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Abstract: Hermite–Padé approximation has been a mainstay of approximation theory since the concept
was introduced by Charles Hermite in his proof of the transcendence of e in 1873. This subject occupies
a large place in the literature and it has applications in different subjects. Most of the studies of
Hermite–Padé approximation have mainly concentrated on diagonal sequences. Recently, there were
some significant contributions in the direction of row sequences of Type II Hermite–Padé approximation.
Moreover, various generalizations of Type II Hermite–Padé approximation were introduced and studied
on row sequences. The purpose of this paper is to reflect the current state of the study of Type II
Hermite–Padé approximation and its generalizations on row sequences. In particular, we focus on the
relationship between the convergence of zeros of the common denominators of such approximants
and singularities of the vector of approximated functions. Some conjectures concerning these studies
are posed.

Keywords: Montessus de Ballore theorem; orthogonal polynomials; Faber polynomials; simultaneous Padé
approximation; Hermite–Padé approximation; multipoint Padé approximation; inverse type results

1. Introduction

Charles Hermite [1] was the first who introduced the idea of Hermite–Padé approximation.
Particularly, he used it for systems of exponential functions to prove that e is transcendental. A formal
study of Hermite–Padé approximation for general systems of functions was initiated by Mahler [2] (see also
the papers by his students, Coates and Jager [3,4], for important results in this regard). There are basically
two different types of Hermite–Padé approximation, namely Types I and II. However, the combination of
both (called mixed type) is possible. In this paper, we primarily consider Type II.

Hermite–Padé approximation and its relatives have applications in various areas, for example,
in number theory (see [1,5–9]), numerical analysis (see [10–18]), multiple orthogonal polynomials
(see [18–21]), linear algebraic equations (see [22]), nonlinear dynamical systems (see [23]), Brownian
motion (see [24]), in random matrices (see [19,25]), Gibbs phenomenon (see [26]), and Lie algebra solution
of differential equations (see [27]). In addition to the proof of the transcendence of e, Hermite–Padé
approximation was used in various irrationality and transcendence proofs of important numbers (see,
e.g., [1,5–8]). Moreover, one can say that the theory of multiple orthogonal polynomials originated from
Hermite–Padé approximation (see, e.g., Section 2.2 of [28] for the explanation).

An optimal choice of the coefficients of the denominators and numerators of Hermite–Padé
approximants makes it an important tool to study analytic continuation of functions and localization of
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their singularities. We can make this point more clearly by considering classical Padé approximation
(scalar Hermite–Padé approximation) stated as follows.

Given a formal Taylor series at the origin

F(z) =
∞

∑
k=0

fkzk, (1)

for any integers n, m ≥ 0, we can find polynomials P ∈ Pn and polynomials Q ∈ Pm, Q 6≡ 0, such that

(QF− P)(z) = O(zn+m+1), as z→ 0

(Pn is the set of all polynomials of degree at most n). The rational function

Rn,m :=
P
Q

=
Pn,m

Qn,m
(2)

is uniquely defined and is called the (n, m) classical Padé approximant of F. The polynomials Pn,m and Qn,m in
Equation (2) are selected so that Qn,m is monic and gcd(Pn,m, Qn,m) = 1. For a function F as in Equation (1),
we denote by R0(F) the radius of the largest open disk at the origin to which F can be extended analytically
and by Rm(F) the radius of the largest open disk at the origin to which F can be extended so that F has at
most m poles counting multiplicities. Set

BR := {z ∈ C : |z| < R}.

By Qm(F), we denote the monic polynomial whose zeros are the poles of F in BRm(F) counting
multiplicities. The set of all distinct zeros of Qm(F) is denoted by Pm(F).

Analytic continuation and locations of poles including their multiplicities of F(z) = ∑∞
k=0 fkzk in

BRm(F) when F has exactly m poles in BRm(F) can be completely described by the convergences of {Rn,m}n≥0

and {Qn,m}n≥0 in the following theorem (see [29,30]).

Theorem 1 (Montessus de Ballore–Gonchar’s Theorem). Let F be defined as in Equation (1) and fix m ∈ N.
Then, the following statements are equivalent:

(a) R0(F) > 0 and F has exactly m poles in BRm(F) counting multiplicities.
(b) There is a polynomial Qm of degree m, Qm(0) 6= 0, such that the sequence of {Qn,m}n≥0 satisfies

lim sup
n→∞

‖Qm −Qn,m‖1/n = θ < 1,

where ‖ · ‖ denotes the coefficient norm in the space of all polynomials.

Moreover, if either (a) or (b) holds, then Qm = Qm(F),

θ =
max{|λ| : λ ∈ Pm(F)}

Rm(F)
, (3)

and

lim sup
n→∞

‖F− Rn,m‖1/n
K =

‖z‖K
Rm(F)

, (4)

where K is any compact subset of BRm(F) \ Pm(F) and ‖ · ‖K denotes the sup-norm on K.
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In [29], Montessus de Ballore proved that (a) implies (b) with Qm = Qm(F) and the inequalities with
the sign “≤” instead of “=” in Equations (3) and (4). This part of the above theorem is commonly known as
Montessus de Ballore’s theorem. The implication (b)⇒(a) with the inequalities with the sign “≥” instead
of “=” in Equations (3) and (4) was proved by Gonchar in [30]. In this current paper, we refer to this part
as the inverse statement of Montessus de Ballore–Gonchar’s Theorem. We also note that the sequence
{Rn,m(z)}n≥0 diverges at every point z, |z| > Rm(F) (see Section 7 of [31]).

Later, Gonchar [31] studied the rate of attraction of each individual pole of F in BRm(F) to zeros of
Qn,m. He introduced several indicators describing the asymptotic behavior of the zeros of Qn,m to a point
λ ∈ C \ {0}. Set

|z− w|1 := min{1, |z− w|}, z, w ∈ C.

Fix m ∈ N and a function F defined as in Equation (1). Let

Pn,m := {λn,1, λn,2, . . . , λn,mn}, mn ≤ m, n ≥ 0,

denote the collection of zeros of Qn,m repeated according to their multiplicity and enumerated in
nondecreasing distance to the point λ. The first indicator is defined by

∆(λ) := lim sup
n→∞

mn

∏
j=1
|λn,j − λ|1/n

1 = lim sup
n→∞

∏
|λn,j−λ|<1

|λn,j − λ|1/n.

It is easy to check that 0 ≤ ∆(λ) ≤ 1 under the convention when mn = 0 or |λn,j − λ| ≥ 1 for all
j = 1, 2, . . . , mn, the product is taken to be 1. The second and third indicators, nonnegative integers σ(λ)

and γ(λ), are defined as follows. We say that γ(λ) := ν if

lim
n→∞

|λn,ν − λ| = 0 and lim sup
n→∞

|λn,ν+1 − λ| > 0

(for ν > mn by convention |λn,ν − λ| := 1, and when lim supn→∞ |λn,1 − λ| > 0, we take γ(λ) = 0).
Similarly, σ(λ) := ν if

lim sup
n→∞

|λn,ν − λ|1/n < 1 and lim sup
n→∞

|λn,ν+1 − λ|1/n ≥ 1.

Moreover, we define
δj(λ) := lim sup

n→∞
|λn,j − λ|1/n

1 .

