xAct Implementation of the Theory of Cosmological Perturbation in Bianchi I Spacetimes
Abstract
:1. Introduction
2. Perturbed Bianchi I Spacetimes in the ADM Formalism
2.1. Summary of the Theory
2.2. Implementation in Mathematica
2.2.1. Preliminaries
In[1] := <<xAct‘xPert‘
In[2] := DefManifold[M3,3,];
In[3] := DefParameter[t,PrintAs->""];
In[4] := DefConstantSymbol[];
In[5] := DefMetric[1,h[-,-],CD,{";",""}, Otherdependencies->,WeightedWithBasis->AIndex];
In[6] := DefMetricPerturbation[h,h,];
and its potential:In[7] := DefTensor[[],{M3,t}];
In[8] := DefScalarFunction[V];
In[9] := DefTensorPerturbation[[LI[1]],[],{M3,t}];
and its perturbations are defined by:In[10] := DefTensor[P[i,j],{M3,t}];
In[11] := DefTensorPerturbation[P[LI[1],i,j],P[i,j],{M3,t}];
and its corresponding perturbation:In[12] := DefTensor[P[],{M3,t}];
In[13] := DefTensorPerturbation[P[LI[1]],P[],{M3,t}];
2.2.2. Scalar and Vector Constraints
In[14] := diffeo=-2PD[-k]@(h[-i,-j]P[j,k])+P[k,j]PD[-i]@h[-k,-j]+P[]PD[-i]@[];
In[15] := (Perturbed[diffeo,1]/);diffeo1 = %/.MakeRule[PD[-i]@[],0]/.MakeRule[PD[-i]@h[-j,-k],0]/.MakeRule[PD[-i]@P[j,k],0];
In[16] := ricci=(Deth[])](1/2)h[j,k]RiemannCD[-j,-i,-k,i]//RiemannToChristoffel//ChristoffelToMetric//Simplification//NoScalar;
where we have imposed again homogeneity of the background metric, , and we have put to zero the second order perturbations, .In[17] := Perturbed[ricci,2]/.MakeRule[{PD[-i]@h[-j,-k],0}]//ExpandPerturbation;r2 = %/.MakeRule[h[LI[2],-i,-j],0];
where we have imposed and in the last line.In[18] := (Deth[])(-1/2)P[i,j]P[k,l](h[-i,-k]h[-j,-l]-h[-i,-j]h[-k,-l]/2);ExpandPerturbation[Perturbed[%,2]];pipi = %/.MakeRule[{P[LI[2],-i,-j],0}]/.MakeRule[{h[LI[2],-i,-j],0}];
In[19] := 1/2Deth[](-1/2)P[]2+Deth[](1/2)(1/2PD[-i]@[]PD[-j]@[]h[i,j]+V[[]]);ExpandPerturbation[Perturbed[%,2]];matter = %/.MakeRule[{h[LI[2],-i,-j],0}]/.MakeRule[{[LI[2]],0}]/.MakeRule[{P[LI[2]],0}]/.MakeRule[{PD[-i]@[],0}];
In[20] := S = Series[(2)pipi-1/(2)r2+matter,{,0,2}];
and the shearIn[21] := DefTensor[[i,j],{M3,t},Symmetric[{i,j}]];
In[22] := DefTensor[b[],{M3,t}];
In[23] := AutomaticRules[,MakeRule[{[i,j]h[-i,-j],0}]];AutomaticRules[,MakeRule[{[i,-i],0}]];AutomaticRules[,MakeRule[{[i,j][k,l]h[-i,-k]h[-j,-l],b[]2}]];
In[24] := DefTensor[a[],{M3,t}];
In[25] := bgmomrule=MakeRule[{P[i,j],a[]/6 Deth[](1/6) h[i,j]+Deth[](1/2)/(2)[i,j]}];
In[26] := diffeo1/.bgmomrule//org//ChristoffelToMetric//Simplification//NoScalar;diffeoa=%/.MakeRule[{PD[-i]@h[-j,-k],0}];
In[27] := S0 = SeriesCoefficient[S,0];
In[28] := S0a=S0/.bgmomrule//ToCanonical;
and in terms of shear:In[29] := S1a = SeriesCoefficient[S,1];
In[30] := S1b = S1a/.bgmomrule//ToCanonical;
3. Scalar-Vector-Tensor Decomposition
3.1. Summary of the Theory
3.2. Implementation in Mathematica
In[31] := DefTensor[kv[-i],{M3,t}];
In[32] := DefTensor[e1[-i],{M3,t},OrthogonalTo->kv[i]];
In[33] := DefTensor[e2[-i],{M3,t},OrthogonalTo->{kv[i],e1[i]}];
In[34] := DefTensor[k[],{M3,t}];
and we add automatic rules to indicate that and are unit vectors:In[35] := AutomaticRules[kv,MakeRule[{kv[-i]kv[-b]h[i,j],k[]2}]];
In[36] := AutomaticRules[e1,MakeRule[{e1[-i]e1[-b]h[i,j],1}]];
