(24)
t−24I(168)

t−168

+ (1− α)(St−1 + Tt−1) (5)

Tt = γ(St − St−1) + (1− γ)Tt−1 (6)

I(24)
t = δ(24)

 Xt

StI
(168)
t−168

+ (
1− δ(24)

)
I(24)
t−1 (7)

I(168)
t = δ(168)

 Xt

StI
(24)
t−24

+ (
1− δ(168)

)
I(168)
t−1 (8)

X̂t(k) = (St + k Tt)I
(24)
t−24+kI(168)

t−168+k + ϕk
ARεt (9)

where the former seasonal equation It now splits into I(si)
t and δ splits into δ(si), si being the seasonal

periods considered, s1 = 24 and s2 = 168. Here, the value ϕAR is the adjustment factor to include the
first-order autocorrelation error (εt).

The rest of the paper is organized as follows: In Section 2, the previous literature is analyzed;
in Section 3 the initialization methods are described; in Section 4, an analysis is carried out and
the results obtained are described; and in Section 5, these results are discussed. Section 6 lists the
conclusions reached.

2. Related Work

The Holt–Winters models are recursive, and thus an initialization value is needed to feed the
model. With the development of new models, it is mandatory to define new initialization methods
for obtaining the initial values of the smoothing equations, considering that the older methods were
defined only for single seasonal models. These initialization methods also depend on the method used
for trend and seasonality.

The first methods of obtaining initial values date back to the proposal made by Winters [4] with
the definition of triple exponential smoothing models. (Do not confuse triple exponential smoothing,
with triple seasonal exponential smoothing, the former being a reference to the use of three equations,
while the latter refers to the use of three seasonalities). In [4], the initial value of the trend (T0) is
calculated as the slope between the average of the last available full period q and the first, as indicated
by Equation (10), where the only seasonality is of length s.

T0 =
Dq − D1

(q− 1)s
(10)

Here, the value of D1 indicates the average value for the first period and Dq indicates the average
value for the last period considered q. In many cases, using the first two periods (that is, q = 2) is
sufficient [9]. Granger and Newbold [10] proposed leaving the trend in values of 0 for additive trend
methods and 1 for multiplicative trend methods. In this way, the slope adjusts itself to the trend value.

The previous work of Holt [3,11] and Brown [12] in single and double exponential smoothing
did not require calculations of initial values external to the model. Makridakis, Wheelright, and
Hyndman [9] proposed a new method of calculating the trend and seasonality. Bowerman, O’Connell
and Pack [13], and Bowerman, O’Connell, and Köhler [14] proposed a regression method where
they consider that the intercept is the level and the slope is the trend. This method is criticized
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by Hyndman [15] for the bias it introduces. Rasmussen [16] proposed obtaining initial values
through minimization. With the emergence of multiple seasonal models, new initialization methods
were introduced [6,7], although some authors prefer not to use them [17]. Taylor introduced a new
initialization method of the level and trend applied to double seasonal Holt–Winters in [6]. In particular,
the seasonality is initialized as the division of the simple values over the moving average of the period
(called the “simple” method), and the level (S0) is obtained once the series trend has been eliminated.
It consists in first obtaining the trend of the series and then the level, as seen in Equation (11):

S0 = D1 −
sm + 1

2
T0 (11)

where sm is the longest seasonality. This scheme to initialize the level was also adopted by
Hyndman et al. [18]. Hyndman introduced new initialization methods incorporated in the exponential
smoothing methodology based on state spaces and included them in the “forecast” package of the
statistical software R. Trull, García-Díaz, and Troncoso [19] also used a series decomposition using STL
methods of various seasonality, in order to obtain initial values in discrete seasonality.

Some papers [20–22] analyze the initial values but very succinctly. Segura and Vercher [23] collect
the information about the initialization methods and perform an analysis similar to that carried out by
Makridakis and Hibon [24]. They conclude that when the parameters are optimized, it is not possible
to determine significant differences between the different initialization methods.

