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Abstract

:

We obtain the Wang-type integral inequalities for compact minimal hypersurfaces in the unit sphere   S  2 n + 1    with Sasakian structure and use these inequalities to find two characterizations of minimal Clifford hypersurfaces in the unit sphere   S  2 n + 1   .






Keywords:


clifford minimal hypersurfaces; sasakian structure; integral inequalities; reeb function; contact vector field




MSC:


53C40; 53C42; 53C25












1. Introduction


Let M be a compact minimal hypersurface of the unit sphere   S  n + 1    with shape operator A. In his pioneering work, Simons [1] has shown that on a compact minimal hypersurface M of the unit sphere   S  n + 1    either   A = 0   (totally geodesic), or     A  2  = n  , or     A  2   ( p )  > n   for some point   p ∈ M  , where   A   is the length of the shape operator. This work was further extended in [2] and for compact constant mean curvature hypersurfaces in [3]. If for every point p in M, the square of the length of the second fundamental form of M is n, then it is known that M must be a subset of a Clifford minimal hypersurface


   S l     l n    ×  S m     m n    ,  








where l, m are positive integers,   l + m = n   (cf. Theorem 3 in [4]). Note that this result was independently proven by Lawson [2] and Chern, do Carmo, and Kobayashi [5]. One of the interesting questions in differential geometry of minimal hypersurfaces of the unit sphere   S  n + 1    is to characterize minimal Clifford hypersurfaces. Minimal hypersurfaces have also been studied in (cf. [6,7,8]). In [2], bounds on Ricci curvature are used to find a characterization of the minimal Clifford hypersurfaces in the unit sphere   S 4  . Similarly in [3,9,10,11], the authors have characterized minimal Clifford hypersurfaces in the odd-dimensional unit spheres   S 3   and   S 5   using constant contact angle. Wang [12] studied compact minimal hypersurfaces in the unit sphere   S  n + 1    with two distinct principal curvatures, one of them being simple and obtained the following integral inequality,


   ∫ M    A  2  ≤ n V o l  ( M )  ,  








where   V o l ( M )   is the volume of M. Moreover, he proved that equality in the above inequality holds if and only if M is the Clifford hypersurface,


   S 1     1 n    ×  S m      n − 1  n    .  











In this paper, we are interested in studying compact minimal hypersurfaces of the unit sphere   S  2 n + 1    using the Sasakian structure   φ , ξ , η , g   (cf. [13]) and finding characterizations of minimal Clifford hypersurface of   S  2 n + 1   . On a compact minimal hypersurface M of the unit sphere   S  2 n + 1   , we denote by N the unit normal vector field and define a smooth function   f = g ( ξ , N )  , which we call the Reeb function of the minimal hypersurface M. Also, on the hypersurface M, we have a smooth vector field   v = φ ( N )  , which we call the contact vector field of the hypersurface (v being orthogonal to  ξ  belongs to contact distribution). Instead of demanding two distinct principal curvatures one being simple, we ask the contact vector field v of the minimal hypersurface in   S  2 n + 1    to be conformal vector field and obtain an inequality similar to Wang’s inequality and show that the equality holds if and only if M is isometric to a Clifford hypersurface. Indeed we prove



Theorem 1.

Let M be a compact minimal hypersurface of the unit sphere   S  2 n + 1    with Reeb function f and contact vector field v a conformal vector field on M. Then,


    ∫ M   ( 1 −  f 2  )    A  2  ≤ 2 n  ∫ M   1 −  f 2     











and the equality holds if and only if M is isometric to the Clifford hypersurface    S l     l  2 n     ×  S m     m  2 n      , where   l + m = 2 n  .





Also in [12], Wang studied embedded compact minimal non-totally geodesic hypersurfaces in   S  n + 1    those are symmetric with respect to   n + 2   pair-wise orthogonal hyperplanes of   R  n + 2   . If M is such a hypersurface, then it is proved that


   ∫ M    A  2  ≥ n V o l  ( M )  ,  








and the equality holds precisely if M is a Clifford hypersurface. Note that compact embedded hypersurface has huge advantage over the compact immersed hypersurface, as it divides the ambient unit sphere   S n   into two connected components.



