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Abstract: We study optimal shape of an inverted elastic column with concentrated force at the end
and in the gravitational field. We generalize earlier results on this problem in two directions. First
we prove a theorem on the bifurcation of nonlinear equilibrium equations for arbitrary cross-section
column. Secondly we determine the cross-sectional area for the compressed column in the optimal
way. Variational principle is constructed for the equations determining the optimal shape and two
new first integrals are constructed that are used to check numerical integration. Next, we apply
the Noether’s theorem and determine transformation groups that leave variational principle Gauge
invariant. The classical Lagrange problem follows as a special case. Several numerical examples
are presented.

Keywords: optimal shape; Pontryagin’s principle; first integrals

1. Introduction

The first problem of optimization of elastic rods was formulated by Lagrange, [1]. The problem
consists of finding the shape of an elastic rod of given volume that has largest value of the buckling
force. The solution of the problem, with the simply supported boundary conditions, was obtained by
Clausen in [2]. Various versions of the optimal shape of a column problem were treated in a number of
publications, see [3–10].

In this work we propose to solve the problem of the strongest column in a constant gravity
field for the case when the upper end is fixed, as in [10], and, additionally, loaded by a constant
concentrated force at the top. Thus, we shall be able to reproduce both classical Clausen problem [2] as
well as the problem of heavy inverted column, treated in [10]. Also we shall examine the bifurcation
points of nonlinear equilibrium equations. Namely, we shall show that the lowest bifurcation point
of linear and nonlinear problem coincide. This is important, since optimization will be performed at
eigenvalues of the linearized problem. Also for differential equations describing the optimal shape of
the column, a variational principle is formulated and two new first integrals are obtained. We also
studied the invariance of the variational principle, by using the Noether’s theorem, see [11–13], where
integer and fractional order systems are treated. We showed that one of two first integrals follow
from the Absolute invariance of the Hamilton’s action integral and the other from so called Gauge
invariance. Pontryagin’s principle and variational methods, including Noether’s theory, represent
powerful methods for the study of mechanical and physical systems. Our results demonstrate this
on an example where new results are obtained by using these methods. For recent contribution to a
nontrivial extension of the Noether’s theory see [14]. In this work we will follow the notation of [11,15].
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2. Formulation

In Figure 1 we show the column with inextensible axis of length L. At upper end B the column is
fixed with the possibility of sliding along the axis x. A concentrated force of intensity F is applied at
the end B. Equations describing behaviour of the column [15] are

dH
dS

= q0 A;
dV
dS

= 0;
dM
dS

= −V cos ϑ + H sin ϑ. (1)

S

dS
gdS

y

x

O

B

F

A S( )

Figure 1. Coordinate system for the rod under self-weight and concentrated force.

Here H and V are components of cross-sectional force along x and y axes, M denotes the bending
moment, ϑ denotes the angle between the tangent to the column axis and the x axis of a coordinate
system x−O− y. Also S denotes the arc-length of the column axis. We use the specific distributed
force given as q0 = ρgA with ρ being the mass density, g is the gravitational constant and A > 0 is area
of the rod at an specific point of the rod axis. In order to apply the Bernoulli–Euler bending theory we
assume that A ∈ C [0, L] . Also

dx
dS

= cos ϑ;
dy
dS

= sin ϑ, (2)

express inextensibility of the axis. Constitutive equation of the classical Bernoulli–Euler theory reads

M = EI
dϑ

dS
. (3)

In (2) and (3) x and y denote coordinates of an arbitrary point in system x−O− y. We use E to
denote modulus of elasticity and I the second moment of the cross-section area. From Figure 1 we
conclude that

y (0) = x (0) = 0; M(0) = 0; V(0) = 0; ϑ (L) = 0; H (L) = −F, (4)

so that

H(S) = −
[∫ L

S
q0 A (ξ) dξ + F

]
; V(S) = 0. (5)

The column has volume given by

W =
∫ L

0
A(S)dS. (6)
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If the column cross-sections are similar and similarly oriented, then

I(S) = αA2(S), (7)

with α being a constant, equal α = 1
4π for circular cross-section. We introduce

t =
S
L

; a =
A
L2 ; λ1 =

q0L
αE

; λ2 =
F

αEL2 ; u =
x
L

; v =
y
L

; w =
W
L3 , (8)

so that (1)–(8) become

(a2ϑ̇)· +

λ1

1∫
t

a(ξ)dξ + λ2

 sin ϑ = 0; u̇ = cos ϑ; v̇ = sin ϑ, d(·)/dt =
·
(·), (9)

with
u(0) = 0; v(0) = 0; lim

t→0
a2(t)ϑ̇(t) = 0; ϑ(1) = 0. (10)

The volume of the column now becomes

w =

1∫
0

a(t)dt.

