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Abstract

:

In recent works, many authors generated strongly relatively nonexpansive sequences of mappings by the sequences of firmly nonexpansive-like mappings. In this paper, we introduce a new method for construction of strongly relatively nonexpansive sequences from firmly nonexpansive-like mappings.
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1. Introduction and Preliminaries


The class of firmly nonexpansive-like mappings has been introduced in [1]. Fixed point theory for such mappings can be applied to several nonlinear problems such as zero point problems for monotone operators, convex feasibility problems, convex minimization problems, equilibrium problems (see, [1,2,3,4,5] for more details).



Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach space X, J be a normalized duality mapping from X into dual   X *  , and   S , T : C → X   are firmly nonexpansive-like mappings. The set of all fixed points of T is denoted by   F ( T )  . It is known that if C is a bounded subset, then   F ( T )   is nonempty ([1], Theorem 7.4). We investigate asymptotic behavior of the following sequence   {  x n  }   in a uniformly smooth and 2-uniformly convex Banach space X.


   x  n + 1   =  Q C   J  − 1    ( J T  x n  −   (  μ X  )   − 2   J  (  x n  − S  x n  )  )   



(1)




for all   n ∈ N  , where    x 1  ∈ C  ,   μ X   denotes the uniform convexity constant of   X ,   and   Q C   denotes the generalized projection of X onto C. If X is a Hilbert space, then (1) is reduced to


   x  n + 1   = T  x n  ,   for   all   n ∈ N .  



(2)







Throughout the present paper, we denote by  N  the set of all positive integers,  R  the set of all real numbers, X a real Banach space with dual   X *  ,   ∥ . ∥   the norms of X and   X *  ,   〈 x ,  x *  〉   the value of    x *  ∈  X *    at   x ∈ X  ,    x n  ⟶ x   strong convergence of a sequence   {  x n  }   of X to   x ∈ X  ,    x n  ⇀ x   weak convergence of a sequence   {  x n  }   of X to   x ∈ X  ,   S X   the unit sphere of X, and   B X   the closed unit ball of X.



Now, we present some definitions which are needed in the sequel. The normalized duality mapping of X into   X *   is defined by


  J x = {  x *  ∈  X *  :  〈 x ,  x *  〉  = ∥ x  ∥ 2  = ∥  x *   ∥ 2  }  



(3)




for all   x ∈ X  . The space X is said to be smooth if


   lim  t → 0      ∥ x + t y ∥ − ∥ x ∥  t    



(4)




exists for all   x , y ∈  S X   . The space X is said to be uniformly smooth, if (4) converges uniformly in   x , y ∈  S X   . It is said to be strictly convex, if    ∥     x + y  2    ∥ < 1    whenever   x , y ∈  S X    and   x ≠ y  . It is said to be uniformly convex, if    δ X   ( ε )  > 0   for all   ε ∈ ( 0 , 2 ]  , where   δ X   is the modulus of convexity of X defined by


   δ X   ( ε )  = inf   1 − ∥     x + y  2    ∥ : x , y ∈   B X  ,  ∥ x − y ∥  ⩾ ε   



(5)




for all   ε ∈ [ 0 , 2 ]  .



The space X is said to be 2-uniformly convex, if there exists   c > 0   such that    δ X   ( ε )  ⩾ c  ε 2    for all   ε ∈ [ 0 , 2 ]  .



It is obvious that every 2-uniformly convex Banach space is uniformly convex. It is known that all Hilbert spaces are uniformly smooth and 2-uniformly convex. It is also known that all the Lebesgue spaces   L p   are uniformly smooth and 2-uniformly convex whenever   1 < p ⩽ 2  .



For a smooth Banach space, J is said to be weakly sequentially continuous if   { J  x n  }   converges weak to   J x  , whenever   {  x n  }   is a sequence of X such that    x n  ⇀ x ∈ X  .



