Integral Representation for the Solutions of Autonomous Linear Neutral Fractional Systems with Distributed Delay
Abstract
:1. Introduction and Notations
2. Preliminaries and Problem Statement
3. Main Results
- (i)
- The conditions (SA) hold.
- (ii)
- The function is exponentially bounded.
4. Example
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diethelm, K. The Analysis of Fractional Differential Equations, an Application–Oriented Exposition Using Differential Operators of Caputo Type; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2010; Volume 2004. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science B.V: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman Scientific & Technical: Harlow, UK; John Wiley & Sons, Inc.: New York, NY, USA, 1994. [Google Scholar]
- Podlubny, I. Fractional Differential Equation; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kaczorek, T. Selected Problems of Fractional Systems Theory; Lecture Notes in Control and Information Sciences; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Stamova, I.; Stamov, G. Functional and Impulsive Differential Equations of Fractional Order; Qualitative analysis and applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Bonilla, B.; Rivero, M.; Trujillo, J. On systems of linear fractional differential equations with constant coefficients. Appl. Comput. Math. 2007, 187, 68–78. [Google Scholar] [CrossRef]
- Li, K.; Peng, J. Laplace transform and fractional differential equations. Appl. Math. Let. 2011, 24, 2019–2023. [Google Scholar] [CrossRef]
- Lin, S.D.; Lu, C.H. Laplace transform for solving some families of fractional differential equations and its applications. Adv. Differ. Equ. 2013, 137, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Golev, A.; Milev, M. Integral representation of the solution of the Cauchy problem for autonomous linear neutral fractional system. Int. J. Pure Appl. Math. 2018, 119, 235–247. [Google Scholar]
- Kiskinov, H.; Zahariev, A. Asymptotic stability of delayed fractional systems with nonlinear perturbation. AIP Conf. Proc. 2018, 2048, 050014. [Google Scholar]
- Zhang, H.; Cao, J.; Jiang, W. General solution of linear fractional neutral differential difference equations. Discret. Dyn. Nat. Soc. 2013. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, D. Variation of constant formulae for time invariant and time varying Caputo fractional delay differential systems. J. Math. Res. Appl. 2014, 34, 549–560. [Google Scholar]
- Kiskinov, H.; Zahariev, A. On fractional systems with Riemann-Liouville derivatives and distributed delays—Choice of initial conditions, existence and uniqueness of the solutions. Eur. Phys. J. Spec. Top. 2017, 26, 3473–3487. [Google Scholar] [CrossRef]
- Krol, K. Asymptotic properties of fractional delay differential equations. Appl. Math. Comput. 2011, 218, 1515–1532. [Google Scholar]
- Milev, M.; Zlatev, S. A note about stability of fractional retarded linear systems with distributed delays. Int. J. Pure Appl. Math. 2017, 115, 873–881. [Google Scholar] [CrossRef] [Green Version]
- Veselinova, M.; Kiskinov, H.; Zahariev, A. Stability analysis of linear fractional differential system with distributed delays. AIP Conf. Proc. 2015, 1690, 040013. [Google Scholar]
- Veselinova, M.; Kiskinov, H.; Zahariev, A. About stability conditions for retarded fractional differential systems with distributed delays. Commun. Appl. Anal. 2016, 20, 325–334. [Google Scholar]
- Kiskinov, H.; Milev, N.; Zahariev, A. A comparison type theorem for linear neutral fractional systems with distributed delays. AIP Conf. Proc. 2017, 1910, 050009. [Google Scholar]
- Veselinova, M.; Kiskinov, H.; Zahariev, A. Stability analysis of neutral linear fractional system with distributed delays. Filomat 2016, 30, 841–851. [Google Scholar] [CrossRef] [Green Version]
- Veselinova, M.; Kiskinov, H.; Zahariev, A. Explicit conditions for stability of neutral linear fractional system with distributed delays. AIP Conf. Proc. 2016, 1789, 040005. [Google Scholar]
- Boyadzhiev, D.; Kiskinov, H.; Veselinova, M.; Zahariev, A. Stability analysis of linear distributed order fractional systems with distributed delays. Fract. Calc. Appl. Anal. 2017, 20, 914–935. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.; Gordon, T.; Shu, L. Extended crossover model for human-control of fractional order plants. IEEE Access 2017, 5, 27622–27635. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.; Zhang, Y.; Gordon, T. Memory pattern identification for feedback tracking control in human-machine systems. Hum. Factors 2019. [Google Scholar] [CrossRef] [Green Version]
- Boyadzhiev, D.; Kiskinov, H.; Zahariev, A. Integral representation of solutions of fractional system with distributed delays. Integral Transforms Spec. Funct. 2018, 29, 725–744. [Google Scholar] [CrossRef]
- Zahariev, A.; Kiskinov, H.; Angelova, E. Linear fractional system of incommensurate type with distributed delay and bounded Lebesgue measurable initial conditions. Dyn. Syst. Appl. 2019, 28, 491–506. [Google Scholar]
- Zahariev, A.; Kiskinov, H.; Angelova, E. Smoothness of the fundamental matrix of linear fractional system with variable delays. Neural Parallel Sci. Comput. 2019, 27, 71–83. [Google Scholar]
- Zahariev, A.; Kiskinov, H. Existence of fundamental matrix for neutral linear fractional system with distributed delays. Int. J. Pure and Appl. Math. 2018, 119, 31–51. [Google Scholar]
- Li, M.; Wang, J. Finite time stability of fractional delay differential equations. Appl. Math. Lett. 2017, 64, 170–176. [Google Scholar] [CrossRef]
- Li, M.; Wang, J. Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Mathe. Comput. 2018, 324, 254–265. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madamlieva, E.; Konstantinov, M.; Milev, M.; Petkova, M. Integral Representation for the Solutions of Autonomous Linear Neutral Fractional Systems with Distributed Delay. Mathematics 2020, 8, 364. https://doi.org/10.3390/math8030364
Madamlieva E, Konstantinov M, Milev M, Petkova M. Integral Representation for the Solutions of Autonomous Linear Neutral Fractional Systems with Distributed Delay. Mathematics. 2020; 8(3):364. https://doi.org/10.3390/math8030364
Chicago/Turabian StyleMadamlieva, Ekaterina, Mihail Konstantinov, Marian Milev, and Milena Petkova. 2020. "Integral Representation for the Solutions of Autonomous Linear Neutral Fractional Systems with Distributed Delay" Mathematics 8, no. 3: 364. https://doi.org/10.3390/math8030364
APA StyleMadamlieva, E., Konstantinov, M., Milev, M., & Petkova, M. (2020). Integral Representation for the Solutions of Autonomous Linear Neutral Fractional Systems with Distributed Delay. Mathematics, 8(3), 364. https://doi.org/10.3390/math8030364