For (9) and (10) we find a trivial solution

ϑ0 = 0; u0 = t; v0 = 0,

valid for all values of λ1 and λ2 and for any a > 0. We examine the values of (λ1, λ2) = K ∈ R2 that
lead to a nontrivial solution of (9) and (10). First we write (9)1 in operator form as

M(K, ϑ) = (a2ϑ̇)· +

λ1

1∫
t

a(ξ)dξ + λ2

 sin ϑ, ϑ ∈ U,

with
U = {ϑ : ϑ ∈ C2(0, 1); lim

t→0
a2(t)ϑ̇(t) = 0; ϑ(1) = 0}.

Then (9)1 subject to (10)3,4 is equivalent to

M(K, ϑ) = 0. (11)

The solution ϑ0 = 0 is trivial solution valid for all K ∈ R2. The Fréchet derivative of M(K, ϑ)

calculated at ϑ0 = 0 is

DMϑ(K, 0)ϑ = B(K)ϑ = (a2ϑ̇)· +

λ1

1∫
t

a(ξ)dξ + λ2

 ϑ.

We consider the linearized boundary value problem B(K)ϑ = 0, i.e.,

(a2ϑ̇)· +

λ1

1∫
t

a(ξ)dξ + λ2

 ϑ = 0.
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It is known that the necessary condition for the existence of nontrivial solution of (9)1, (10)3,4 is
that there is nontrivial solution of the linearized equation

(a2ϑ̇)· +

λ1

1∫
t

a(ξ)dξ + λ2

 ϑ = 0, (12)

subject to
lim
t→0

a2(t)ϑ̇(t) = 0; ϑ(1) = 0. (13)

Suppose that K = (λ, λ2) with λ1 = λ > 0 fixed (gravitational force is not subject to changes) and
λ2 ∈ R and ϑ0 is a solution to (12) and (13). Then with λ2 as a bifurcation parameter, we have:

Proposition 1. Given λ1 = λ the boundary value problem (12) and (13) has only real eigenvalues, there are an
infinite but countable number of them, λ2n, n = 1, 2, . . . , and they can be ordered to satisfy

0 < λ21 < λ22 < λ23 < · · ·

The number of zeros of the eigenfunction ϑ2n in the interval (0,1) is n− 1. Also,

λ2n

n2 →
π2(∫ 1

0
dt

a(t)

)2 as n→ ∞.

Proof of Proposition 1. Note that with a2 = p, λ1

1∫
t

a(ξ)dξ = q, w = 1 the conditions of the

Theorem 4.3.1 of [16] are satisfied. The result follows from the application of this Theorem.

The condition that guarantees that (9) and (10) have nontrivial solution is formulated next. Our
interest is to show that at the lowest eigenvalue of (12) and (13), that is for K = (λ, λ21), the system (9)
and (10) with arbitrary a (t) > 0, t ∈ (0, 1), has a bifurcation point. We note that in the next Section a (t)
will be determined from the optimization procedure. We state this as:

Theorem 1. Let λ21 = Λ be the lowest eigenvalue of the system (12) and (13). The nonlinear boundary value
problem (11) has a bifurcation point at K = (λ, Λ), i.e, there is continuously differentiable curve through
((λ, Λ), 0) such that

{((λ, Λ(s)), ϑ(s)), s ∈ (−ε, ε) , ((λ, Λ(0)), ϑ(0)) = ((λ, Λ), 0)}, (14)

and with
M(K = (λ, Λ(s)) , ϑ(s)) = 0, s ∈ (−ε, ε) . (15)

Proof of Theorem 1. We use the Crandall–Rabinowitz theorem, see [17,18], p.15. Thus, let ϑ0 be
eigenvector of (12) and (13) with given λ and lowest eigenvalue Λ, i.e., K (λ, Λ) . We assume that ϑ0 is
normalized, so that