After an exhaustive review of these previously published works, it can be concluded that the
analysis of the initialization methods is not very extensive in the literature. This fact justifies the need
for research in the topic described in this paper.

3. Materials and Methods

The way to obtain the initial values must match the trend and seasonal method, as it would impact
later on the accuracy of the model. The addition of more seasonal patterns in the model requires newer
methods of obtaining the initial values or seeds. Therefore, several methods depending on the trend
and seasonal method have been implemented. This paper proposes new initialization methods for
multiple seasonalities based on the previous methods, which were defined for a single seasonal pattern.

The proposed methods for the initialization of the Holt–Winters models are separated into three
groups. The first ones calculate the seeds for the level and trend separately. The last one implements
each seasonality separately. The latter first obtains a seed, as the trend, and then obtains another one
on a recurring basis, such as that of the level.

3.1. Level Methods

The level initialization basically consists in determining the longest period, or the longest
seasonality (sm) and determining the initial values around that point, by using the moving average
(adapted from Holt [3]) or the average (adapted from Winters [4]). Williams and Miller [25] used the
first value of the series for the level. This method is included although it remains unchanged for the
further comparative analysis in Section 4. Table 2 shows the adapted methods to obtain the initial
value of the level (S0).

Table 2. Proposed methods and the method published in [25] for obtaining the initial value of the level
in multiple-seasonal methods.

Denomination Calculation

Moving average adapted from Holt [3] S0 = 1
Sm

[X1+sm−X1
sm

+
X2+sm−X2

sm
+ . . .+

X2sm−Xsm
sm

]
First value [25] S0 = X1

First period’s average adapted from Winters [4] S0 =
∑sm

1 Xi

sm
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3.2. Trend Methods

Based on Winters’ method [4], a new initialization method has been developed to be able to
include more than one seasonality in the model, according to the contribution to the trend of smaller
seasonality, as indicated [24]. These proposals (methods overall and two periods) are shown in Table 3
along with the methods published in [6,26] for the further comparative analysis in Section 4. T′0i is an
intermediate step where individual contributions are calculated in each period of length si. The average
of all of them will be taken into account, counting the maximum number of periods q for the overall
case, and only two periods for that special case (q = 2). The seasonality of greater length is used as the
basis of calculation. The value of sm indicates the length of the longest seasonal period considered in
the model. The rest is calculated in the form of differences. The value sp indicates the length of the
minor of the periods considered. ∇D12 indicates differences in values for the first two periods, while
∇Di refers to differences in the period considered. Finally, the average of the contributions is calculated
to obtain the value of T0.

Table 3. Proposed methods and methods published in [6,25] for obtaining the initial value of the trend
in multiple-seasonal methods.

Denomination Calculation

Newbold [26]
T0 = 0 (additive)

T0 = 1 (multiplicative)

Taylor [6] T0 =

(
D1−D2

sm
+

∑2sm
1 ∇D12

2sp

)
2

Overall and two periods method. Multiplicative.

T0 =
∑

i=1,...,q T′0i
q ,

with T′0i =


Dq−D1

q if si = sm∑si
1 ∇Di

si
if rest

Overall and two periods method. Multiplicative.

T0 =
∏ns

1 T′0i,

with T′0i =


Dq−D1

q if si = sm∑si
1 ∇Di

si
if rest

3.3. Seasonality Calculation Methods

The first methods determined for the calculation were developed by Winters [4]. The calculation
of seasonality consists in calculating the series averages over the series without a trend. When it
comes to more than one seasonality that are modeled annually, as in nHWT, it is necessary to avoid
duplication of the effects of seasonality. Thus, based on Winters’ method [4], we propose to obtain the
seasonal indices I(si)

t−si
for each seasonality (i) of length si as described in Equations (12)–(16):

I(i)t−si
=


I∗(i)t−s1

, i = 1

I∗(i)t−si∏i−1
j=1 I∗(i)t−sj

, i > 1
(12)

with the individual seasonal indices,

I∗(i)t−si
=

1
qi

∑
I′t−si

(i), t = 1, . . . , si (13)

I′(i)t−si
=

1
si

∑
I′t, j

( j), j = 1, . . . , qi (14)
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I′(i)t, j = Xt

D j
i)−

(
si+1

2 −i
)
T0

,

j = 1, . . . , si, t = j, j + si, . . . , (qi − 1)si

(15)

D j
(i) = 1

qi

∑qi
k=1 Xt,

j = 1, . . . , si; t = j, j + si, . . . , j + (qi − 1)si
(16)

where qi is the maximum number of complete cycles of length si that exist in the series. i refers to the
seasonality considered, so that i = 1, . . . , ns.