Clearly, γ(λ) ≥ σ(λ), and the statements ∆(λ) < 1 and σ(λ) ≥ 1 are equivalent.
The following theorem (see [31], Theorem 1) asserts that a pole of F of order ν in BRm(F) attracts with

geometric rate exactly ν zeros of the polynomials Qn,m.

Theorem 2 (Gonchar’s theorem). Let F be defined as in Equation (1), m ∈ N, and let 0 6= λ ∈ C. The following
two assertions are equivalent:

(a) λ ∈ BRm(F) and F has a pole at λ.
(b) ∆(λ) < 1.

If either (a) or (b) takes place, then

∆(λ) =
|λ|

Rm(F)
and σ(λ) = ν,
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where ν is the order of the pole at λ. Moreover, if we assume further that lim infn→∞ |λ− λn,ν+1| > 0, then

δ1(λ) = δ2(λ) = . . . = δν(λ) =

(
|λ|

Rm(F)

)1/ν

.

Naively, Gonchar asked what we can say about λ if λ attracts a certain numbers of zeros of the
polynomials Qn,m without such geometric rate in the above theorem. In [31], Gonchar also proposed the
following conjecture.

Theorem 3 (Gonchar’s conjecture). Fix m ∈ N. Let F be defined as in Equation (1). Assume that γ(λ) ≥ 1 and
λ 6= 0. Then, this series defines a function which is holomorphic at z = 0, Rm−1(F) ≥ |λ|, and λ is a singularity
of F.

Gonchar’s conjecture remains open. Special cases of the conjecture were proved by Vavilov, López,
Prokhorov, and Suetin (see [32–35]). In the final progress, the following weaker version of Gonchar’s
conjecture was proved by Suetin [35].

Theorem 4 (Suetin’s theorem). Assume that the formal power series F(z) = ∑∞
k=0 fkzk has coefficients such that

for fixed m ∈ N and sufficiently large n ∈ N the approximants Rn,m have precisely m finite poles λn,1, . . . , λn,m,
which are convergent:

lim
n→∞

λn,j = λj 6= 0, j = 1, . . . , m.

Then,

(i) The power series defines a holomorphic function F in the disk BRmin , where Rmin := min1≤j≤m |λj|.
(ii) Rm−1(F) = max1≤j≤m |λj|.
(iii) All points λ1, . . . , λm are singularities of F, the ones lying in the disk BRm−1(F) are poles, and F has no other

poles in this disk.

It is easy to check that if the Taylor coefficients of F(z) = ∑∞
k=0 fkzk satisfy fk 6= 0 and fk+1 6= 0,

then fk/ fk+1 is a zero of Qn,1. Therefore, when m = 1, Gonchar’s conjecture and Suetin’s theorem reduce
to the following Fabry ratio theorem (see [36]).

Theorem 5 (Fabry ratio theorem). Suppose that the coefficients of a power series F(z) = ∑∞
k=0 fkzk are such that

the limit
lim
k→∞

fk
fk+1

= λ 6= 0

exists. Then, the series converges uniformly on each compact subset of the disk B|λ| and λ is a singular point of the
function F.

Recently, extensions of Montessus de Ballore–Gonchar’s theorem to Type II Hermite–Padé
approximation and its generalizations were proved. As time progresses, there were many results on
Type II Hermite–Padé approximation in the direction of Gonchar’s conjecture. The purpose of this survey
paper is to review all those results and collect open problems in this respect.
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2. Hermite–Padé Approximation

2.1. Definition and Notation

Type II Hermite–Padé approximation involves the approximation of a vector of functions by a vector
of rational functions with the same denominator. Let F = (F1, F2, . . . , Fd) be a system of d formal Taylor
expansions at the origin; that is, for each ` = 1, 2, . . . , d, we have

F`(z) =
∞

∑
k=0

fk,`zk, fk,` ∈ C. (5)

In what follows, N := {1, 2, 3, . . .}, Pn is the set of all polynomials of degree at most n, and for a given
multi-index m = (m1, m2, . . . , md) ∈ Nd, we define

|m| := m1 + m2 + · · ·+ md.

Definition 1. Let F = (F1, F2, . . . , Fd) be a system of d formal Taylor expansions as in Equation (5) and
m = (m1, m2, . . . , md) ∈ Nd be a fixed multi-index. Then, for each n ≥ max{m1, m2, . . . , md}, there exist
Q ∈ P|m| and P` ∈ Pn−m`

for all ` = 1, 2, . . . , d such that Q 6≡ 0 and

Q(z)F`(z)− P`(z) = O(zn+1), as z→ 0. (6)

The vector of rational functions Rn,m = (P1/Q, P2/Q, . . . , Pd/Q) is called an (n, m) Type II Hermite–Padé
(HP) approximant of F.

Traditionally, the numbers of interpolation conditions of F`, for ` = 1, 2, . . . , d, in Equation (6) at 0
are selected to be the same, which is n + 1. Since m` = 0 does not provide any advantage in locating
singularities of F`, we can restrict our multi-indices m ∈ Nd as stated in Definition 1. For any fixed
(n, m) ∈ N×Nd, in general, Rn,m may not be unique and we assume that, given (n, m), one particular
solution is assigned. We write

Rn,m = (Rn,m,1, Rn,m,2, . . . , Rn,m,d) = (Pn,m,1, Pn,m,2, . . . , Pn,m,d)/Qn,m, (7)

where Pn,m,`, ` = 1, 2, . . . , d, and Qn,m are chosen so that Qn,m is a monic polynomial that has no common
zero with all the Pn,m,`. When m remains fixed, we call the sequences {Rn,m}n≥|m| m row sequences. When n
and m have the relation,

m1 = · · · = md = m, n = (d + 1)m, m ∈ N

(or nearby configurations of multi-indices), the sequences {Rn,m} are called diagonal sequences.
Another construction called Type I HP approximants has very close algebraic relation to Type II HP
approximants. For Type I HP approximation, one wants to approximate polynomial combination of the
vector (F1, F2, . . . , Fd) by a polynomial. However, in Type II HP approximation, one wants to approximate
F` separately by rational functions with the same denominator. For interested readers, we refer to Chapter 4
of [37] for more details about Type I HP approximation. Since we only provide the survey of the studies
of Type II HP approximants, we omit the word “Type II” when we refer to Type II HP approximants.
Moreover, we would like to emphasize that, for d = 1, the HP approximant Rn,m reduces to the (n−m, m)

classical Padé approximant. However, because we are interested in the cases when m is fixed and n→ ∞,
all theorems in Section 1 hold for the scalar HP approximation.
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2.2. Results and Conjectures

In the direction of row sequences, the paper [38] by Graves-Morris and Saff was a pioneering result in
the sense that it initiated a convergence theory for HP approximants. In [38], they proved a Montessus de
Ballore type theorem for HP approximants under the concept of polewise independence. Later, Cacoq,
de la Calle, and López [39] improved the results [38] in several ways; namely, improving the estimates
on the rates of convergences of {Rn,m}n≥|m| and {Qn,m}n≥|m| and weakening the assumption of polewise
independence. Note that in the Montessus de Ballore type theorem for HP approximants in [39], they found
the exact rate of convergence of {Rn,m}n≥|m| but not of {Qn,m}n≥|m|. A significant contribution in the
direction of row sequences is due to Cacoq, de la Calle, and López [40] where they gave necessary and
sufficient conditions for the convergence with geometric rate of {Qn,m}n≥|m| and calculated the exact rate
of convergence of {Qn,m}n≥|m|. To explain the results in [40], we need to state some definitions.