In our next result, we consider compact immersed minimal hypersurface M of the unit sphere   S  2 n + 1    such that the Reeb function f is a constant along the integral curves of the contact vector field v and show that above inequality of Wang holds, and we get another characterization of minimal Clifford hypersurface in the unit sphere   S  2 n + 1   . Precisely, we prove the following.



Theorem 2.

Let M be a compact minimal hypersurface of the unit sphere   S  2 n + 1    with Reeb function f a constant along the integral curves of the contact vector field v. Then,


    ∫ M    A  2  ≥ 2 n V o l  ( M )    











and the equality holds if and only if M is isometric to the Clifford hypersurface    S l     l  2 n     ×  S m     m  2 n      , where   l + m = 2 n  .






2. Preliminaries


Recall that conformal vector fields play an important role in the geometry of a Riemannian manifolds. A conformal vector field v on a Riemannian manifold   ( M , g )   has local flow consisting of conformal transformations, which is equivalent to


   £ v  g = 2 ρ g .  



(1)







The smooth function  ρ  appearing in Equation (1) defined on M is called the potential function of the conformal vector field v. We denote by   ( φ , ξ , η , g )   the Sasakian structure on the unit sphere   S  2 n + 1    as a totally umbilical real hypersurface of the complex space form   (  C  n + 1   ,  J ¯  ,  ,  )  , where   J ¯   is the complex structure and   ,   is the Euclidean Hermitian metric. The Sasakian structure   ( φ , ξ , η , g )   on   S  2 n + 1    consists of a   ( 1 , 1 )   skew symmetric tensor field  φ , a smooth unit vector field  ξ , a smooth 1-form  η  dual to  ξ , and the induced metric g on   S  2 n + 1    as real hypersurface of   C  n + 1    and they satisfy (cf. [13])


   φ 2  = − I + η ⊗ ξ ,   η ∘ φ = 0 ,   η  ( ξ )  = 1 ,   g  ( φ X , φ Y )  = g  ( X , Y )  − η  ( X )  η  ( Y )  ,  



(2)




and


    ∇ ¯  φ   ( X , Y )  = g  ( X , Y )  ξ − η  ( Y )  X ,    ∇ ¯  X  ξ = − φ X ,  



(3)




where   X , Y   are smooth vector fields,   ∇ ¯   is Riemannian connection on   S  2 n + 1    and the covariant derivative


    ∇ ¯  φ   ( X , Y )  =   ∇ ¯  X  φ Y − φ    ∇ ¯  X  Y  .  











We dente by N and A the unit normal and the shape operator of the hypersurface M of the unit sphere   S  2 n + 1   . We denote the induced metric on the hypersurface M by the same letter g and denote by ∇ the Riemannian connection on the hypersurface M with respect to the induced metric g. Then, the fundamental equations of hypersurface are given by (cf. [14])


    ∇ ¯  X  Y =  ∇ X  Y + g  ( A X , Y )  ,     ∇ ¯  X  N = − A X ,   X , Y ∈ X  ( M )  ,  



(4)






  R ( X , Y ) Z = g ( Y , Z ) X − g ( X , Z ) Y + g ( A Y , Z ) A X − g ( A X , Z ) A Y ,  



(5)






   ∇ A   ( X , Y )  =  ∇ A   ( Y , X )  ,  X , Y ∈ X  ( M )  ,  



(6)




where   X ( M )   is the Lie algebra of smooth vector fields and   R ( X , Y ) Z   is the curvature tensor field of the hypersurface M. The Ricci tensor of the minimal hypersurface M of the unit sphere   S  2 n + 1    is given by


  R i c ( X , Y ) = ( 2 n − 1 ) g ( X , Y ) − g ( A X , A Y ) ,  X , Y ∈ X ( M )  



(7)




and


   ∑  i = 1   2 n    ∇ A   (  e i  ,  e i  )  = 0  



(8)




holds for a local orthonormal frame    e 1  , … ,  e  2 n     on the minimal hypersurface M.