Brockwell and Davis [27] proposed another method, in which the calculation of seasonality is
done by obtaining the weights of the series against the average values of the cyclic pattern. This
methodology is adopted by the National Institute of Standards and Technology (NIST) [28]. This
method has also been adapted to multiple seasonality, and the proposed method is described in the
following steps:

Step 1:
For each seasonality, it is necessary to reorganize the data and obtain the means in each internal

position within the seasonality as the average of the values obtained. In this way, the values A(i)
m are

obtained, for each seasonality of length si and that occurs nq times in the data series, as shown in
Equation (17):

A(i)
m =

∑si
j=1 X(m−1)∗si+ j

si
, m = 1, . . . , nq (17)

Step 2:
For each seasonality, the proportion of the series over the average is obtained. There are mi

occurrences of seasonal cycles in the range considered of length si.

1 2 . . . q

1 X1/A(i)
1 Xsi+1/A(i)

2 Xsi+1/A(i)
2

. . .

si Xsi /A(i)
1 X2si /A(i)

2 Xm1si+1/A(i)
mi

Step 3:
The provisional seasonal indices of each seasonality on the series are obtained as follows:

I∗(i)1−si
=

X1

A(i)
1

+
Xsi+1

A(i)
2

+ . . .+
X(mi−1)si+1

A(i)
mi

mi

I∗(i)0 =

Xsi

A(i)
1

+
X2si

A(i)
2

+ . . .+
Xmisi+1

A(i)
mi

mi

Step 4:
The definitive seasonal indices, shown in Equation (18) are obtained taking into account that they

are nested, and therefore the seasonal indices by removing the first one, need to compensate for the
effect produced in the indices considered prior to the one calculated.

I(i)t−si
=


I∗(i)t−s1

, i = 1, t = 1, . . . si

I∗(i)t−si∏i−1
j=1 I∗(i)t−sj

, i > 1, t = 1, . . . si

(18)
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Finally, the initialization method proposed by Granger and Newbold [26], named the “normal”
method, has been adapted, where the values of the first cycle are divided by their average. This
proposal is described by Equations (19) and (20):

I∗(i)t−si
=

Dt

Dsi

, t = 1, . . . , si (19)

I(i)t−si
=


I∗(i)t−s1

, i = 1

I∗(i)t−si∏i−1
j=1 I∗( j)

t−sj

, i > 1
(20)

4. Results

The proposed new methods and older methods published in [6,25,26] were applied to the hourly
electricity demand series in Spain in the period 1999 to 2004. Figure 1 shows the time series worked.
This period is characterized by strong continued growth and marked seasonality. This will allow
working with models with clear seasonality and trend.
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The analysis has been raised in the form of an experimental design. The main factors to analyze
are the different methods to estimate the initial values of level, trend, and seasonality. It has been used
as two seasonal patterns. It is important to note that, when performing this analysis, the influence of
the meteorological variables has been considered as a noise factor, so that windows have been created
in the four seasons of the year where the analysis was performed. Within the same context, several
replicas of the analysis have been included, using the different years.

The response variables used were the MAPE (see Equation (20)), an indicator of forecast accuracy
widely used in the time series analysis [29]. To obtain the response variable, the seven-week series
have been used randomly extracted from the series, although always taking into account that they
belong to a specific season of the year—having at least six series in each seasonal period and each year.

