Evaluation of the One-Dimensional Lp Sobolev Type Inequality
Abstract
:1. Introduction
2. Derivation of Green Function
3. The Sharp Constant and the Best Function of Sobolev Type Inequality
4. The Important Property of the Best Function
5. Examples of Sharp Constant
5.1. In the Case of
5.2. In the Case of
Author Contributions
Funding
Conflicts of Interest
References
- Aubin, T. Problémes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 1976, 11, 573–598. [Google Scholar] [CrossRef]
- Talenti, G. Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 1976, 110, 353–372. [Google Scholar] [CrossRef] [Green Version]
- Kametaka, Y.; Watanabe, K.; Nagai, A. The best constant of Sobolev inequality in an n dimensional Euclidean space. Proc. Jpn. Acad. Ser. A Math. Sci. 2005, 81, 57–60. [Google Scholar] [CrossRef]
- Takemura, K.; Yamagishi, H.; Kametaka, Y.; Watanabe, K.; Nagai, A. The best constant of Sobolev inequality corresponding to a bending problem of a beam on an interval. Tsukuba J. Math. 2009, 33, 253–280. [Google Scholar] [CrossRef]
- Takemura, K.; Kametaka, Y.; Watanabe, K.; Nagai, A.; Yamagishi, H. Sobolev type inequalities of time-periodic boundary value problems for Heaviside and Thomson cables. Bound. Value Probl. 2012, 2012, 95. [Google Scholar] [CrossRef] [Green Version]
- Kametaka, Y.; Nagai, A.; Watanabe, K.; Takemura, K.; Yamagishi, H. Giambelli’s formula and the best constant of Sobolev inequality in one dimensional Euclidean space. Sci. Math. Jpn. 2010, 71, 621–635. [Google Scholar]
- Kametaka, Y.; Takemura, K.; Yamagishi, H.; Nagai, A.; Watanabe, K. Heaviside cable, Thomson cable and the best constant of a Sobolev-type inequality. Sci. Math. Jpn. 2008, 68, 739–755. [Google Scholar]
- Kametaka, Y.; Oshime, Y.; Watanabe, K.; Yamagishi, H.; Nagai, A.; Takemura, K. The best constant of Lp Sobolev inequality corresponding to the periodic bounadry value problem for (−1)M(d/dx)2M. Sci. Math. Jpn. 2007, 269–281. [Google Scholar]
- Neagoe, V.-E. Inversion of the Van der Monde matrix. IEEE Signal Process. Lett. 1996, 3, 119–120. [Google Scholar] [CrossRef]
- Kamke, E. Differentialgleichungen, Lösungsmethoden und Lösungen I, 3rd ed.; Chelsea: New York, NY, USA, 1971. [Google Scholar]
- Beckner, W. Inequalities in Fourier Analysis. Ann. Math. 1975, 102, 159–182. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takemura, K.; Kametaka, Y. Evaluation of the One-Dimensional Lp Sobolev Type Inequality. Mathematics 2020, 8, 296. https://doi.org/10.3390/math8020296
Takemura K, Kametaka Y. Evaluation of the One-Dimensional Lp Sobolev Type Inequality. Mathematics. 2020; 8(2):296. https://doi.org/10.3390/math8020296
Chicago/Turabian StyleTakemura, Kazuo, and Yoshinori Kametaka. 2020. "Evaluation of the One-Dimensional Lp Sobolev Type Inequality" Mathematics 8, no. 2: 296. https://doi.org/10.3390/math8020296
APA StyleTakemura, K., & Kametaka, Y. (2020). Evaluation of the One-Dimensional Lp Sobolev Type Inequality. Mathematics, 8(2), 296. https://doi.org/10.3390/math8020296