Using the Sasakian structure   ( φ , ξ , η , g )   on the unit sphere   S  2 n + 1   , we analyze the induced structure on a hypersurface M of   S  2 n + 1   . First, we have a smooth function f on the hypersurface M defined by   f = g ( ξ , N )  , which we call the Reeb function of the hypersurface M, where N is the unit normal vector field. As the operator  φ  is skew symmetric, we get a vector field   v = φ N   defined on M, which we call the contact vector field of the hypersurface M. Note that the vector field v is orthogonal to  ξ , and therefore lies in the contact distribution of the Sasakian manifold   S  2 n + 1   . We denote by   u =  ξ T    the tangential component of  ξ  to the hypersurface M and, consequently, we have   ξ = u + f N  . Let  α  and  β  be smooth 1-forms on M dual to the vector fields u and v, respectively, that is,   α ( X ) = g ( X , u )   and   β ( X ) = g ( X , v )  ,   X ∈ X ( M )  . For   X ∈ X ( M )  , we set   J X =   φ X  T    the tangential component of   φ X   to the hypersurface, which gives a skew symmetric   ( 1 , 1 )   tensor field J on the hypersurface M. It follows that   φ X = J X − β ( X ) N  . Thus, we get a structure   J , u , v , α , β , f , g   on the hypersurface M and using properties in Equations (2) and (3) of the Sasakian structure   ( φ , ξ , η , g )   on the unit sphere   S  2 n + 1    and Equation (4), it is straightforward to see that the structure   J , u , v , α , β , f , g   on the hypersurface M has the properties described in the following Lemma.



Lemma 1.

Let M be a hypersurface of the unit sphere   S  2 n + 1   . Then, M admits the structure   J , u , v , α , β , f , g   satisfying




	(i) 

	
   J 2  = − I + α ⊗ u + β ⊗ v  ,




	(ii) 

	
  J u = − f v  ,   J v = f u  ,




	(iii) 

	
  g ( J X , J Y ) = g ( X , Y ) − α ( X ) α ( Y ) − β ( X ) β ( Y )  ,




	(iv) 

	
   ∇ X  u = − J X + f A X  ,    ∇ X  v = − f X − J A X  ,




	(v) 

	
   ∇ J   ( X , Y )  = g  ( X , Y )  u − α  ( Y )  X + g  ( A X , Y )  v − β  ( Y )  A X  ,




	(vi) 

	
  ∇ f = − A u + v  ,




	(vii) 

	
    u  2  =   v  2  =  ( 1 −  f 2  )   ,   g ( u , v ) = 0  ,









where   ∇ f   is the gradient of the Reeb function f.





Let   Δ f   be the Laplacian of the Reeb function f of the minimal hypersurface M of the unit sphere   S  2 n + 1    defined by   Δ f = div ∇ f  . Then using Lemma 1 and    1 2  Δ  f 2  = f Δ f +   ∇ f  2    and Equations (6) and (8), we get the following:



Lemma 2.

Let M be a minimal hypersurface of the unit sphere   S  2 n + 1   . Then, the Reeb function f satisfies








	(i) 

	
   Δ f = −  2 n +   A  2   f  ,




	(ii) 

	
   1 2  Δ  f 2  = −  2 n +   A  2    f 2  +   ∇ f  2   .











On the hypersurface M of the unit sphere   S  2 n + 1   , we define a   ( 1 , 1 )   tensor field   Ψ = J A − A J  , then it follows that   g ( Ψ X , Y ) = g ( X , Ψ Y )  ,   X , Y ∈ X ( M )  , that is,  Ψ  is symmetric and that   t r Ψ = 0  . Next, we prove the following:



Lemma 3.

Let M be a compact minimal hypersurface of the unit sphere   S  2 n + 1   . Then,


    ∫ M   1 −  f 2     A  2  =  ∫ M   2 n − 2 n  ( 2 n + 1 )   f 2  +  1 2    Ψ  2   .   













Proof. 