Define   φ : X × X → R   by


  φ  ( x , y )  =   ∥ x ∥  2  − 2  〈 x , J y 〉  +   ∥ y ∥  2   



(6)




for all   x , y ∈ X  . It is known that


  φ ( x , y ) = φ ( x , z ) + φ ( z , y ) + 2 〈 x − z , J z − J y 〉  



(7)




for all   x , y , z ∈ X  .



Definition 1

([3]). The metric projection   P C   from X onto C and the generalized projection   Q C   from X onto C are defined by


   P C  x =  argmin  y ∈ C     ∥ y − x ∥  ,     Q C  x =  argmin  y ∈ C    φ  ( y , x )   



(8)




for all   x ∈ X  , respectively.





Obviously, for   x ∈ X   and   z ∈ C  ,


  z =  P C  x ⟺  〈 y − z , J  ( x − z )  〉  ,    ( ∀ y ∈ C )  .  



(9)




Also, for   x ∈ X   and   z ∈ C  ,


  z =  Q C  x ⟺  〈 y − z , J x − J z 〉  ,    ( ∀ y ∈ C )  .  



(10)







Definition 2

([1]). A mapping   T : C ⟶ X   is said to be a firmly nonexpansive-like mapping, if


  〈 T x − T y , J ( x − T x ) − J ( y − T y ) 〉 ⩾ 0  



(11)




for all   x , y ∈ C  .





Definition 3

([1]). Let   T : C ⟶ X   be a mapping. A point   p ∈ C   is said to be an asymptotic fixed point of   T ,   if there exists a sequence   {  x n  }   of C such that    x n  ⇀ p   and    x n  − T  x n  ⟶ 0  . The set of all asymptotic fixed points of T is denoted by    F ^   ( T )   .





Definition 4

([1]). The mapping T is said to be of type   ( r ) ,   if   F ( T )   is nonempty and   φ ( u , T x ) ⩽ φ ( u , x )   for all   u ∈ F ( T )   and   x ∈ C  .





It is known that if T is a mapping of type   ( r )  , then   F ( T )   is closed and convex.



Definition 5

([4]). The mapping T is said to be of type   ( s r ) ,   if T is of type   ( r )   and   φ ( T  z n  ,  z n  ) ⟶ 0  , whenever   {  z n  }   is a bounded sequence of C such that   φ  ( u ,  z n  )  − φ  ( u , T  z n  )  ⟶ 0   for some   u ∈ F ( T )  .





Definition 6

([4]). The sequence   {  T n  }   is said to satisfy the condition   ( Z ) ,   if every weak subsequential limit of   {  x n  }   belongs to   F (  {  T n  }  )  , whenever   {  x n  }   is a bounded sequence of C such that    x n  −  T n   x n  ⟶ 0  .





Now, we give some results which will be used in our main results.



Theorem 1

([5]). The space X is 2-uniformly convex if and only if there exists   μ ⩾ 0   such that


       ∥ x + y ∥  2  +   ∥ x − y ∥  2   2   ⩾   ∥ x ∥  2  +   ∥  μ  − 1   y ∥  2  ,   f o r   a l l   x , y ∈ X .  



(12)









Lemma 1

([4], Lemma 2.2). Suppose that X is 2-uniformly convex. Then


       1 μ   X   ∥ x − y ∥   2  ⩽ φ  ( x , y )  ,   f o r   a l l   x , y ∈ X .  



(13)









Lemma 2

([1]). If   T : C ⟶ X   is a firmly nonexpansive-like mapping, then   F ( T )   is a closed convex subset of X and    F ^   ( T )  = F  ( T )   .





Lemma 3

([4]). Suppose that X is uniformly convex. If   S : X ⟶ X   and   T : C ⟶ X   are mappings of type   ( r )   such that   F ( S ) ∩ F ( T )   is nonempty and S or T is of type   ( s r )  , then   S T : C ⟶ X   is of type   ( r )   and   F ( S T ) = F ( S ) ∩ F ( T )  . Further, if both S and T are of type   ( s r )  , then so is   S T  .