Definition 2. Let Ω := (Ω1, Ω2, . . . , Ωd) be a system of domains such that, for each ` = 1, 2, . . . , d, F` is
meromorphic in Ω`. We say that λ ∈ C is a pole of F in Ω of order τ if there exists an index ` ∈ {1, 2, . . . , d}
such that λ ∈ Ω` is a pole of F` of order τ, and for β 6= ` either λ is a pole of Fβ of order less than or equal to τ or
λ 6∈ Ωβ. When Ω = (Ω, Ω, . . . , Ω), we say that λ is a pole of F in Ω.

Let R0(F) be the radius of the largest disk BR0(F) to which all the expansions F`, ` = 1, 2, . . . , d can
be extended analytically. If R0(F) = 0, we take BRm(F) = ∅, m ≥ 0; otherwise, Rm(F) is the radius of the
largest disk BRm(F) centered at the origin to which all the analytic elements (F`,BR0(F`)) can be extended so
that F has at most m poles counting multiplicities.

To prove an analog of Montessus de Ballore–Gonchar’s theorem for HP approximants, we have to
decide what actually is the limit of {Qn,m}n≥|m|. We found that the convergence of {Qn,m}n≥|m| for the
vector case is more complicated than the one for the scalar case, as the following example shows.

Example 1. Let F = (F1, F2), where

F1(z) =
1

z− 2
+

∞

∑
k=0

( z
3

)2k

+
1

z− 4
, F2(z) =

1
z− 2

+
∞

∑
k=0

( z
3

)2k

and fix m = (1, 1). Define F̂ := (F̂1, F̂2), where

F̂1(z) = F1(z)− F2(z) =
1

z− 4
, F̂2(z) = F2(z) =

1
z− 2

+
∞

∑
k=0

( z
3

)2k

It is not difficult to check that HP approximants of (F, m) and (F̂, m) have the same Qn,m.
Applying Theorem 4.4 in [39] for F̂, 2 and 4 which are poles of F attract zeros of Qn,m with geometric rate as
n→ ∞. To be precise, we obtain

lim sup
n→∞

‖Qn,m − (z− 2)(z− 4)‖1/n < 1.

However, since both F1 and F2 are meromorphic up to B3, 4 is not a pole of F.

Based on the above example, the idea of pole in Definition 2 is not suitable when we study a system
of functions. The authors of [40] proposed a new definition of pole (called “system pole”) below.
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Definition 3. Given F = (F1, F2, . . . , Fd) in as Equation (5) and m = (m1, m2, . . . , md) ∈ Nd, we say that
λ ∈ C \ {0} is a system pole of order τ of F with respect to m if τ is the largest positive integer such that for
each t = 1, 2, . . . , τ, there exists at least one polynomial combination of the form

d

∑
`=1

v`F`, deg v` < m`, ` = 1, 2, . . . , d, (8)

which is holomorphic on a neighborhood of B|λ| except for a pole at z = λ of exact order t.

Notice that in Definition 3, instead of examining poles of each function F` separately, we examine
poles of the polynomial combinations of the vector (F1, F2, . . . , Fd). When d = 1, the statement F has
a system pole of order τ with respect to m = m simply means that F has a pole of order τ in BRm(F).
From Example 1, 2 and 4 are system poles of order 1 of F with respect to m but 4 is not a pole of F.
Conversely, the following example shows that a pole of F may not be a system pole.

Example 2. Let F = (F1, F2), where

F1(z) =
1

z− 1
+

1
z− 2

, F2(z) =
1

z− 3

and fix m = (1, 1). Clearly, 2 is a pole of F. Since 1 and 3 are only system poles of F, 2 is not a system pole of F.

In conclusion, a system pole may not be a pole of F or vice versa. Note that a system F cannot have
more than |m| system poles with respect to m counting their order (see Lemma 3.5 of [40]).

To state the main result (see Theorem 6 below) in [40], we need a generalization of the notion
Rm(F) for a system of functions F. For each system pole λ of F with respect to m, we want to define a
corresponding characteristic number Rλ(F, m) as follows. Let τ be the order of λ as a system pole of F.
For each t = 1, . . . , τ, denote by rλ,t(F, m) the largest of all the numbers Rt(g) (the radius of the largest
disk containing at most t poles of g), where g is a polynomial combination of type Equation (8) that is
analytic on a neighborhood of B|λ| except for a pole at z = λ of order t. Then, we define

Rλ(F, m) := min
k=1,2,...,τ

rλ,k(F, m).

As in the scalar case, we denote by Qm(F) the monic polynomial whose zeros are the system poles of
F with respect to m taking account of their order. The set of distinct zeros of Qm(F) is denoted by P(F, m).

An analog of Montessus de Ballore–Gonchar’s theorem for HP approximation (see Theorem 1.4
of [40]) is stated below.

Theorem 6. Let F be a vector of formal Taylor expansions at the origin and fix a multi-index m ∈ Nd.
Then, the following two assertions are equivalent:

(a) R0(F) > 0 and F has exactly |m| system poles with respect to m counting multiplicities.
(b) The denominators Qn,m, n ≥ |m|, of the HP approximants of F are uniquely determined for all sufficiently

large n, and there exists a polynomial Q|m| of degree |m|, Q|m|(0) 6= 0, such that

lim sup
n→∞

‖Q|m| −Qn,m‖1/n = θ < 1, (9)

where ‖ · ‖ denotes the coefficient norm in the space of polynomials.
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Moreover, if either (a) or (b) takes place, then Q|m| ≡ Qm(F) and

θ = max
{

|λ|
Rλ(F, m)

: P(F, m)

}
.

An exact expression for the rate and region of convergence of {Rn,m}n≥|m| to F is given in Theorem 3.7
of [40]. Theorem 6 is considered to be a cornerstone in the study of HP approximation on row sequences
in the sense that it contains the first inverse type result.

In the spirit of Gonchar’s theorem and Gonchar’s conjecture, López and Zaldivar [41] proposed the
two conjectures below (Conjectures 1 and 2). Note that the notations ∆, σ, γ, and δj in Conjectures 1–3 and
Theorem 7 are defined as in Section 1 taking

Pn,m := {λn,1, λn,2, . . . , λn,un}, un ≤ |m|, n ∈ N,

to be the collection of zeros of Qn,m.

Conjecture 1. Let F be a vector of formal Taylor expansions at the origin and fix a multi-index m ∈ Nd. If the
denominators Qn,m are uniquely determined for all sufficiently large n and σ(λ) ≥ 1, then λ is a system pole of F
with respect to m of order τ = σ(λ).

The generalization of “singularity” when we consider a system of functions is stated below.

Definition 4. Given F = (F1, F2, . . . , Fd) as in Equation (5) and m = (m1, m2, . . . , md) ∈ Nd, we say that
λ ∈ C \ {0} is a system singularity of F with respect to m if there exists at least one polynomial combination
G of the form in Equation (8) analytic on B|λ| and λ is a singular point of G.