Using Equation (7), we have   R i c  ( v , v )  =  ( 2 n − 1 )    v  2  −   A v  2   . Now, using Lemma 1, we get


    £ v  g   ( X , Y )  = − 2 f g  ( X , Y )  − g  ( Ψ X , Y )  ,  








which on using the fact that   t r Ψ = 0  , gives


     £ v  g  2  = 8 n  f 2  +   Ψ  2  .  











Also, using (iii) of Lemma 1, we have


    J A  2  =   A  2  −   A u  2  −   A v  2  ,  








which together with second equation in (iv) of Lemma 1 and the fact that   t r J A = 0  , implies


    ∇ v  2  = 2 n  f 2  +   A  2  −   A u  2  −   A v  2  .  











Note that second equation in (iv) of Lemma 1 also gives


  div v = − 2 n f .  











Now, inserting above values in the following Yano’s integral formula (cf. [15])


   ∫ M   R i c  ( v , v )  +  1 2     £ v  g  2  −   ∇ v  2  −   div v  2   = 0 ,  








we get


   ∫ M    ( 2 n − 1 )    v  2  + 2 n  f 2  +  1 2    Ψ  2  −   A  2  +   A u  2  − 4  n 2   f 2   = 0 .  



(9)







Also, (vi) of Lemma 1, gives   A u = v − ∇ f  , that is,     A u  2  =   v  2  +   ∇ f  2  − 2 v  ( f )   , which on using   div  ( f v )  = v  ( f )  + f div v = v  ( f )  − 2 n  f 2   , gives


    A u  2  =   v  2  +   ∇ f  2  − 2 div  ( f v )  − 4 n  f 2  .  











Inserting above value of    A u  2   in Equation (9), yields


   ∫ M   2 n   v  2  − 2 n  f 2  +  1 2    Ψ  2  −   A  2  +   ∇ f  2  − 4  n 2   f 2   = 0 .  



(10)







Integrating (ii) of Lemma 2, we get


   ∫ M    ∇ f  2  =  ∫ M   2 n +   A  2    f 2  ,  








which together with     v  2  = 1 −  f 2    and Equation (10) proves the integral formula. ☐





Lemma 4.

Let M be a minimal hypersurface of the unit sphere   S  2 n + 1   . Then, the contact vector field v is a conformal vector field if and only if   J A = A J  .





Proof. 

Suppose that   A J = J A .   Then, using Lemma 1 and symmetry of shape operator A and skew symmetry of the operator J, we have


    £ v  g   ( X , Y )  = g  (  ∇ X  v , Y )  + g  (  ∇ Y  v , X )  = − 2 f g  ( X , Y )  ,  X ∈ X  ( M )  ,  








which proves that v is a conformal vector field with potential function   − f  . Conversely, suppose v is conformal vector field with potential function  ρ . Then, using Equation (1), we have


    £ v  g   ( X , Y )  = g  (  ∇ X  v , Y )  + g  (  ∇ Y  v , X )  = 2 ρ g  ( X , Y )  ,  








which on using Lemma 1, gives


  g ( − J A X − f X , Y ) + g ( − J A Y − f Y , X ) = 2 ρ g ( X , Y ) ,  








that is,


  g ( A J X − J A X , Y ) = 2 ( ρ + f ) g ( X , Y ) .  











Choosing a local orthonormal frame    e 1  , … ,  e  2 n     on the minimal hypersurface M and taking   X = Y =  e i    in above equation and summing, we get   ρ = − f  . This gives   g ( A J X − J A X , Y ) = 0  ,   X , Y ∈ X ( M )  , that is,   A J = J A  . ☐





Lemma 5.

Let M be a minimal hypersurface of the unit sphere   S  2 n + 1   . If the contact vector field v is a conformal vector field on M, then


   A u =    A  2   2 n   v .   













Proof. 

Suppose v is a conformal vector field. Then, by Lemma 4, we have   J A = A J   . Note that for the Hessian operator   A f   of the Reeb function f using Lemma 1, we have


   A f   ( X )  =  ∇ X  ∇ f =  ∇ X   ( v − A u )  = − J A X − f X −  ∇ X  A u ,  X ∈ X  ( M )  ,  








which on using (vi) of Lemma 1, gives


   A f   ( X )  = − f  ( X +  A 2  X )  −  ( ∇ A )   ( X , u )  .  