Lemma 4

([4]). Suppose that X is uniformly convex. Let   {  S n  }   be a sequence of mappings of X into itself and   {  T n  }   a sequence of mappings of C into X such that   F  (  {  S n  }  )  ∩ F  (  {  T n  }  )    is nonempty, both   {  S n  }   and   {  T n  }   are of type   ( s r ) ,   and   S n   or   T n   is of type   ( s r )   for all   n ∈ N  . Then the following holds:




	(i)

	
  {   S n   T n   }   is of type   ( s r )  ;




	(ii)

	
if X is uniformly smooth and both   {  S n  }   and   {  T n  }   satisfy the condition   ( Z )  , then so does   {   S n   T n   }  .











Theorem 2

([4]). Let X be a smooth and uniformly convex Banach space, C a nonempty closed convex subset of X, and   {  T n  }   a sequence of mappings of C into X such that   {  T n  }   is of type   ( s r )   and   {  T n  }   satisfies the condition   ( Z )  . If    T n   ( C )  ⊂ C   for all   n ∈ N   and J is weakly sequentially continuous, then the sequence   {  x n  }   defined by    x 1  ∈ C   and    x  n + 1   =  T n   x n    for all   n ∈ N   converges weakly to the strong limit of   {  Q F   x n  }  .





Now, we construct a new strongly relatively nonexpansive sequence from a given sequence of firmly nonexpansive-like mappings with a common fixed point in Banach spaces.




2. Main Results


The following results will be used in the sequel of the paper.



Lemma 5.

Let C be a nonempty closed convex subset of a smooth, strictly convex, 2-uniformly convex and reflexive Banach space X. Suppose that   ( S , T )   is a pair of firmly nonexpansive-like mappings of C into X and let   F = F ( S ) ∩ F ( T ) ≠ ∅  . Let U be a mapping of C into X defined by   U =  J  − 1    ( J T − β J  ( I − S )  )   , where   β > 0   and I denotes the identity mapping on C. Then


   φ  ( u , U x )  +   1 2      2  μ  X  2    − β    ∥ U x − T x ∥  2  ⩽ φ  ( u , T x )    








for all   u ∈ F ( U )   and   x ∈ C  .





Proof. 

Let   u ∈ F ( U )   and   x ∈ C   be given. Then, from (7) and the definition of   U ,   it follows that


     φ ( u , U x ) + φ ( U x , T x ) − φ ( u , T x )     = 2 〈 u − U x , J T x − J U x 〉          = 2 β 〈 u − U x , J ( x − S x ) 〉 .     



(14)




Since S is firmly nonexpansive-like and   u ∈ F ( S )  , we know that


     〈 u − U x , J ( x − S x ) 〉     = 〈 u − S x , J ( x − S x ) 〉 + 〈 S x − U x , J ( x − S x ) 〉          = 〈 S x − U x , J ( x − S x ) 〉 .     



(15)




On the other hand, we have


     〈 S x − U x , J ( x − S x ) 〉     =   − ∥ S x − T x ∥  2  +  〈 T x − U x , J  ( x − S x )  〉           ⩽ − ( ∥ S x − T x  ∥ 2  − ∥ T x − U x ∥ ∥ x − S x ∥ )          ⩽   − ( ∥ S x − x ∥  2  −   1 2     ∥ U x − T x ∥ )  2  +   1 4     ∥ U x − T x ∥  2           ⩽   ∥ U x − T x ∥  2  .     



(16)




Since   β > 0  , from (14)–(16), we deduce that


     φ  ( u , U x )  + φ  ( U x , T x )  − φ  ( u , T x )  ⩽   2 β ∥ U x − T x ∥  2  .     



(17)




Since X is 2-uniformly convex, Lemma 1 implies that


       (  μ X  )   − 2     ∥ U x − T x ∥  2  ⩽ φ  ( U x , T x )  .     