In[37] := AutomaticRules[e2,MakeRule[{e2[-i]e2[-b]h[i,j],1}]];
and and as:In[38] := DefTensor[A1[-i,-j],{M3,t},Symmetric[{-i,-j}]];
In[39] := DefTensor[1[],{M3,t}];
In[40] := DefTensor[1[],{M3,t}];
In[41] := A1rule=MakeRule[{A1[-i,-j],h[-i,-j]/Sqrt[3]}];
and similarly for the matrices corresponding to vector and tensor modes. Finally, we define and :In[42] := A2rule=MakeRule[{A2[-i,-j],Sqrt[3/2](kv[-i]kv[-j]/k[]2-h[-i,-j]/3)}];
In[43] := DefTensor[0[],{M3,t}];
and their relation with the perturbations of the scalar field and its momentum:In[44] := DefTensor[0[],{M3,t}];
In[45] := 0rule=MakeRule[{[LI[1]],0[]/Sqrt[4]}];0rule=MakeRule[{P[LI[1]],0[]Sqrt[4]}];
In[46] := moderule1=MakeRule[{h[LI[1],-i,-j],1[]A1[-i,-j]+2[]A2[-i,-j]+3[]A3[-i,-j]+4[]A4[-i,-j]+5[]A5[-i,-j]+6[]A6[-i,-j]}];moderule2=MakeRule[P[LI[1],i,j],1[]A1[i,j]+2[]A2[i,j]+3[]A3[i,j]+4[]A4[i,j]+5[]A5[i,j]+6[]A6[i,j]];
In[47] := PoissonBracket[f_,g_,q_List,p_List]/;Length[q]==Length[p]:=D[f,{q}].D[g,{p}]-D[f,{p}].D[g,{q}];PoissonBracket[most__,q:Except[_List],p_]:=PoissonBracket[most,{q},p];PoissonBracket[most__,p:Except[_List]]:=PoissonBracket[most,{p}];
one can compute the Poisson brackets of any two phase space functions of perturbations. For instance:In[48] := Q={0[],1[],2[],3[],4[],5[],6[]};PQ={0[],1[],2[],3[],4[],5[],6[]};
In[49] := PoissonBracket[0[],0[],Q,PQ];
Out[49] := 1
and similarly for 3[], …, 6[]. The relation of these quantities and is implemented via the rule:In[50] := DefTensor[2[],{M3,t}];
In[51] := sheardecomposition=MakeRule[{[-i,-j],2[]A2[-i,-j]+3[]A3[-i,-j]+4[]A4[-i,-j]+5[]A5[-i,-j]+6[]A6[-i,-j]}];
In[52] := [-i,-j][i,j]/.sheardecomposition//org;brule=MakeRule[{b[],%(1/2)}];
In[53] := diffeoa/.MakeRule[{PD[-b]@h[LI[1],-i,-k],I*kv[-j]h[LI[1],-i,-k]}]/.MakeRule[{PD[-i]@P[LI[1],j,k],I*kv[-d]P[LI[1],j,k]}]/.MakeRule[{PD[-i]@[LI[1]],I*kv[-i][LI[1]]}]/.moderule1/.moderule2/.0rule/.0rule//ContractMetric;
In[54] := diffeob = %/.sheardecomposition/.A1rule/.A2rule/.A3rule/.A4rule/.A5rule/.A6rule//org;
In[55] := diffeob1=kv[i]diffeob//ToCanonical;diffeob2=e1[i]diffeob//ToCanonical;diffeob3=e2[i]diffeob//ToCanonical;
In[56] := S1b/.MakeRule[{PD[-i]@h[LI[1],-j,-k],I*kv[-j]h[LI[1],-i,-k]}]/.MakeRule[{PD[-j]@h[LI[1],-i,-k],I*kv[-j]h[LI[1],-i,-k]}]/.MakeRule[{PD[-i]@kv[i],0}]//ContractMetric;
In[57] := %/.moderule1/.moderule2/.0rule/.0rule//ToCanonical;
In[58] := S1c=%/.sheardecomposition/.A2rule/.A3rule/.A4rule/.A5rule/.A6rule/.brule//org;
In[59] := PoissonBracket[S1c,diffeob1,Q,PQ]/.bgconstraintrule//org
where we have evaluated the background constraint on-shell. We have checked that the Poisson brackets with the remaining constraints all vanish, in these cases identically (see the Mathematica notebook [16]). Hence, they are first class constraints, as they must be from the view point of general relativity.Out[59] := 0
In[60] := PoissonBracket[0[],S1c,Q,PQ]//org
Out[60] :=
In[61] := PoissonBracket[1[],S1c,Q,PQ]//org
Out[61] :=
4. Gauge Invariant Variables
4.1. Theory
4.2. Implementation in Mathematica
and similarly for .In[62] := DefTensor[0[],{M3,t}];DefTensor[0[],{M3,t}];