Taking covariant derivative in above equation gives


      ∇  A f    ( X , Y )     =    − X  ( f )  (  ( Y +  A 2  Y )  − f  ∇  A 2    ( X , Y )  −   ∇ 2  A   ( X , Y , u )          +  ∇ A   ( Y , J X )  − f  ∇ A   ( Y , A X )  ,     








where we used (iv) of Lemma 1. Now, on taking a local orthonormal frame    e 1  , … ,  e  2 n     on the minimal hypersurface M and taking   X = Y =  e i    in above equation and summing, we get


      ∑  i = 1   2 n    ∇  A f    (  e i  ,  e i  )     =    − ∇ f −  A 2  ∇ f − f  ∑  i = 1   2 n    ∇  A 2    (  e i  ,  e i  )  −  ∑  i = 1   2 n     ∇ 2  A   (  e i  ,  e i  , u )          +  ∑  i = 1   2 n    ∇ A   (  e i  , J  e i  )  − f  ∑  i = 1   2 n    ∇ A   (  e i  , A  e i  )  .     











Note that for the minimal hypersurface, we have


      ∑  i = 1   2 n    ∇ A   (  e i  , A  e i  )     =     ∑  i = 1   2 n     ∇  e i    A 2   e i  − A   ∇ A    (  e i  ,  e i  )  + A   ∇  e i    e i          =     ∑  i = 1   2 n    ∇  A 2    (  e i  ,  e i  )  .     











Thus, the previous equation takes the form


   ∑  i = 1   2 n    ∇  A f     e i  ,  e i   = − ∇ f −  A 2  ∇ f − 2 f  ∑  i = 1   2 n    ∇  A 2     e i  ,  e i   −  ∑  i = 1   2 n     ∇ 2  A    e i  ,  e i  , u  +  ∑  i = 1   2 n    ∇ A    e i  , J  e i   .  



(11)







Now, using the definition of Hessian operator, we have


  R  ( X , Y )  ∇ f =  ∇  A f    ( X , Y )  −  ∇  A f    ( Y , X )  ,  








which gives


  R i c  ( Y , ∇ f )  = g  Y ,  ∑  i = 1   2 n    ∇  A f    (  e i  ,  e i  )   − Y  Δ f   








and we conclude


  Q  ( ∇ f )  = − ∇  ( Δ f )  +  ∑  i = 1   2 n    ∇  A f    (  e i  ,  e i  )  ,  



(12)




where Q is the Ricci operator defined by   R i c ( X , Y ) = g ( Q X , Y )  ,   X , Y ∈ X ( M )  . Using (i) of Lemma 2, we have


  ∇  Δ f  = − 2 n ∇ f −   A  2  ∇ f − f ∇   A  2   








and, consequently, using   Q  ( X )  =  ( 2 n − 1 )  X −  A 2  X   (outcome of Equation (7)), the Equation (12) takes the form


   ∑  i = 1   2 n    ∇  A f    (  e i  ,  e i  )  =  ( 2 n − 1 )  ∇ f −  A 2   ∇ f  − 2 n ∇ f −   A  2  ∇ f − f ∇   A  2  ,  








that is,


   ∑  i = 1   2 n    ∇  A f    (  e i  ,  e i  )  = − ∇ f −  A 2   ∇ f  −   A  2  ∇ f − f ∇   A  2  .  



(13)







Also, note that


     X    A  2      =    X   ∑  i = 1   2 n   g  A  e i  , A  e i    = 2  ∑  i = 1   2 n   g   ∇ A   ( X ,  e i  )  , A  e i         =    2  ∑  i = 1   2 n   g  X ,  ∇ A   (  e i  , A  e i  )   ,     








where we have used Equation (6) and symmetry of the shape operator A. Therefore, the gradient of the function    A  2   is


  ∇   A  2  = 2  ∑  i = 1   2 n    ∇ A   (  e i  , A  e i  )  ,  








and, consequently, Equation (13), takes the form


   ∑  i = 1   2 n    ∇  A f    (  e i  ,  e i  )  = − ∇ f −  A 2   ∇ f  −   A  2  ∇ f − 2 f  ∑  i = 1   2 n    ∇ A   (  e i  , A  e i  )  .  