MAPE(%) = 100
1
h

∑
h

∣∣∣X̂t −Xt
∣∣∣

|Xt|
(21)
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The process of comparing the initial values needs a specific methodology, since once the parameter
optimization is performed, the differences between them are lost [9,24]. This situation can be avoided
by performing the analysis based on the forecasts directly from the initial values and without adjusting.
It is also necessary that the model does not cushion the results, which implies that the parameters
used must be α = 0, γ = 0, and δ(i) = 0 for all seasons. Table 4 shows all methods both proposed
and published in the literature that will be used to initialize the level, trend, and seasonality factors of
nHWT models.

Table 4. The factors and initialization methods analyzed.

Factor Type
Initialization Methods

New Methods Older

Level Controllable Moving average, average First value [25], Taylor [6]

Trend Controllable Overall, two periods Newbold [26], Taylor [6]

Seasonality Controllable Normal, Winters, NIST Simple [6]

The names used are consistent with the methods presented in the previous section. In addition,
they have been carried out in four different years, which is an additional factor to consider. The models
studied have been AMC24,168, AAC24,168, MAC24,168, and MMC24,168.

The design of experiments includes 4096 tests, three controllable multilevel factors, and a noise
factor that is the period of the year replicated for four different years. This study is shown in Table 5.

Table 5. Analysis of the variance for the factors studied using the models with multiplicative trend.

Source Sum of Squares df Mean Square F-Ratio p-Value

Main effects

A Level 283.89 3 94.63 6.66 0.0002
B Trend 2.96E6 3 984124. 69240.76 0.0000
C Seasonality 1099.63 3 366.52 25.79 0.0000
D Model 19.36 1 19.36 1.36 0.2432
E Season 91.29 3 30.43 2.14 0.0931

Interactions

AB 876.46 9 97.3843 6.85 0.0000
BC 300.32 9 33.3691 2.35 0.0124
BE 296.07 9 32.8968 2.31 0.0138
CD 189.57 3 63.1903 4.45 0.0040

Residuals 28483.0 2004 14.2131
Total 2.98E6 2047

The first action taken, regardless of the design, was to be clear if there are significant differences
between the models and from there determine which options to use. The result is shown in Figure 2,
where you can see how the groups with additive trend differ significantly from the groups with
multiplicative trend. Thus, the design will be separated in two to address each trend by its side.
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Figure 2. Means and Fisher’s LSD (least significant differences) diagram of the MAPE obtained against
the nHWT models considered.

Table 5 shows the results of the ANOVA (analysis of variance) obtained during the design. Only
those significant factors and interactions are shown. This ANOVA has been carried out using the
models with multiplicative trend and in response to the MAPE.

It is appreciated how the use of different seasonal methods is not significant, while the rest of
the factors are. This model is also able to minimize the effect of the seasons of the year, becoming a
nonsignificant factor, due to the influence of the trend being superior to that of the other parameters.

The same analysis performed on the models with additive trend offers slightly different results.
Table 6 shows the ANOVA of this analysis. Only the significant factors and interactions are shown.
The behavior is similar, although the additive trend methods are more sensitive to the annual period
considered and the seasonality method considered.

Table 6. Analysis of the variance for the factors studied using the models with additive trend,
without adjustment.

Source Sum of Squares df Mean Square F-ratio p-Value

Main effects

A Level 0.8485 3 0.282849 5.59 0.0008
B Trend 1.3228 3 0.440938 8.71 0.0000
C Seasonality 1864.54 3 621.514 12276.07 0.0000
D Model 73.2721 1 73.2721 1447.26 0.0000
E Season 1.1902 3 0.396725 7.84 0.0000

Interactions

AE 1.19074 9 0.132305 2.61 0.0053
BD 1.1674 3 0.389135 7.59 0.0000
CD 299.458 3 99.8192 1971.62 0.0000

Residuals 102.218 2019 0.0506281

Total 2345.21 2047

The analysis for each factor is shown in the graphs of Figure 3. This figure shows the average
graphs of the different factors separated by the trend method. MAPE (%) is displayed before optimizing.
You can see how the behaviors are different depending on the trend. For those with multiplicative
trend only the method proposed by Taylor is significantly different, both for the level and for the trend,
but not for the seasonality. However, for additive trend methods, there are differences in all cases.
Seasonal values in additive trend methods show differences between them, with the simple method
and NIST being the best results.
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Following these results, the values obtained during the experiment were analyzed, and each of
the analyzed factors was studied separately.