(18)




By (17) and (18), we obtain the desired inequality. □





Now, we present the construction of strongly relatively nonexpansive sequences in the following.



Theorem 3.

Let C be a nonempty closed convex subset of a smooth and 2-uniformly convex Banach space X;




	(i)

	
  {  T n  }  ,   {  S n  }   are sequences of firmly nonexpansive-like mappings from C into X such that   F = F  (  {  T n  }  )  ∩ F  (  {  S n  }  )    is nonempty;




	(ii)

	
  {  U n  }   is a sequence of mappings from C into X defined by


    U n  =  J  − 1    J  T n  −  β n  J  ( I −  S n  )     








for all   n ∈ N  , where   β n   is a sequence of real numbers such that   0 <  inf n   β n    and    sup n   β n  < 2   (  μ X  )   − 2     and I denotes the identity mapping on C.









Then   F  (  {  U n  }  )  ⊂ F  (  {  S n  }  )  ∩ F  (  {  T n  }  )    and   {  U n  }   is of type   ( s r )  . Also, if X is uniformly smooth and   {  S n  }   satisfies the condition   ( Z )  , then   {  U n  }   satisfies the condition   ( Z )  .





Proof. 

We can easily see that   F  (  {  U n  }  )  ⊂ F  (  {  S n  }  )  ∩ F  (  {  T n  }  )   . At first, we show that   {  U n  }   is of type   ( s r )  .



Note that   F (  {  U n  }  )   is nonempty. By Lemma 5, we also know that each   U n   is a mapping of type   ( r )   from C into X.



Suppose that   {  T n   z n  }   is a bounded sequence of C such that


  φ  ( u ,  T n   z n  )  − φ  ( u ,  U n   T n   z n  )  ⟶ 0  








for some   u ∈ F (  {  U n  }  )  . Then, it follows from Lemma 5 that


     0 ⩽   1 2    (   2  μ  X  2    −  β n  )    ∥  U n   z n  −  T n   z n  ∥  2  ⩽ φ  ( u ,  T n   z n  )  − φ  ( u ,  U n   z n  )  .     



(19)




Thus, it follows from    sup n   β n  < 2   (  μ X  )   − 2     that    ∥   U n   z n  −  T n   z n   ∥ ⟶ 0   . Consequently, we have   φ (  U n   z n  ,  T n   z n  ) ⟶ 0   and hence   {  U n  }   is of type   ( s r )  . Now, we present the proof of part   ( i i )  . Suppose that X is uniformly smooth and   {  S n  }   satisfies the condition   ( Z )  . Let p be a weak subsequential limit of a bounded sequence   {  x n  }   of C such that    T n   x n  −  U n   x n  ⟶ 0  . By the definition of   U n  , we have


     J  (  x n  −  S n   x n  )  =   1  β n     ( J  T n   x n  − J  U n   x n  )      



(20)




for all   n ∈ N  . Since J is uniformly norm-to-norm continuous on each nonempty bounded subset of X and    sup n    1  β n    < ∞  , it follows from (20) that


   ∥   x n  −  S n   x n   ∥ =    1  β n     ∥ J  T n   x n  − J  U n   x n  ∥  ⟶ 0 .  








From our assumptions, we know that   p ∈ F ⊃ F (  {  U n  }  )  . Therefore,   {  U n  }   satisfies the condition   ( Z )  . □





Remark 1.

It is notable that every nonexpansive mapping T is a mapping of type   ( r )  , but the converse is not necessarily satisfied in a Hilbert space. For instance, let   T : R ⟶ R   be defined by   T x =  x 2   , then T is of type   ( r )   and is neither nonexpansive nor of type   ( s r )  . Also, let   T :  R +  ⟶  R +    be defined by   T x =  x   . Then T is a mapping of type   ( s r )  .





Remark 2.