∫ 1
0 |ϑ0 (t)|2 dt = 1. Note that

(a2ϑ̇)· +

λ

1∫
t

a(ξ)dξ + Λ

 ϑ = 0,

subject to
lim
t→0

a2(t)ϑ̇(t) = 0; ϑ(1) = 0,
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leads to unique eigenvector ϑ = ϑ0. To prove that ϑ0 is unique, observe that a (1) 6= 0. If a (1) = 0,
from (3) we conclude that M(1) = 0. Then, the equilibrium equations for the rod lead to the conclusion
that there is only trivial solution ϑ0 = 0. Since a (1) 6= 0, the Theorem 5, p.73 of [19], implies that ϑ0 is
unique. Next we determine ∂B(K)ϑ0

∂Λ as

D2Mϑ,Λ(K, 0)ϑ0 = ϑ0.

Therefore it follows that D2Mϑ,Λ(K, 0)ϑ0 /∈ Range B(K = (λ, Λ)). Thus, Theorem I.5.1 of [18] applies
and (14) and (15) follow.

Remark 1. In principle the same results may be obtained if we treat both λ1 and λ2 as bifurcation parameters.
In that case a generalization of the Crandall–Rabinowitz theorem given in [18], p.161, must be used. However,
for our purposes the result presented here suffices since it shows that for any a (t) > 0, t ∈ (0, 1), the bifurcation
point of (12) and (13) leads to the bifurcation of (11).

The optimization problem is stated as: given K0 = (λ, Λ) find a∗(t) in (12) and (13) so that a
nontrivial solution exists and

w =

1∫
0

a∗(t)dt

is minimal. This will represent the strongest compressed inverted column. We proceed with determining
optimal a∗(t).

3. Minimization of w for Given Load Parameters λ and Λ

We rewrite the system (12) and (13) as

ϑ = x1; a2ϑ̇ = x2; x3 =

1∫
t

a(ξ)dξ, (16)

so that (12) and (13) transforms to

ẋ1 =
x2

a2 ; ẋ2 = −λx1x3 −Λx1; ẋ3 = −a, (17)

and
x1(1) = 0; x2(0) = 0; x3(1) = 0. (18)

The optimization problem now becomes: determine the control a∗ (t) ∈ U so that

min
a∈U

I = min
a∈U

1∫
0

a(t)dt =
1∫

0

a∗(t)dt, (19)

with differential constraints (17) and (18).
We take U as a set of continuous nonnegative functions, defined on the interval [0, 1],

i.e., U =
{

u : u ∈ C1 ([0, 1] ,R+) ; u(t) ≥ 0
}

.
To solve the optimization problem we use the Pontryagin’s principle. For recent example of

application of Pontryagin’s principle, see an example from biology [20]. Here the Pontryagin’s function
H becomes (see [12])

H = a + p1
x2

a2 + p2 (−λx1x3 −Λx1) + p3 (−a) ,
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where variables pi, i = 1, 2, 3, are determined from

ṗ1 = − ∂H
∂x1

= p2 (λx3 + Λ) ; ṗ2 = − ∂H
∂x2

= − p1

a2 ; ṗ3 = − ∂H
∂x3

= λx1 p2, (20)

and
p1(0) = 0; p2(1) = 0; p3(0) = 0. (21)

From the condition min
a∈U
H we obtain

∂H
∂a

= 1− 2p1
x2

a3 − p3 = 0, (22)

or

a =

(
2p1x2

1− p3

)1/3
. (23)

We note that state variables xi, i = 1, 2, and co-state variables pi, i = 1, 2, have an important
symmetry. Namely, by comparing

ẋ1 =
x2

a2 ; ẋ2 = −x1(λx3 + Λ); x1(1) = 0; x2(0) = 0;

ṗ1 = p2 (λx3 + Λ) ; ṗ2 = − p1

a2 ; p1(0) = 0; p2(1) = 0,

we conclude that for any c 6= 0 the solution x1, x2 determines the co-state variables p1, p2 by

p1 = cx2; p2 = −cx1.