4.1. Trend Analysis

The trend determines the behavior of the series in the long term. Using the seven-week series, this
influence is remarkable. The models that include multiplicative trend obtain results for the trend close
to 1. It is difficult to assess this situation. However, with the additive trend models, more information
can be obtained. The distribution of the initial values for the additive trend is shown in Figure 4.
It should be noted that the initial value of the Newbold method is always 0, and that the overall method
has little variability. This is not the case with the two-period method. This tells us that the larger the
set of data we take for the calculation of initial values, the more the variability is reduced.

Taylor’s method has a different behavior. Its variability is much greater than the rest. This is in
contrast to using only the first two periods, in addition to introducing the contribution of the minor
seasonality to obtain the overall trend.
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Figure 4. Distribution of initial values obtained for the trend in additive trend models AMC24,168 and
AAC24,168.

4.2. Level Analysis

The analysis on the level shown in Figure 5 reveals that the level values in the additive trend
models are close. However, following what has been verified in the ANOVA, they are clearly significant
when determining the accuracy of the model. The fact that Taylor’s method for the level is mixed, and
that the trend has been previously calculated, causes this method to decrease variability, transferring
it to the trend. For cases of multiplicative trend, the results are very similar to those obtained in
this analysis.
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Figure 5. Distribution of the initial values obtained for the level in the additive trend models AMC24,168

y AAC24,168.

4.3. Seasonality Analysis

The ANOVA indicates that there are significant differences only in the additive trend models.
Therefore, this analysis focuses on these models. There are two large groups between which you
can include the original adapted Winters method: The NIST method and the simple adapted one.
The analysis focuses on these two methods—simple and Winters—and the results obtained with
the AMC24,168 model have been used. Therefore, the initial values for the 24- and 168-hour length
seasonality are shown. Figure 6 shows the distribution of the initial values for these seasonalities using
the simple method. Similarly, Figure 7 reflects this same distribution but using the Winters method.
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Figure 6. Distribution of the initial seasonal indices for the AMC24,168 model using the simple method.
In the left part, the seasonality of 24 hours is used, and in the right part the seasonality of 168 hours is
used. The central line represents the average of the values, regardless of the time of the year, while the
shaded area represents the variability with ± standard deviation.
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Figure 7. Distribution of the initial seasonal indices for the AMC24,168 model using the Winters method.
In the left part, the seasonality of 24 hours is used, and in the right part the seasonality of 168 hours is
used. The central line represents the average of the values, regardless of the time of the year, while the
shaded area represents the variability with ± standard deviation.

It can be seen how the simple method has a lower variability in obtaining the seasonal indices
of 24 hours, which is accompanied by a lower variability in the seasonal index of 168 hours. This
indicates that the simple method ensures that the initial values are better suited to the seasonal patterns
shown in the series. That is why it shows a smaller MAPE series. Moreover, you can see how the daily
seasonal index is the primary index, and the weekly index has to be adapted according to the series.
You might think that this situation occurs by the method of obtaining the initial values, where the first
seasonality is considered the daily seasonality. However, we have performed tests where the first
seasonality considered is the weekly one, and the results are the same.
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5. Discussion

As a result of the analyses carried out in the study, it can be seen how the use of one or another
method of obtaining initial values can greatly affect the accuracy of the forecasts. Although once
the values of the parameters are optimized, these differences can be minimal (as other authors
already describe), their influence on accuracy is clear. As a consequence, the parameters may not be
optimal starting from unsuitable initial values, which complicates the optimization of the model in the
adjustment, and later, in the forecasts.