Conjecture 2. Let F be a vector of formal Taylor expansions at the origin and fix a multi-index m ∈ Nd. If the
denominators Qn,m are uniquely determined for all sufficiently large n and γ(λ) ≥ 1, then λ is a system singularity
of F with respect to m.

In ([41], p. 155), López and Zaldivar gave an example to support their conjectures. That example
shows that a point in C \ {0} can be a system pole or a system singularity depending how it attracts zeros
of Qn,m. For the self-contained purpose, we show their example here.

Example 3. Consider F = (F1, F2), where

F1(z) :=
1

z− 1
+ ez and F2(z) := log(z− 1)

and m := (1, 1). Clear, 1 is a system pole of order 1 and a system singularity of F with respect to m. Their experiment
states that deg(Qn,m) = 2 for n sufficiently large and

lim sup
n→∞

|λn,1 − 1|1/n = 0 and |λn,2 − 1| ∼ 1
n

, n→ ∞,

where Qn,m(z) = (z− λn,1)(z− λn,2) and |λn,1 − 1| ≤ |λn,2 − 1|.
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Conjecture 1 for the scalar case (d = 1) is the part "(b)⇒(a)" in Gonchar’s theorem. However,
Conjecture 2 for the scalar case is Gonchar’s conjecture which remains open. The converse statement of
Conjecture 1 proved in Theorem 2.1 of [41] is stated as follows.

Theorem 7. Let F be a vector of formal Taylor expansions at the origin and fix a multi-index m ∈ Nd. Assume that
λ is a system pole of order τ of F with respect to m. Then,

∆(λ) ≤ |λ|
Rλ(F, m)

and σ(λ) ≥ τ. (10)

According to Gonchar’s theorem, a natural conjecture is

Conjecture 3. Let F be a vector of formal Taylor expansions at the origin and fix a multi-index m ∈ Nd. Assume that
λ is a system pole of order τ of F with respect to m. Then, the inequalities in Equation (10) are equalities. Moreover,
if we assume further that lim infn→∞ |λ− λn,τ+1| > 0, then

δ1(λ) = δ2(λ) = . . . = δτ(λ) =

(
|λ|

Rλ(F, m)

)1/τ

.

In the past few years, some progress (see [41–43]) on Conjecture 2 was made. In those papers,
the authors studied Conjecture 2 with an additional assumption, namely,

lim
n→∞

Qn,m = Q|m|, deg(Q|m|) = |m|, Q|m|(0) 6= 0. (11)

Without loss of generality, let λ1, λ2, . . . , λ|m| be the zeros of Q|m| in such a way that

0 < |λ1| ≤ |λ2| ≤ · · · ≤ |λ|m|| (12)

and λn,1, λn,2, . . . , λn,|m| be the zeros of Qn,m indexed so that

lim
n→∞

λn,k = λk, k = 1, 2, . . . , |m|.

The latest progress on Conjecture 2 with the condition in Equation (11) is the following theorem (see
Theorem 4.4 of [42]).

Theorem 8. Let F be a vector of formal Taylor expansions at the origin and fix a multi-index m ∈ Nd. Assume that
Equations (11) and (12) hold. Assume further that, if λj, λj+1, . . . , λj+N−1, where N > 1, are the zeros of Q|m|
lying on the same circle (namely, they have the same modulus), then

lim sup
n→∞

|λn,k − λk|1/n < 1, k = j, j + 1, . . . , j + N − 1. (13)

Then, each λk, k = 1, 2, . . . , |m|, is a system singularity of F with respect to m. Moreover, if λk is a zero of
multiplicity τk of Q|m| which verifies Equation (13), then it is a system pole of F with respect to m of order τk.

Considering the coefficients of Qn,m as the coefficients of a certain recurrence relation, López and
Gerpe [42] employed Buslaev’s results (extensions of Poincaré’s theorem on recursion relations) in
Theorems 1 and 2 of [44] to prove the above theorem.
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Note that the following special case of Conjecture 2 (an analog of Suetin’s theorem) remains unsolved.

Conjecture 4. Let F be a vector of formal Taylor expansions at the origin and fix a multi-index m ∈ Nd. Assume
that Qn,m is unique for all sufficiently large n, Equation (11) takes place, and Q|m|(λ) = 0. Then, λ is a system
singularity of F with respect to m.

2.3. Some Remarks

• The statement (b)⇒(a) in Theorem 6 was the first inverse-type result on the study of HP approximation
on row sequences. Its proof is very constructive. It suggests how to find a polynomial combination
in Equation (8) verifying that all zeros of Q|m| in Equation (9) are the system poles of F with respect
to m.

• The study of zeros of Pn,m,`, ` = 1, 2, . . . , d, in Equation (7) is irrelevant to our interest in this paper.
However, it is worth mentioning the paper [45] where la Calle Ysern and Mínguez Ceniceros studied
the distribution of zeros of Pn,m,`, ` = 1, 2, . . . , d, as m is fixed and n→ ∞.

3. Generalized Hermite–Padé Approximations

3.1. Definitions and Notation

After an analog of Montessus de Ballore–Gonchar’s theorem for HP approximation (Theorem 6) was
proved, Theorem 6 was extended for various generalizations of HP approximation. These generalizations
are formulated to approximate a vector of functions holomorphic on a neighborhood of the following
sets E.

Let E be an infinite compact subset of the complex plane C such that C \ E is simply connected.
Whenever we consider set E, E is described as above, unless we specifically say otherwise. Denote by
H(E) the space of all functions holomorphic in some neighborhood of E. We define

H(E)d := {(F1, F2, . . . , Fd) : F` ∈ H(E), ` = 1, 2, . . . , d}.

In Section 3, we are mainly interested in approximating a vector in the spaceH(E)d.

3.1.1. Orthogonal Hermite–Padé Approximations

The first two approximations are constructed from orthogonal polynomials on E. Let µ be a finite
positive Borel measure with infinite support supp(µ) contained in E. We write µ ∈ M(E) and define the
associated inner product,

〈g, h〉µ :=
∫

g(ζ)h(ζ)dµ(ζ), g, h ∈ L2(µ). (14)

Using the Gram–Schmidt process, we can generate the sequence of the orthonormal polynomials
with positive leading coefficients

pn(z) := κnzn + · · · , κn > 0, n = 0, 1, 2, . . . ,

corresponding to the inner product in Equation (14). It is well-known that, for each n ≥ 0, such orthonormal
polynomial pn is unique. Combining the concepts of HP approximation and orthogonal polynomials,
we define two types of orthogonal Hermite–Padé approximations. The first one is a natural extension of
HP approximation.
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Definition 5. Let F = (F1, F2, . . . , Fd) ∈ H(E)d and µ ∈ M(E). Fix a multi-index m = (m1, m2, . . . , md) ∈ Nd.
Then, for each n ≥ max{m1, m2, . . . , md}, there exists Qµ,S

n,m ∈ P|m| such that Qµ,S
n,m 6≡ 0 and

〈Qµ,S
n,mF`, pk〉µ = 0 for all k = n−m` + 1, n−m` + 2, . . . , n and ` = 1, 2, . . . , d. (15)

The corresponding vector of rational functions

Rµ,S
n,m := (Rµ,S

n,m,1, Rµ,S
n,m,2, . . . , Rµ,S

n,m,d)

=

∑n−m1
j=0 〈Q

µ,S
n,mF1, pj〉µ pj

Qµ,S
n,m

,
∑n−m2

j=0 〈Q
µ,S
n,mF2, pj〉µ pj

Qµ,S
n,m

, . . . ,
∑n−md

j=0 〈Q
µ,S
n,mFd, pj〉µ pj

Qµ,S
n,m


are called an (n, m) standard orthogonal Hermite–Padé (SOHP) approximant of F with respect to µ.