For a mapping T from C into X, the following assertions hold:




	(a)

	
T is of type   ( s r )   if and only if   { T , T , ⋯ }   is of type   ( s r )  ;




	(b)

	
   F ^   ( T )  = F  ( T )    if and only if   { T , T , ⋯ }   satisfies the condition   ( Z )  .











Corollary 1.

Let   ( S , T )   be a pair of firmly nonexpansive-like mappings from C into X such that   F ( T ) ∩ F ( S )   are nonempty and U be a mapping from C into X which is defined by


   U =  J  − 1    ( J T − β J  ( I − S )  )    








where   0 < β < 2   (  μ X  )   − 2    . Then the following assertions hold:




	(i)

	
  F ( U ) ⊂ F ( T ) ∩ F ( S )   and U is of type   ( s r )  ;




	(ii)

	
if X is uniformly smooth, then    F ^   ( U )  = F  ( U )   .











Theorem 4.

Let   {  V n  }   be a sequence of mappings from C into itself which are defined by


    V n  =  Q C   U n    








for all   n ∈ N  . Then the following consequences hold:




	(i)

	
  F (  {  V n  }  ) ⊂ F   and   {  V n  }   is of type   ( s r )  ;




	(ii)

	
if X is uniformly smooth and   {  S n  }   satisfies the condition   ( Z )  , then so does   {  V n  }  .











Proof. 

We know that   F  (  V n  )  ⊂ F  (  T n  )  ∩ F  (  S n  )    for all   n ∈ N   and hence   F (  {  V n  }  ) ⊂ F ≠ ∅  . We first show that   {  V n  }   is of type   ( s r )  . From   ( i )   of Corollary 1, we know that each   U n   is of type   ( s r )  . Since   Q C   is of type   ( s r )   from X into itself and


  F  (  Q C  )  ∩ F  (  U n  )  ⊂ F  (  T n  )  ∩ F  (  S n  )  ⊃ F ≠ ∅ ,  








Lemma 3 implies that each    V n  =  Q C   U n    is also of type   ( s r )  .



Since   {  Q C  ,  Q C  , . . . }   is of type   ( s r )   by Remark 2,   {  U n  }   is of type   ( s r )   by Theorem 3, and


  F  (  Q C  )  ∩ F  (  {  U n  }  )  ⊂ F ≠ ∅ ,  








the part   ( i )   of Lemma 4 implies that   {  V n  }   is of type   ( s r )  .



We finally show the part   ( i i )  . Suppose that X is uniformly smooth and   {  S n  }   satisfies the condition   ( Z )  . Since C is weakly closed, we can easily see that    F ^   (  Q C  )  = F  (  Q C  )  = C  . This implies that   {  Q C  ,  Q C  , . . . }   satisfies the condition   ( Z )  . From Theorem 3, we know that   {  U n  }   satisfies the condition   ( Z )  . Thus, the part   ( i i )   of Lemma 4 implies the conclusion. □





As a direct consequence of Theorems 2 and 4, we obtain the following result.



Theorem 5.

Let X be a uniformly smooth and 2-uniformly convex Banach space, C be a nonempty closed convex subset of X,    {  T n  }   a n d   {  S n  }    be two sequences of firmly nonexpansive-like mappings from C into X such that   F = F  (  {  T n  }  )  ∩ F  (  {  S n  }  )    is nonempty and   {  S n  }   satisfies the condition   ( Z )  ,   β n   be a sequence of real numbers such that


   0 <  inf n   β n  ,    sup n   β n  < 2   (  μ X  )   − 2   ,   








and   {  x n  }   be a sequence defined by    x 1  ∈ C   and


    x  n + 1   =  Q C   J  − 1    J  T n   x n  −  β n  J  (  x n  −  S n   x n  )     








for all   n ∈ N  . If J is weakly sequentially continuous, then   {  x n  }   converges weakly to the strong limit of   {  Q F   x n  }  .
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