This type of identification was used in [9] and is applicable to both single and bi modal
optimization of elastic rods. Since a ≥ 0, we conclude from (23) that c > 0. We set c = 1 so that

p1 = x2; p2 = −x1. (24)

Thus, (23) becomes

a =

(
2x2

2
1− p3

)1/3

. (25)

From (22) and (24) follows
∂2H
∂a2 = 6

x2
2

a4 ≥ 0. (26)

Note that (26) is a necessary condition for min
a∈U
H. We comment now on the sufficient conditions

for the minimality of (19). There are two main sufficiency theorems in optimal control theory. First
one is the Mangasarian’s sufficiency theorem, see [21], which requires that the objective function and
constraints are convex jointly in state and control variables for the minimization problems. The second
condition, known as the Arrow’s theorem, is applied as follows, see [22]. The control variable (23) is
substituted in Pontryagin’s functionH to obtain

H = 2p1
x2(

2x2
2

1−p3

)2/3 + p2 (−λx1x3 −Λx1) . (27)

Now, the condition min
a∈U
H is guaranteed if in expression (27) the functionH is convex function

with respect to xi, i = 1, 2, 3, when pi, i = 1, 2, 3, are fixed and positive. This is not the case here.
There are many other approaches to the problem of specifying the sufficient conditions for

minimum ofH. For example, in [23] the sufficient conditions involve Legendre–Clebsch condition and
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solution of an additional Riccati equation. Such a study is beyond the scope of our paper. Therefore, in
the analysis that follow we will use only the necessary conditions for min

a∈U
H given by (22).

Solving (20)3 and (21)3 for p3 we obtain

p3 = −λ
∫ t

0
x2

1(ξ)dξ, (28)

so that (25) leads to

1 + λ

t∫
0

ϑ2(ξ)dξ = 2aϑ̇2. (29)

Now, differentiating (29) it follows

(aϑ̇2)· − λ

2
ϑ2 = 0. (30)

Thus, the optimal compressed inverted column is determined from

(a2ϑ̇)· + λϑ

1∫
t

a(ξ)dξ + Λϑ = 0; (aϑ̇2)· − λ

2
ϑ2 = 0, (31)

subject to
lim
t→0

a2(t)ϑ̇(t) = 0; ϑ(1) = 0. (32)

Our condition (31) and (32) reduces to condition presented in [24]. Also, the optimality conditions
presented in [25,26] are equivalent to our conditions. We note that in [24–26] the results are obtained
by methods different from ours. From (29) and (25) we obtain

a(0)ϑ̇2(0) =
1
2

; a(0) = 0.

4. Variational Principle and First Integrals for (31), (32)

Let
ż = −a(t), (33)

with z (1) = 0. Then z(t) is positive decreasing function. With (33) the system (31) becomes

(ż2ϑ̇)· + λϑz + Λϑ = 0; (żϑ̇2)· +
λ

2
ϑ2 = 0, (34)

subject to
lim
t→0

ż2(t)ϑ̇(t) = 0; ϑ(1) = 0; w∗ = z (0) ; z(1) = 0. (35)

Without loss of generality, we analyze (34) and (35) for w∗ = 1. With w∗ = 1 we have

(ż2ϑ̇)· + λϑz + Λϑ = 0; (żϑ̇2)· +
λ

2
ϑ2 = 0, (36)

and
lim
t→0

ż2(t)ϑ̇(t) = 0; ϑ(1) = 0; z (0) = 1; z(1) = 0. (37)

We state now our central result as:

Theorem 2. For the solution to (36) and (37) we have:
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1. (z, ϑ) gives stationary value
δJ(z, ϑ, Λ) = 0,

to the functional

J(Z, Θ, Λ) =
1
2

1∫
0

(
Ż2Θ̇2 − λΘ2Z−ΛΘ2

)
dt. (38)

Here the functions (Z, Θ) belong to the space K defined as

K =

{
k : k = (Z, Θ); Z(0) = 1; Z(1) = 0; lim

t→0
Ż2(t)Θ̇(t) = 0; Θ(1) = 0

}
.

2. The functional (38) on the solution of (36) and (37) has value equal to zero, i.e.,

J(z, ϑ, Λ) =
1
2

1∫
0

(
ż2ϑ̇2 − λϑ2z−Λϑ2

)
dt = 0. (39)

3. The following first integrals of (36), (37) hold

3
2

ż2ϑ̇2 +
1
2

λϑ2z +
1
2

Λϑ2 = C,

8żϑ̇2z− 5ż2ϑ̇ϑ + 4 + 4
Λ
λ

[
1 + 2żϑ̇2

]
= 2Ct, (40)

where C = 3
2 ż(1)2ϑ̇(1)2 and is given as

C =
1
6

√(4
Λ
λ

)2
+ 12

(
1 +

Λ
λ

)
1

ϑ̇(1)2
+ 4

Λ
λ

2

ϑ̇(1)2.