and similarly for 1new, 2new. With this choice, we can determine some of the coefficients . The remaining coefficients in , namely those with , are written as unknowns CI[], EI[], FI[], and JI[], with I=. For example, we define:In[63] := 0new=0[]+(6 Sqrt[2] P 1[])/((Deth[](1/6)) (Sqrt[6] a[]+6 (Deth[](1/6))22[]))-(6 Sqrt[] P[] 2[])/((Deth[](1/6)) (Sqrt[6] a[]+6 (Deth[](1/6))22[]));
and similar definitions for the remaining unknowns. We use these coefficients to define:In[64] := DefTensor[C0[],M3,t];DefTensor[E0[],M3,t];DefTensor[F0[],M3,t];DefTensor[J0[],M3,t];
In[65] := 3new=0[]C0[]+…+6[]C6[];4new=0[]E0[]+…+6[]E6[];5new=0[]F0[]+…+6[]F6[];6new=0[]J0[]+…+6[]J6[];
and similarly for the remaining ones.In[66] := DefTensor[A00[],M3,t];
In[67] := G=0new0[]+1new1[]+…+5new5[]+6new6[]+A00[] 0[] 0[]+2A01[] 0[] 1[]+…+2A56[] 5[] 6[]+A66[] 6[] 6[]//NoScalar;
5. Dynamics of Gauge Invariant Perturbations
5.1. Theory
5.2. Implementation in Mathematica
In[68] := S2a=SeriesCoefficient[S,2];
where, as before, we have replaced spatial derivatives by . The second step is to move from to :In[69] := S2a/.MakeRule[PD[-i]@PD[-j]@h[LI[1],-k,-l],-kv[-i]kv[-j]h[LI[1],-k,-l]]/.MakeRule[PD[-i]@[LI[1]]PD[-j]@[LI[1]],kv[-i]kv[-j][LI[1]][LI[1]]]/.MakeRule[PD[-i]@h[LI[1],-j,-k] PD[-d]@h[LI[1],-l,-m],kv[-i]kv[-l]h[LI[1],-j,-k]h[LI[1],-l,-m]]/.MakeRule[h[i,j]kv[-i]kv[-j],k[]2]/.MakeRule[PD[-j]@PD[-l]@h[LI[2],-i,-k],0]/.MakeRule[PD[-k]@PD[-l]@h[LI[2],-i,-j],0]/.bgmomrule//org;
and we also decompose the shear in its components :In[70] := %/.moderule1/.moderule2/.0rule/.0rule//org;
In[71] := %/.sheardecomposition//org;
In[72] := S2b=%/.A2rule/.A3rule/.A4rule/.A5rule/.A6rule/.brule//org;
In[73] := S2b/.MakeRule[0[],0old1]/.MakeRule[1[],1old1]/.MakeRule[2[],2old1]/.MakeRule[3[],3old1]/.MakeRule[4[],4old1]/.MakeRule[5[],5old1]/.MakeRule[6[],6old1];S2c=%/.MakeRule[0[],0old1]/.MakeRule[1[],1old1]/.MakeRule[2[],2old1]/.MakeRule[3[],3old1]/.MakeRule[4[],4old1]/.MakeRule[5[],5old1]/.MakeRule[6[],6old1];
In[74] := bgconstraintrule=MakeRule[V[[]],-1/(2)(2[]2+3[]2+4[]2+5[]2+6[]2)-1/Deth[](1/2)(P[]2/(2Sqrt[Deth[]])-(a[]2)/(12Deth[](1/6)))];
In[75] := S2d = S2c+dGdt1+dGdt2/.bgconstraintrule;
In[76] := S2e=S2d/.MakeRule[3[],0]/.MakeRule[4[],0]/.MakeRule[5[],0]/.MakeRule[6[],0]//org;
In[77] := H2g=H2f/.bgconstraintrule//org;
6. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Hamiltonian of Gauge Invariant Perturbations
References
- Bardeen, J.M. Gauge-invariant cosmological perturbations. Phys. Rev. D 1980, 22, 1882. [Google Scholar] [CrossRef]
- Arnowitt, R.L.; Deser, S.; Misner, C.W. The Dynamics of general relativity. arXiv 2004, arXiv:gr-qc/0405109. [Google Scholar]
- Langlois, D. Hamiltonian formalism and gauge invariance for linear perturbations in inflation. Class. Quantum Grav. 1994, 11, 389. [Google Scholar] [CrossRef]
- Agullo, I.; Ashtekar, A.; Nelson, W. Extension of the quantum theory of cosmological perturbations to the Planck era. Phys. Rev. D 2013, 87, 043507. [Google Scholar] [CrossRef] [Green Version]
- Agullo, I.; Ashtekar, A.; Nelson, W. The pre-inflationary dynamics of Loop Quantum Cosmology: Confronting quantum gravity with observations. Class. Quantum Grav. 2013, 30, 085014. [Google Scholar] [CrossRef] [Green Version]