When E = {z ∈ C : |z| ≤ 1} and µ is the normalized arc length on the unit circle, pn(z) = zn for all
n ≥ 0 and the system of linear equations in Equation (15) reduces to

1
2πi

∫
|z|=1

Qµ,S
n,m(z)F(z)

zk+1 dz = 0 for allk = n−m` + 1, n−m` + 2, . . . , nand` = 1, 2, . . . , d.

Then, the above polynomial Qµ,S
n,m coincides with the polynomial Q in Equation (6), which further

implies that, for each ` = 1, 2, . . . , d, the corresponding polynomial ∑n−m`
j=0 〈Q

µ,S
n,mF`, pj〉µ pj coincides with

the polynomial P` in Equation (6). Moreover, when d = 1, the rational function Rµ,S
n,m is the usual (n−m, m)

orthogonal Padé approximant defined in [46]. Therefore, the approximation in Definition 5 is a natural
generalization of orthogonal Padé approximation to the vector case.

The definition of the other orthogonal Hermite–Padé approximation was recently introduced by
Bosuwan and López [47] in the problem concerning localization of system poles of F ∈ H(E)d around the
set E.

Definition 6. Let F = (F1, F2, . . . , Fd) ∈ H(E)d and µ ∈ M(E). Fix a multi-index m = (m1, m2, . . . , md) ∈ Nd

and n ∈ N. Then, there exists Qµ,M
n,m ∈ P|m| such that Qµ,M

n,m 6≡ 0 and

〈zkQµ,M
n,m F`, pn〉µ = 0 for all k = 0, 1, . . . , m` − 1 and ` = 1, 2, . . . , d. (16)

The corresponding vector of rational functions

Rµ,M
n,m := (Rµ,M

n,m,1, Rµ,M
n,m,2, . . . , Rµ,M

n,m,d)

=

∑n−1
j=0 〈Q

µ,M
n,m F1, pj〉µ pj

Qµ,M
n,m

,
∑n−1

j=0 〈Q
µ,M
n,m F2, pj〉µ pj

Qµ,M
n,m

, . . . ,
∑n−1

j=0 〈Q
µ,M
n,m Fd, pj〉µ pj

Qµ,M
n,m


are called an (n, m) modified orthogonal Hermite–Padé (MOHP) approximant of F with respect to µ.

The motivation of the above definition is in the paragraph that contains Equation (39).
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3.1.2. Faber–Hermite–Padé Approximations

Now, we want to combine the ideas of HP approximation and Faber polynomials on E. Let Φ be the
unique Riemann mapping function from C \ E to the exterior of the closed unit disk verifying Φ(∞) = ∞
and Φ′(∞) > 0. For each ρ > 1, the level curve of index ρ and the canonical domain of index ρ are defined by

Γρ := {z ∈ C : |Φ(z)| = ρ} and Dρ := E ∪ {z ∈ C : |Φ(z)| < ρ},

respectively. Let F ∈ H(E)d. Denote by ρm(F) the index ρ > 1 of the largest canonical domain Dρ to which
F has at most m poles counting multiplicities.

The Faber polynomial of E of degree n is

Φn(z) :=
1

2πi

∫
Γρ

Φn(t)
t− z

dt, z ∈ Dρ, n = 0, 1, 2, . . . .

One can also define Φn as the polynomial part of the Laurent expansion of Φn at infinity. The nth
Faber coefficient of F ∈ H(E) with respect to Φn is defined by the formula

[F]n :=
1

2πi

∫
Γρ

F(t)Φ′(t)
Φn+1(t)

dt,

where ρ ∈ (1, ρ0(F)).
As with the SOHP and MOHP approximations, we have two ways to define Faber–Hermite–Padé

approximations.

Definition 7. Let F = (F1, F2, . . . , Fd) ∈ H(E)d. Fix m = (m1, m2, . . . , md) ∈ Nd. Then, for each n ≥
max{m1, m2, . . . , md}, there exists QE,S

n,m ∈ P|m| such that QE,S
n,m 6≡ 0 and

[QE,S
n,mF`]k = 0 for all k = n−m` + 1, n−m` + 2, . . . , n and ` = 1, 2, . . . , d. (17)

The corresponding vector of rational functions

RE,S
n,m := (RE,S

n,m,1, RE,S
n,m,2, . . . , RE,S

n,m,d)

=

∑n−m1
j=0 [QE,S

n,mF1]jΦj

QE,S
n,m

,
∑n−m2

j=0 [QE,S
n,mF2]jΦj

QE,S
n,m

, . . . ,
∑n−md

j=0 [QE,S
n,mFd]jΦj

QE,S
n,m


are called an (n, m) standard Faber–Hermite–Padé (SFHP) approximant of F with respect to E.

One can easily check that, when E = {z ∈ C : |z| ≤ 1}, the SFHP approximant RE,S
n,m is the same as a

HP approximant Rn,m. Furthermore, when d = 1, the approximant RE,S
n,m reduces to the usual (n−m, m)

Padé-Faber approximant (see its definition in Section 3 of [48]).

Definition 8. Let F = (F1, F2, . . . , Fd) ∈ H(E)d. Fix m = (m1, m2, . . . , md) ∈ Nd and n ∈ N. Then, there exists
QE,M

n,m ∈ P|m| such that QE,M
n,m 6≡ 0 and

[zkQE,M
n,m F`]n = 0 for all k = 0, 1, . . . , m` − 1 and ` = 1, 2, . . . , d. (18)
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The corresponding vector of rational functions

RE,M
n,m := (RE,M

n,m,1, RE,M
n,m,2, . . . , RE,M

n,m,d)

=

∑n−1
j=0 [Q

E,M
n,m F1]jΦj

QE,M
n,m

,
∑n−1

j=0 [Q
E,M
n,m F2]jΦj

QE,M
n,m

, . . . ,
∑n−1

j=0 [Q
E,M
n,m Fd]jΦj

QE,M
n,m


are called an (n, m) modified Faber–Hermite–Padé (MFHP) approximant of F with respect to E.

The above MFHP approximation was recently introduced by Bosuwan and López [49]. In [49],
MFHP approximation was proved to be an effective tool to locate system poles of F ∈ H(E)d around the
set E.