Proof of Theorem 2. Let
L =

1
2

(
Ż2Θ̇2 − λΘ2Z−ΛΘ2

)
. (41)

Let I(Z, Θ) be a functional defined as

I(Z, Θ) =

1∫
0

Ldt,

and consider the problem of minimizing I when (Z, Θ) ∈ K. The necessary condition for optimality
are the Euler–Lagrange equations

d
dt

(
∂L
∂Ż

)
− ∂L

∂Z
= 0;

d
dt

(
∂L
∂Θ̇

)
− ∂L

∂Θ
= 0,

which are equal to (36). Therefore
δJ(z, ϑ, Λ) = 0,

which is 1 in Theorem 1. Next by multiplying (36)1 by ϑ and integrating, we get

1∫
0

(
−ż2ϑ̇2 + λϑ2z + Λϑ2

)
dt = 0,
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that proves (39). Since L given by (41) does not have explicit dependance on t, we conclude that
HamiltonianH is a constant (i.e.,H = ∂L

∂ż ż + ∂L
∂ϑ̇

ϑ̇−L = const.). Thus, for (36) and (37) we have [12]

∂L
∂ż

ż +
∂L
∂ϑ̇

ϑ̇−L =
3
2

ż2ϑ̇2 +
λ

2
ϑ2z +

Λ
2

ϑ2 = const.

or
3
2

ż2ϑ̇2 +
λ

2
ϑ2z +

Λ
2

ϑ2 =
3
2

ż2(1)ϑ̇2(1). (42)

To determine ż in terms of ϑ̇ we multiply (36)1 by ϑ and (36)2 by −2z, add the result, integrate
and use the boundary conditions to obtain

1∫
0

ż2ϑ̇2dt = 1−Λ
1∫

0

ϑ2dt. (43)

Also from (29) we have
1∫

0

ϑ2dt = − 1
λ

[
1 + 2ż(1)ϑ̇(1)2

]
. (44)

By combining (43) and (44) and integrating (42) we obtain

3
2

ż(1)2ϑ̇(1)2 − 4
Λ
λ

ż(1)ϑ̇(1)2 − 2
(

1 +
Λ
λ

)
= 0. (45)

By solving (45) for ż(1) and by using the result in (42) we obtain (40)1. Next we multiply (36)1 by
ϑ and (36)2 by z and substitute in the resulting equations the term ż2ϑ̇2 from (42) to obtain(

ż2ϑ̇ϑ
)·

= ż(1)2ϑ̇(1)2 − 4
3

[
λϑ2z + Λϑ2

]
,(

zżϑ̇2
)·

= ż(1)2ϑ̇(1)2 − 5
6

λϑ2z− 1
3

Λϑ2. (46)

Using (42) and eliminating the term λϑ2z from (46) we obtain

8
(

zżϑ̇2
)·
− 5

(
ż2ϑ̇ϑ

)·
= 3ż(1)2ϑ̇(1)2 + 4Λϑ2.

Integrating the previous relation and using the boundary conditions it follows

8zżϑ̇2 − 5ż2ϑ̇ϑ = 3ż(1)2ϑ̇(1)2t− 4 + 4Λ
∫ t

0
ϑ2dξ.

Finally, by expressing
∫ t

0 ϑ2dξ from (29) and recalling that 3ż(1)2ϑ̇(1)2 = 2C, we get

8żϑ̇2z− 5ż2ϑ̇ϑ = 2Ct− 4− 4
Λ
λ

[
1 + 2żϑ̇2

]
,

so that (40)2 holds.