(14)







Using Equations (11) and (14), we conclude


  −   A  2  ∇ f = −  ∑  i = 1   2 n     ∇ 2  A   (  e i  ,  e i  , u )  +  ∑  i = 1   2 n    ∇ A   (  e i  , J  e i  )  .  



(15)







Now, using Equations (6) and (8) and the Ricci identity, we have


   ∑  i = 1   2 n     ∇ 2  A   (  e i  ,  e i  , u )  =  ∑  i = 1   2 n     ∇ 2  A   (  e i  , u ,  e i  )  =  ∑  i = 1   2 n    R  (  e i  , u )  A  e i  − A R  (  e i  , u )   e i   ,  








which on using Equation (5) and   t r A = 0   gives


   ∑  i = 1   2 n     ∇ 2  A   (  e i  ,  e i  , u )  = −   A  2  A u + 2 n A u .  



(16)







Also, using   J A = A J  , we have


      ∑  i = 1   2 n    ∇ A   (  e i  , J  e i  )     =     ∑  i = 1   2 n     ∇  e i   J A  e i  − A   ∇ J   (   e i  ,  e i   + J   ∇  e o    e i          =     ∑  i = 1   2 n     ∇ J   (  e i  , A  e i  )  − A   ∇ J   (   e i  ,  e i    ,     








which on using (v) of Lemma 1, yields


   ∑  i = 1   2 n    ∇ A   (  e i  , J  e i  )  =   A  2  v − 2 n A u .  



(17)







Finally, using (vi) of Lemma 1 and Equations (16) and (17) in Equation (15), we get


  −   A  2   − A u + v  =   A  2  A u − 2 n A u +   A  2  v − 2 n A u  








and this proves the Lemma. ☐






3. Proof of Theorem 1


As the contact vector field v is a conformal vector field by Lemma 4, we have   J A = A J  , that is,   Ψ = 0  . Then Lemma 3 implies


   ∫ M   1 −  f 2     A  2  =  ∫ M   2 n − 2 n  ( 2 n + 1 )   f 2   ,  








that is,


   ∫ M   1 −  f 2     A  2  =  ∫ M   2 n  ( 1 −  f 2  )  − 4 n  f 2   .  



(18)







Therefore, we get the inequality


   ∫ M   1 −  f 2     A  2  ≤  ∫ M  2 n  ( 1 −  f 2  )  .  











Moreover, if the equality holds, then by Equation (18), we get   f = 0  , which in view of (vi), (vii) of Lemma 1, we conclude that   A u = v   and that the contact vector field v is a unit vector field. As v is a conformal vector field, combining   A u = v   with Lemma 5, we get     A  2  v = 2 n v  , that is,     A  2  = 2 n  . Therefore, M is a Clifford hypersurface (cf. [5]).



The converse is trivial.




4. Proof of Theorem 2


As the Reeb function f is a constant along the integral curves of the contact vector field v, we have   v ( f ) = 0  . Note that   div  ( f v )  = v  ( f )  + f div v = − 2 n  f 2   , which on integration gives   f = 0  , and consequently, the contact vector field v is a unit vector field. Then Lemma 3, implies


   ∫ M    A  2  =  ∫ M   2 n +  1 2    Ψ  2   ,  



(19)




which proves the inequality


   ∫ M    A  2  ≥ 2 n V o l  ( M )  .  











If the equality holds, then by Equation (4.1), we get that   Ψ = 0  , that is,   J A = A J  . Thus, by Lemma 4, the contact vector field v is a conformal vector field. Using Lemma 5, we get     A  2  = 2 n  . Therefore, M is a Clifford hypersurface (cf. [5]).



The converse is trivial.
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