3.1.3. Multipiont Hermite–Padé Approximations

Let α ⊂ E be a table of points; more precisely, α = {αn,k}, k = 1, . . . , n, n = 1, 2, . . .. The definition of
multipoint Hermite–Padé approximation is

Definition 9. Let F = (F1, F2, . . . , Fd) ∈ H(E)d. Set

an(z) :=
n

∏
k=1

(z− αn,k)

and fix a multi-index m = (m1, m2, . . . , md) ∈ Nd. Then, for each n ≥ max{m1, m2, . . . , md}, there exist
Qα

n,m ∈ P|m| and Pα
n,m,` ∈ Pn−m`

for all ` = 1, 2, . . . , d such that Qα
n,m 6≡ 0 and

(Qα
n,mF` − Pα

n,m,`)/an+1 ∈ H(E), for all ` = 1, 2, . . . , d. (19)

The corresponding vector of rational functions

Rα
n,m =

(
Rα

n,m,1, Rα
n,m,2, . . . , Rα

n,m,d

)
=

(
Pα

n,m,1

Qα
n,m

,
Pα

n,m,2

Qα
n,m

, . . . ,
Pα

n,m,d

Qα
n,m

)
(20)

is called an (n, m) multipoint Hermite–Padé (MHP) approximant of F with respect α.

This approximation was introduced in [2] by Mahler long before other generalizations. Note that,
if all the interpolation points are 0, then the MHP approximants reduce to HP approximants.

3.1.4. Some Remarks

• Finding Qµ,S
n,m, Qµ,M

n,m , QE,S
n,m, orQE,M

n,m is equivalent to solving |m|+ 1 unknowns from linear system of
|m| equations in Equations (15)–(18), respectively. Moreover, finding Pα

n,m,`, ` = 1, 2, . . . , d and Qα
n,m is

equivalent to solving (n+ 1)d+ 1 unknowns from linear system of (n+ 1)d equations in Equation (19).
Therefore, these polynomials, Qµ,S

n,m, Qµ,M
n,m , QE,S

n,m, QE,M
n,m , and Qα

n,m, always exist but may not be unique.
Since such polynomials are not the zero function, we normalize them to be “monic” polynomials.
Moreover, Qα

n,m in Equation (20) is chosen so that it does not have a common zero with all the Pα
n,m,`.

We would like to emphasize that for any (n, m) ∈ N×Nd, Rµ,S
n,m, Rµ,M

n,m , RE,S
n,m, RE,M

n,m , and Rα
n,m may not

be unique.
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• Extensions of generalized HP approximations in Definitions 5–9 to a compact set E whose complement
is connected are possible. However, the results in this survey paper are restricted to the case when
E is a compact subset of the complex plane with simply connected complement in the extended
complex plane. This is because, for the sets E which are disconnected, the zeros of the corresponding
orthonormal polynomials pn, second type functions sn (defined in Equation (21)), or Faber polynomials
Φn may lie in C \ E which may be the locations of system poles.

3.1.5. Classes of Measures inM(E)

For the studies of SOHP and MOHP approximations, we need to impose asymptotic properties of the
sequences of the orthonormal polynomials {pn}n≥0 and the corresponding second type functions {sn}n≥0

defined below

sn(z) :=
∫ pn(ζ)

z− ζ
dµ(ζ), z ∈ C \ supp(µ). (21)

We keep classes of measures inM(E) here so that they do not disturb the flow of our paper. The readers
who are not interested in SOHP or MOHP approximations may skip Section 3.1.5.

Definition 10. Let µ ∈ M(E).

(a) µ ∈ Reg1(E) if and only if
lim

n→∞
|pn(z)|1/n = |Φ(z)|. (22)

(b) µ ∈ Reg2(E) if and only if
lim

n→∞
|sn(z)|1/n = |Φ(z)|−1. (23)

(c) µ ∈ Reg1,2(E) if and only if µ ∈ Reg1(E) ∩Reg2(E).
(d) µ ∈ Regm

1,2(E) if and only if µ ∈ Reg1,2(E) and there exists a positive constant c such that

κn−m

κn
≥ c, n ≥ n0.

(e) µ ∈ Rat1(E) if and only if

lim
n→∞

pn(z)
pn+1(z)

=
1

Φ(z)
. (24)

(f) µ ∈ Rat2(E) if and only if

lim
n→∞

sn+1(z)
sn(z)

=
1

Φ(z)
. (25)

(g) µ ∈ Rat1,2(E) if and only if µ ∈ Rat1(E) ∩Rat2(E).

(h) µ ∈ S(E) if and only if lim
n→∞

cn

cn+1
= 1 and

lim
n→∞

pn(z)
cnΦn(z)

= S(z), (26)

where the cns are positive constants and S is a non-vanishing holomorphic function on C \ E.

The limits in Equations (22) and (23) are assumed to hold uniformly on compact subsets of C \ E and the ones
in Equations (24)–(26) are assumed to hold uniformly on compact subsets of C \ E.
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The classes Reg1(E) and Reg2(E) are more or less the same in some cases. In particular, if E is convex,
then Reg1(E) = Reg2(E) and these two classes coincide with the regular class in the usual sense (see
Definition 3.1.2 of [50] for the definition of the regular class in the usual sense). Clearly, S(E) ⊂ Rat1(E) ⊂
Reg1(E) and Rat2(E) ⊂ Reg2(E).

Denote by K1 the collection of all compact sets E (stated at the beginning of Section 3) satisfying
the condition that the inverse of the exterior conformal function Φ−1 can be extended continuously to
C \ {w ∈ C : |w| < 1}. If we assume that E ∈ K1 and µ ∈ Rat1(E), then

lim
n→∞

pn(z)sn(z) =
Φ′(z)
Φ(z)

,

uniformly on compact subsets of C \ E (see Lemma 3.1 of [46]). This statement implies that, if E ∈ K1,
then S(E) ⊂ Rat1(E) ⊂ Rat2(E). Moreover, it is well-known that, if µ ∈ Rat1(E), then

lim
n→∞

κn

κn+1
= cap(E)

(see, e.g., Lemma 2 of [51]). Therefore, for each m ∈ N, Rat1(E) ⊂ Regm
1 (E) and Rat1,2(E) ⊂ Regm

1,2(E).
For a general compact set E, the class of measures Reg1(E) has been well studied and characterized in
terms of the analytic properties of the measure or of the corresponding sequence of leading coefficients
(see, e.g., [50], Theorem 3.1.1). The situation is not quite the same for other classes of measures. To discuss
them would take us too far from our main direction; rather we refer the reader to Pages 532–533 in [52] for
more details and references.

3.1.6. Classes of Tables of Interpolation Points

When we state results on MHP approximation, we refer to two classes of tables of interpolation points.

Definition 11. Let α ⊂ E be a table of interpolation points, namely

α = {αn,k}, k = 1, . . . , n, n = 1, 2, . . . .

Set

an(z) :=
n

∏
k=1

(z− αn,k).