The first impression is to see how multiplicative trend models start with a much higher MAPE
than additive trend models do. In principle, it could be thought that it is due to the trend method
used, but if the MAPE values are observed in Figure 3b, it is observed how this is not the case, but the
accuracy is worsened by the rest of the equations with the trend. Clearly, the work of the parameters
in this case is to mitigate the effect of the initial seasonal and level values. It has also been observed
that the result of the MAPE depends a lot on the trend and seasonality methods used. This does not
mean that one method is better than another method, but there are differences between them at the
initial state that the model must deal with. For each group of methods, we tried to locate differences
within the trend, level, and seasonal methods, looking for the MAPE of the model without optimizing.
The cases of multiplicative trend, for example, do not show large differences between initialization
methods. On the contrary, the methods that use the additive trend do show a great dependence on how
to obtain the initial values. Another factor to highlight is the behavior of seasonal indices. Depending
on the method, a greater or lesser variability can be observed.

Thus, for the multiple seasonal methods of additive trend it is proposed to use the Taylor method
for the level, the overall method for the trend, and the simple method or that of the NIST for seasonality.
For models with a multiplicative trend, the use of the average method for the level, the Granger and
Newbold method for the trend, and any of the methods proposed for seasonality are proposed.

6. Conclusions

In this article, we have presented new methods of obtaining initial values for multiple seasonal
Holt–Winters models. These methods are based on the adaptation of existing methods for models
with a single seasonality. In addition, a comparative analysis between our proposals and well-known
methods published in the literature has been carried out in order to determine their influence on the
accuracy of the models. All these initialization methods have been applied to the prediction of the
electricity demand time series in Spain, in a period between 1999 and 2004. The characteristics of the
series allow all methods to be analyzed effectively. An experimental design has been performed in
which MAPE has been analyzed as a response variable, using the different initialization methods of the
smoothing equations as factors to influence the response variable. The results show that the influence
of the methods of obtaining initial values is greater on multiple seasonal Holt–Winters models with an
additive trend. Finally, and based on the results obtained, a proposal on which method of initialization
to use has been made.
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Appendix A

The multiple seasonal Holt–Winters formulae are shown in Table A1. They are organized according
to the trend (rows) and seasonal method (columns), as described in [8].
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Table A1. Multiple seasonal methods equations.

Trend Trend

None Additive Damped Additive Multiplicative Damped Multiplicative

Seasonality

None St = αXt + (1− α)St−1
X̂t(k) = St + ϕk

ARεt

St = αXt + (1− α)(St−1 + Tt−1)
Tt = γ(St − St−1) + (1− γ)Tt−1

X̂t(k) = St + kTt + ϕk
ARεt

St = αXt + (1− α)(St−1 + φTt−1)
Tt = γ(St − St−1) + (1− γ)φTt−1

X̂t(k) = St + Tt
k∑

n=1
φn + ϕk

ARεt

St = αXt + (1− α)(St−1Rt−1)
Rt = γ(St/St−1) + (1− γ)Rt−1

X̂t(k) = StRk
t + ϕk

ARεt

St = αXt + (1− α)
(
St−1Rφt−1

)
Rt = γ(St/St−1) + (1− γ)Rφt−1

X̂t(k) = StR

k∑
j=1
φ j

t + ϕk
ARεt

Additive

St = α(Xt −
∑
i

I(i)t−si
) +

(1− α)St−1

I(i)t = δ(i)
Xt − St −

∑
j,i

I( j)
t−s j

+(
1− δ(i)

)
I(i)t−si

X̂t(k) = St +
∑
i

I(i)t−si+k + ϕk
ARεt

St = α(Xt −
∑
i

I(i)t−si
) +

(1− α)(St−1 + Tt−1)
Tt = γ(St − St−1) + (1− γ)Tt−1

I(i)t = δ(i)
Xt − St −

∑
j,i

I( j)
t−s j

+(
1− δ(i)