- Castelló Gomar, L.; Fernández-Méndez, M.; Mena Marugán, G.A.; Olmedo, J. Cosmological perturbations in Hybrid Loop Quantum Cosmology: Mukhanov-Sasaki variables. Phys. Rev. D 2014, 90, 064015. [Google Scholar] [CrossRef] [Green Version]
- Castelló Gomar, L.; Martín Benito, M.; Mena Marugán, G.A. Gauge-Invariant Perturbations in Hybrid Quantum Cosmology. JCAP 2015, 6, 045. [Google Scholar] [CrossRef] [Green Version]
- Agulló, I.; Olmedo, J.; Sreenath, V. Hamiltonian theory of classical and quantum perturbations in Bianchi I spacetimes. 2020; in preparation. [Google Scholar]
- Pereira, T.S.; Pitrou, C.; Uzan, J.-P. Theory of cosmological perturbations in an anisotropic universe. JCAP 2007, 0709, 006. [Google Scholar] [CrossRef] [Green Version]
- Pitrou, C.; Pereira, T.S.; Uzan, J.-P. Predictions from an anisotropic inflationary era. JCAP 2008, 0804, 004. [Google Scholar] [CrossRef]
- Martín-García, J.M. xAct, Efficient Tensor Computer Algebra for Mathematica. 2004. Available online: http://www.xact.es (accessed on 19 February 2020).
- Brizuela, D.; Martín-García, J.M.; Marugan, G.A.M. Second-and higher-order perturbations of a spherical spacetime. Phys. Rev. D 2006, 74, 044039. [Google Scholar] [CrossRef] [Green Version]
- Brizuela, D.; Martín-García, J.M.; Marugan, G.A.M. xPert: Computer algebra for metric perturbation theory. Gen. Rel. Grav. 2009, 41, 2415. Available online: http://www.xact.es/xPert (accessed on 19 February 2020). [CrossRef] [Green Version]
- Brizuela, D.; Martín-García, J.M.; Tiglio, M. Complete gauge-invariant formalism for arbitrary second-order perturbations of a Schwarzschild black hole. Phys. Rev. D 2009, 80, 024021. [Google Scholar] [CrossRef] [Green Version]
- Brizuela, D.; Martín-García, J.M.; Sperhake, U.; Kokkotas, K.D. High-order perturbations of a spherical collapsing star. Phys. Rev. D 2010, 82, 104039. [Google Scholar] [CrossRef] [Green Version]
- Agullo, I.; Olmedo, J.; Sreenath, V. Available online: http://bitbucket.org/jolmedo/bianchii-perts/src/master/ (accessed on 19 February 2020).
- Olmedo, J.; Agullo, I.; Sreenath, V. Available online: http://bitbucket.org/jolmedo/cosmo-perts/src/master/ (accessed on 19 February 2020).
- Goldberg, J.; Newman, E.T.; Roveli, C. On Hamiltonian systems with first-class constraints. J. Math. Phys. 1991, 32, 2739. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agullo, I.; Olmedo, J.; Sreenath, V. xAct Implementation of the Theory of Cosmological Perturbation in Bianchi I Spacetimes. Mathematics 2020, 8, 290. https://doi.org/10.3390/math8020290
Agullo I, Olmedo J, Sreenath V. xAct Implementation of the Theory of Cosmological Perturbation in Bianchi I Spacetimes. Mathematics. 2020; 8(2):290. https://doi.org/10.3390/math8020290
Chicago/Turabian StyleAgullo, Ivan, Javier Olmedo, and Vijayakumar Sreenath. 2020. "xAct Implementation of the Theory of Cosmological Perturbation in Bianchi I Spacetimes" Mathematics 8, no. 2: 290. https://doi.org/10.3390/math8020290
APA StyleAgullo, I., Olmedo, J., & Sreenath, V. (2020). xAct Implementation of the Theory of Cosmological Perturbation in Bianchi I Spacetimes. Mathematics, 8(2), 290. https://doi.org/10.3390/math8020290