Remark 2. In the special case Λ = 0 we have C = 2, so that first integrals take the form

3
2

ż2ϑ̇2 +
1
2

λϑ2z = 2,

5ż2ϑ̇ϑ− 8żϑ̇2z = 4 (1− t) ,

obtained in [10]. Also, by evaluating (40) at t = 0, it follows ϑ(0) = 2√
λ

.
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5. Invariance Properties of the Integral (38)

Consider transformation of independent and dependent variables in (38) given by

z(t) = z(t) + εFz(t, z(t), ϑ(t)),

ϑ(t) = ϑ(t) + εFϑ(t, z(t), ϑ(t)),

t = t + ε f (t, z(t), ϑ(t)), (47)

where Fz, Fϑ and f are generators of the infinitesimal transformation group and ε � 1. The case of
multi-time transformation and corresponding version for Noether-type first integrals is presented
in [14]. Here, it is assumed that Fz, Fϑ and f are continuously differentiable with respect to all variables.
If action integral (38) is invariant under the transformation (47), then Noether’s theorem guarantees
the existence of a first integral to the Euler–Lagrange’s system of equations (34), see [12], p. 137. Using
Noether’s theorem for the present case, we state:

Theorem 3. If the generators of the infinitesimal transformation group Fz, Fϑ, f satisfy

∂L
∂z

Fz +
∂L
∂ϑ

Fϑ +
∂L
∂ż

(Ḟz − ż ḟ )

+
∂L
∂ϑ̇

(Ḟϑ − ϑ̇ ḟ ) +
∂L
∂t

f + L ḟ − Ṗ = 0, (48)

where L = 1
2
(
ż2ϑ̇2 − λϑ2z−Λϑ2) and P = P(t, z, ϑ) is an arbitrary function continuously differentiable

with respect to all variables (gauge function), then the system (34) has a first integral of the form

∂L
∂ż

(Fz − ż f ) +
∂L
∂ϑ̇

(Fϑ − ϑ̇ f ) + L f − P = const. (49)

We apply now the Theorem 3 to the Lagrangian (41). Thus, we calculate ∂L
∂z , . . . , ∂L

∂ϑ̇
and substitute

the result into (48). The invariance condition then becomes

− 1
2

λϑ2Fz − (λϑz + Λϑ)Fϑ + żϑ̇2(Ḟz − ż ḟ )

+ ż2ϑ̇(Ḟϑ − ϑ̇ ḟ ) +
1
2

(
ż2ϑ̇2 − λϑ2z−Λϑ2

)
ḟ − Ṗ = 0. (50)

Consider two special cases generators of the infinitesimal transformation group Fz, Fϑ, f and
gauge function P:

1. Case 1: Suppose that Fz = Fϑ = P = 0, f = A, A = const. The condition (50) is satisfied and the
first integral (49) is

3
2

ż2ϑ̇2 +
1
2

λϑ2z +
1
2

Λϑ2 = C, (51)

given as (40)1. Note that this first integral (51) may be writen as 2ż2ϑ̇2 −L = C.
2. Case 2: Suppose that Fz = z, Fϑ = ϑ

2 , f = 0. We shall determine P so that (50) is satisfied. This
leads to the condition

Ṗ =

[
L+ż2ϑ̇2 − λ

2
ϑ2z
]

,

or
Ṗ = −C + 3ż2ϑ̇2 − 1

2
λϑ2z = C− 3

2
λϑ2z−Λϑ2.

By using (46) to eliminate λϑ2z we obtain

Ṗ =
C
4
+

9
8

(
ż2ϑ̇ϑ

)·
− Λ

2λ

(
1 + 2żϑ̇2

)·
.
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Finally, from (29) we have ϑ2 = − (1+2żϑ̇2)
·

λ , so that substituting in the previous equation and
integrating, we obtain

P =
C
4

t +
9
8

ż2ϑ̇ϑ− Λ
2λ

(
1 + 2żϑ̇2

)
+ Cp,

where Cp is a constant. The first integral (49) now becomes

8żϑ̇2z− 5ż2ϑ̇ϑ− 2Ct + 4
Λ
λ

[
1 + 2żϑ̇2

]
= const.

which is equal to (40)2 when we specify the value of constant.