(a) α ∈ Strong(E) if and only if the corresponding polynomials an satisfy the following strong asymptotics:

lim
n→∞

an(z)
(cap(E))nΦn(z)

= G(z) 6= 0,

uniformly on compact subsets of C \ E.
(b) α ∈ Root(E) if and only if the corresponding polynomials an satisfy the following nth root asymptotics:

lim
n→∞

|an(z)|1/n = cap(E)|Φ(z)|,

uniformly on compact subsets of C \ E,

Clearly, Strong(E) ⊂ Root(E). Moreover, it is well known that Strong(E) 6= ∅ and Root(E) 6= ∅
(see Chapters 8 and 9 of [53] for more details about both classes).
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3.2. Results and Conjectures

3.2.1. The Scalar Case

We add a section dedicated to the scalar case of all generalizations (defined in Section 3.1) here.
The purpose is not only to help the readers consolidate their understanding of the vector case but also
to discuss some interesting theorems and conjectures corresponding to such scalar case. When d = 1,
we have m = m and write

Rµ,S
n,m = Rµ,S

n,m, Rµ,M
n,m = Rµ,M

n,m , RE,S
n,m = RE,S

n,m, RE,M
n,m = RE,M

n,m , Rα
n,m = Rα

n,m.

The first theorem simply says that one can use the poles of the mth row sequences
{Rµ,S

n,m}n≥m, {Rµ,M
n,m }n≥m, {RE,S

n,m}n≥m, {RE,M
n,m }n≥m, or {Rα

n,m}n≥m to detect the m poles of F ∈ H(E) nearest
E (with respect to the level curves).

Theorem 9. Let F ∈ H(E) and m ∈ N be fixed. Then, the following statements are equivalent.

(a) F has exactly m poles counting multiplicities in Dρm(F).

(b) For all n sufficiently large, Qµ,S
n,m corresponding to µ ∈ Rat1,2(E) has degree m and there exists a polynomial

Q̂m of degree m such that
lim sup

n→∞
‖Qµ,S

n,m − Q̂m‖1/n = θ̂ < 1.

(For µ 6∈ Rat1,2(E), the statement of the theorem does not include this assertion.)

(c) For all n sufficiently large, Qµ,M
n,m corresponding to µ ∈ Regm

1,2(E) has degree m and there exists a polynomial
Q̌m of degree m such that

lim sup
n→∞

‖Qµ,M
n,m − Q̌m‖1/n = θ̌ < 1.

(For µ 6∈ Regm
1,2(E), the statement of the theorem does not include this assertion.)

(d) For all n sufficiently large, QE,S
n,m has degree m and there exists a polynomial Q̈m of degree m such that

lim sup
n→∞

‖QE,S
n,m − Q̈m‖1/n = θ̈ < 1.

(e) For all n sufficiently large, QE,M
n,m has degree m and there exists a polynomial Q̃m of degree m such that

lim sup
n→∞

‖QE,M
n,m − Q̃m‖1/n = θ̃ < 1.

(f) For all n sufficiently large, Qα
n,m corresponding to α ∈ Root(E) has degree m and there exists a polynomial

Q̆m of degree m such that
lim sup

n→∞
‖Qα

n,m − Q̆m‖1/n = θ̆ < 1.

(For α 6∈ Root(E), the statement of the theorem does not include this assertion.)

Moreover, if one of Assertions (a)–(f) takes place, then

(i)
Q̂m = Q̌m = Q̈m = Q̃m = Q̆m = Qm(F),

where Qm(F) is the monic polynomial whose zeros are the poles of F in Dρm(F) taking account of their order.
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(ii)

θ̂ = θ̌ = θ̈ = θ̃ = θ̆ =
max{|Φ(λ)| : λ ∈ Pm(F)}

ρm(F)
,

where Pm(F) is the set of the distinct zeros of Qm(F).
(iii) For any compact subset K of Dρm(F) \ Pm(F),

lim sup
n→∞

‖F− Rµ,S
n,m‖1/n

K ≤ ‖Φ‖K
ρm(F)

, (27)

lim sup
n→∞

‖F− Rµ,M
n,m ‖1/n

K ≤ ‖Φ‖K
ρm(F)

, (28)

lim sup
n→∞

‖F− RE,S
n,m‖1/n

K ≤ ‖Φ‖K
ρm(F)

, (29)

lim sup
n→∞

‖F− RE,M
n,m ‖1/n

K ≤ ‖Φ‖K
ρm(F)

, (30)

lim sup
n→∞

‖F− Rα
n,m‖1/n

K ≤ ‖Φ‖K
ρm(F)

, (31)

under the convention that if K ⊂ E, then ‖Φ‖K is replaced by 1.

Remark 1. The inequality in Equation (31) is equality when α is a Newton type.

The proofs concerning (a)⇔(b), (a)⇔(c), (a)⇔(d), (a)⇔(e), and (a)⇔(f) are in Corollary 1 of [52],
Theorem 1.2 of [47], Theorem 2 of [54], Corollary 1.6 of [49], and Theorem 1.3 of [55], respectively.

We strongly believe that for this scalar case, the exact rates of convergences of {Rµ,S
n,m}n≥m, {Rµ,M

n,m }n≥m,
{RE,S

n,m}n≥m, {RE,M
n,m }n≥m, and {Rα

n,m}n≥m, should be as indicated in the following conjecture.

Conjecture 5. Let F ∈ H(E) and m ∈ N. If F has exactly m poles in Dρm(F), then the inequalities in
Equations (27)–(31) are equalities.

Clearly, if E = {z ∈ C : |z| ≤ 1} and dµ = dθ/2π on the boundary of E, then Rµ,S
n,m, Rµ,M

n,m , RE,S
n,m and

RE,M
n,m are the (n−m, m) classical Padé approximant and Conjecture 5 holds true because of Equation (4) in

Montessus de Ballore–Gonchar’s theorem. Another supporting evidence for the validity of Conjecture 5 is
provided for the case when K = E, namely if F has exactly m poles in Dρm(F), then

lim sup
n→∞

‖F− Rµ,S
n,m‖1/n

E = lim sup
n→∞

‖F− Rµ,M
n,m ‖1/n

E = lim sup
n→∞

‖F− RE,S
n,m‖1/n

E = lim sup
n→∞

‖F− RE,M
n,m ‖1/n

E

= lim sup
n→∞

‖F− Rα
n,m‖1/n

E = lim sup
n→∞

σ1/n
n,m =

1
ρm(F)

, (32)

where
σn,m := inf

r
‖F− r‖E,

and the infimum is taken over the class of all rational functions of type (n, m)

r(z) =
anzn + an−1zn−1 + · · ·+ a0

bmzm + bm−1zm−1 + · · ·+ b0
.
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We refer the reader to [56] for the proof of the fifth equality in Equation (32).
For Gonchar’s conjecture, we made good progress in the case when the denominators

Qµ,S
n,m, Qµ,M

n,m , QE,S
n,m, QE,M

n,m , and Qα
n,m converge to a polynomial of degree m as n→ ∞. An analog of Suetin’s

theorem for the scalar case of all generalized HP approximations (see Theorem 4 of [44], Theorem 2 of [57],
Theorem 2.7 of [46], and Theorems 2.5 and 2.6 of [58]) is the following.