)
I(i)t−si

X̂t(k) = St + kTt +
∑
i

I(i)t−si+k +

ϕk
ARεt

St = α(Xt −
∑
i

I(i)t−si
) +

(1− α)(St−1 + φTt−1)
Tt = γ(St − St−1) + (1− γ)φTt−1

I(i)t =

δ(i)
Xt − St −

∑
j,i

I( j)
t−s j

+ (
1− δ(i)

)
I(i)t−si

X̂t(k) = St + Tt
∑k

n=1 φ
n +∑

i
I(i)t−si+k + ϕk

ARεt

St = α(Xt −
∑
i

I(i)t−si
) +

(1− α)(St−1Rt−1)
Rt = γ(St/St−1) + (1− γ)Rt−1

I(i)t = δ(i)
Xt − St −

∑
j,i

I( j)
t−s j

+(
1− δ(i)

)
I(i)t−si

X̂t(k) = StRk
t +

∑
i

I(i)t−si+k +ϕ
k
ARεt

St = α(Xt −
∑
i

I(i)t−si
) +

(1− α)
(
St−1Rφt−1

)
Rt = γ(St/St−1) + (1− γ)Rφt−1

I(i)t = δ(i)
Xt − St −

∑
j,i

I( j)
t−s j

+(
1− δ(i)

)
I(i)t−si

X̂t(k) = StR
∑k

j=1 φ
j

t +
∑
i

I(i)t−si+k+

Damped
Multiplicative

St =
αXt∏
i I(i)t−si

+ (1− α)St−1

I(i)t =

δ(i) Xt

St
∏

j,i I( j)
t−sj

+
(
1− δ(i)

)
I(i)t−si

X̂t(k) = St
∏

i
I(i)t−si+k + ϕk

ARεt

St =
αXt∏
i I(i)t−si

+ (1− α)(St−1 + Tt−1)

Tt = γ(St − St−1) + (1− γ)Tt−1

I(i)t = δ(i) Xt

St
∏

j,i I( j)
t−sj

+
(
1− δ(i)

)
I(i)t−si

X̂t(k) = (St + kTt)
∏

i
I(i)t−si+k +

ϕk
ARεt

St =
αXt∏
i I(i)t−si

+ (1− α)(St−1 + φTt−1)

Tt = γ(St − St−1) + (1− γ)φTt−1

I(i)t = δ(i) Xt

St
∏

j,i I( j)
t−sj

+
(
1− δ(i)

)
I(i)t−si

X̂t(k) =
(
St + Tt

∑k
n=1 φ

n
)∏

i
I(i)t−si+k +

ϕk
ARεt

St =
αXt∏
i I(i)t−si

+ (1− α)(St−1Rt−1)

Tt = γ(St/St−1) + (1− γ)Rt−1

I(i)t =

δ(i) Xt

St
∏

j,i I( j)
t−sj

+
(
1− δ(i)

)
I(i)t−si

X̂t(k) =
(
StRk

t

)∏
i

I(i)t−si+k +ϕ
k
ARεt

St =
αXt∏
i I(i)t−si

+ (1− α)
(
St−1Rφt−1

)
Rt = γ(St/St−1) + (1− γ)Rφt−1

I(i)t = δ(i) Xt

St
∏

j,i I( j)
t−sj

+
(
1− δ(i)

)
I(i)t−si

X̂t(k) =
(
StR

∑k
j=1 φ

j

t

)∏
i

I(i)t−si+k +

ϕk
ARεt
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Although they share a common underlaying structure, differences are notable in the equations. St

stands for the level equation. Tt stands for an additive trend smoothing equation, whereas Rt stands
for a multiplicative one. This name has been chosen according to Pegels’ classification. I(i)t are the
seasonal indices; there are as many indices as seasonalities considered. The superscript (i) stands
for the seasonality of length si considered. α, β, and δ(i) are the smoothing parameters. Xt are the
observed values and X̂t(k) are the k-ahead forecasted values. The factor φ stands for the damping
factor when using a damping trend, regardless of it being additive or multiplicative. ϕAR is the factor
of the adjustment with the first autocorrelation error. When the factor is null, the model does not
include this adjustment. εt is the one-step-ahead forecasting error.
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