6. Results of Numerical Solution to (36), (37)

Using variables (16), x4 = p3 and x5 = Λ the system (17), (18), (25) and (28) transforms to

ẋ1 =
x2(

2x2
2

1−x4

)2/3 ; ẋ2 = −λx1x3 − x5x1;

ẋ3 = −
(

2x2
2

1− x4

)1/3

; ẋ4 = −λx2
1; ẋ5 = 0, (52)

with boundary conditions

x1(1) = 0; x2(0) = 0; x3(1) = 0; x4(0) = 0. (53)

Thus, we have to choose Λ = x5 in order to satisfy x3(1) = (
1∫
t

a(ξ)dξ)|t=1 = 0. Conservation

laws (40) with xi, i = 1, . . . , 4, become

3
2

(x2(t))
2(

2x2(t)2

1−x4(t)

)2/3 +
λ

2
(x1(t))

2 x3(t) +
Λ
2
(x1(t))2 = C,

− 4 (1− x4(t)) x3(t)− 5x1(t)x2 (t) + 4 + 4
Λ
λ

x4 (t) = 2Ct, t ∈ (0, 1),

C =
1
6

√(4
Λ
λ

)2
+ 12

(
1 +

Λ
λ

)
1

ϑ̇(1)2
− 4

Λ
λ

2

ϑ̇(1)2, ϑ̇(1) =
x2(1)(

2x2
2(1)

1−x4(1)

)2/3 . (54)

In solving (52), (53) we used (54) to monitor the accuracy of the integration. We solved (52) and
(53) with λ as a given parameter. The eigenvalue Λ = x5 is determined so that x3 (0) = 1, that is the
volume of the column is given as w = 1. In Table 1 the results of computation are presented.

Table 1. Critical values of the load parameter.

λ 0 1 2 3 3.5 3.893026

Λ 3.289868 2.433148 1.583948 0.743068 0.326056 0

For values of λ shown in Table 1 the first integrals (54) are constants up to the order of 10−8. In
numerical solution of (52), (53) and evaluation of the first integrals we used the computer package
Mathcad 14.

In Figure 2 the optimal cross-sectional area is shown that corresponds to the following values
of parameter λ : λ0 = 0, λ1 = 1, λ3 = 3, λ = 3.893... The corresponding values of Λ are taken from
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Table 1. We note that to λ0 = 0 we have Λ = 3.289868133696451. This is a special case of optimally
shaped light column, see [15] p.216, and the exact value is Λ = π2

3 . Our numerical result given in the
Table 1 agrees with the exact value up to the order 10−10. Also for the light optimal rod, the analytical
result is a(1) = 4

3 , while our numerical value is a(1) = 1.333435777857. Another special case presented
in Figure 2 corresponds to the case λ = 3.893026 and the compressive force is Λ = 0. This shape is
shown by curve λ3.893... in Figure 2.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

t

a

l
0

l
1

l
3

l
3.893...

Figure 2. Cross-sectional area of the rod.

We present also the shape of the optimally designed column in the post-critical state. Thus, we
solve the following system

Ẋ = cos Θ; X (0) = 0; Ẏ = sin Θ; Y (0) = 0; Θ̇ =
M

(a∗)2 ; Θ (1) = 0;

Ṁ = −

λ

1∫
t

a∗(ξ)dξ + Λ

 sin Θ; M (0) = 0, (55)

where a∗ is given by (23). The solution for X, Y of (55) is shown in Figure 3 for λ = λcr, Λ = Λcr + 0.5,
with (λcr = 1, Λcr = 2.433148) . Also, in the same Figure 3 we show the shape of the rod x, y according
to linear theory.

x

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.55

1

Y

y

X

( , )X Y

( )x y,

Figure 3. Post-critical shape of optimally shaped rod X, Y and x = t, y, where ẏ = ϑ, and ϑ is the
eigenfunction of (12) and (13).
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7. Conclusions

We analysed the problem of finding the shape of the strongest compressed inverted column
in a constant gravity field. The problem treated here, for the case when the column has constant
cross-section, is analyzed in [27–29]. Our main results may be summarized as:

1. We proved that the eigenvalues of the linearized problem are bifurcation points of the nonlinear
equilibrium equations for arbitrary cross-sectional area, Theorem 1.

2. We formulated optimality conditions in the form (31) and (32). The variational principle and
two first integrals are determined.

3. We determined transformation group that generates first integrals via Noether’s theorem.
Those transformation groups leave the functional (38), absolutely in Case 1, and gauge invariant in
Case 2.

4. The shape of the column, as a function of arc-length, is determined for several values of
parameters given in Table 1. The special case λ = 0 corresponds to the known analytical solution of
Lagrange problem.

5. The post critical behaviour of the optimally shaped column is presented for one specific value
of parameters.

The increase of the buckling force for optimally shaped column and the column with constant
cross-section is between 12% for Λ = 0 , see [10], and 33%, for λ = 0, see [3].
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