Theorem 10. Let F ∈ H(E) and m ∈ N be fixed. If one of the following holds:

(a) E ∈ K1, µ ∈ S(E), for all n sufficiently large, Qµ,S
n,m has degree m, and lim

n→∞
Qµ,S

n,m = Qm;

(b) E ∈ K1, µ ∈ S(E), for all n sufficiently large, Qµ,M
n,m has degree m, and lim

n→∞
Qµ,M

n,m = Qm;

(c) for all n sufficiently large, QE,S
n,m has degree m and lim

n→∞
QE,S

n,m = Qm;

(d) for all n sufficiently large, QE,M
n,m hhas degree m and lim

n→∞
QE,M

n,m = Qm; or

(e) α ∈ Strong(E), for all n sufficiently large, Qα
n,m has degree m, and lim

n→∞
Qα

n,m = Qm,

then all of the following hold:

(i)
ρ0(F) = min{|Φ(λ)| : Qm(λ) = 0};

(ii)
ρm−1(F) = max{|Φ(λ)| : Qm(λ) = 0};

and
(iii) all zeros of Qm are singularities of F; those lying in Dρm−1(F) are poles (counting multiplicities), and F has no

other poles in Dρm−1(F).

The proof of the above theorem relies on deep results on refinements of Poincaré’s theorem on
recurrence relations developed by Buslaev in Theorems 5 and 6 of [57]. These Buslaev’s results connect
Suetin’s theorem (for classical Padé approximants) and analogous ones for generalized Padé approximants
(see Theorem 3 of [57] and Theorems 2.7 and 2.8 of [58]).

An analog of Gonchar’s theorem for Qα
n.m when α is a Newton type was proved by himself in

Theorem 2 of [31]. For other generalizations, we have proofs only for an analog of (a)⇒(b) in Gonchar’s
theorem (see Corollary 5.6 of [51], Corollary 1 of [59], Theorems 2.1 and 2.3 of [58]).

A direct analog of the Fabry ratio theorem for orthogonal and Faber polynomial expansions is

Theorem 11. Let F ∈ H(E). If one of the following holds:

(a)

lim
n→∞

[F]n
[F]n+1

= ξ;

or
(b) E ∈ K1, µ ∈ S(E), and

lim
n→∞

〈F, pn〉µ
〈F, pn+1〉µ

= ξ,

then Φ−1(ξ) is a singularity of F and ρ0(F) = |ξ|.
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The part of the above theorem concerning the limit of the ratio of Faber coefficients follows from a
straightforward change of variables:

[F]n =
1

2πi

∫
Γρ

F(t)Φ′(t)
Φn+1(t)

dt =
1

2πi

∫
|z|=ρ

F(Φ−1(z))
zn+1 dz, wheret = Φ−1(z)

and the use of the Fabry ratio theorem for the analytic part of F ◦Φ−1. The part of the above theorem
concerning the limit of the ratio of Fourier coefficients is in Theorem 2.3 of [46].

We end this section by stating an application of Theorem 11 to orthogonal polynomial theory on the
unit circle. Firstly, we recall some facts. If E = B1 and the measure µ supported on the unit circle satisfies
the Szegő condition, ∫ 2π

0
log w(θ)dθ > −∞, (33)

where dµ(θ) = w(θ)dθ/2π + dµs(θ) is the Radon–Nikodym decomposition of µ, then it is well known
that µ ∈ S(E), the leading coefficients of the orthonormal polynomials pn satisfy

lim
n→∞

κn = κ := exp
{
− 1

4π

∫ 2π

0
log w(θ)dθ

}
,

and
1

Sint(z)
=

1
κ

∞

∑
k=0

pk(0)pk(z), uniformly on compact subsets of B,

where

Sint(z) := exp
(

1
4π

∫ 2π

0
log w(θ)

eiθ + z
eiθ − z

dθ

)
, z ∈ B,

denotes the interior Szegő function (see ([60], pp. 19–20) for the proof). Therefore, Theorem 11 enables us
to locate the singularity nearest the origin of the reciprocal of the interior Szegő function 1/Sint in terms of
the Verblunsky coefficients

αn := −pn(0)/κn.

Theorem 12. Let µ satisfy the Szegő condition in Equation (33) and assume that 1/Sint ∈ H(B). Suppose that the
Verblunsky coefficients αn corresponding to µ verify

lim
n→∞

αn

αn+1
= λ.

Then, λ is a singularity of 1/Sint and 1/Sint is holomorphic on B|λ|.

The above result was stated in Corollary 2.4 of [46].

3.2.2. The Vector Case

Graves-Morris and Saff were the first to prove an extension of Montessus de Ballore’s theorem to
MHP approximation in Theorem 3 of [38]. Their theorem relies on the concept of polewise independence,
which influenced the current author to define the following adapted polewise independence.

Definition 12. Let F = (F1, F2, . . . , Fd) ∈ H(E)d be a vector of functions meromorphic in some canonical
domain Dρ and let m = (m1, m2, . . . , md) ∈ Nd be the multi-index. Then, the function F is said to be polewise
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independent with respect to the multi-index m in Dρ if and only if there do not exist polynomials v1, v2, . . . , vd,
at least one of which being non-null, satisfying:

(i) deg v` ≤ m` − 1, ` = 1, 2, . . . , d.

(ii) ∑d
`=1(v` ◦Φ) · F` ∈ H(Dρ \ E).

Note that, if we replace Φ in (ii) of Definition 12 by the identity mapping, then the above definition
reduces the definition of polewise independence in [38].

Putting together Theorem 2.3 in [51] and Theorem 1 in [61], we obtain the following analog of
Montessus de Ballore’s theorem for SOHP and SFHP approximations under the concept of polewise
independence in Definition 12.

By QF
|m|, we denote the monic polynomial whose zeros are the poles of F in Dρ|m|(F) taking account of

their order. The set of distinct zeros of QF
|m| is denoted by P|m|(F).

Theorem 13. Let m ∈ Nd be a fixed multi-index, F = (F1, F2, . . . , Fd) ∈ H(E)d, and µ ∈ Rat1,2(E). Suppose that
F is polewise independent (in the sense of Definition 12) with respect to the multi-index m in Dρ|m|(F). Then, Rµ,S

n,m

and RE,S
n,m are uniquely determined for all sufficiently large n, and for each ` = 1, 2, . . . , d and for any compact set

K ⊂ Dρ|m|(F) \ P|m|(F),

lim sup
n→∞

‖F` − Rµ,S
n,m,`‖

1/n
K ≤ ‖Φ‖K

ρ|m|(F)
and lim sup

n→∞
‖F` − RE,S

n,m,`‖
1/n
K ≤ ‖Φ‖K

ρ|m|(F)
. (34)

Moreover,

lim sup
n→∞

‖Qµ,S
n,m −QF

|m|‖
1/n ≤

maxλ∈P|m|(F) |Φ(λ)|
ρ|m|(F)

,

lim sup
n→∞

‖QE,S
n,m −QF

|m|‖
1/n ≤

maxλ∈P|m|(F) |Φ(λ)|
ρ|m|(F)

. (35)

In fact, Cacoq and López [62] were the first who proved the above theorem but in the context of SOHP
approximation for the case when E is the closed unit disk and µ is supported on the unit circle.

Making use of incomplete orthogonal Padé and incomplete Padé–Faber approximations
(see Definition 5.1 of [51] and Definition 5 of [59]), Bosuwan proved another Montessus de Ballore type
theorem for SOHP and SFHP approximations in Theorem 2.4 of [51] and Theorem 1 of [59]. The idea of
incomplete approximants allows us to analyze each function F` individually. Let us define some more
notation about the region of convergence.

Given a system F = (F1, F2, . . . , Fd) and a multi-index m = (m1, m2, . . . , md) ∈ Nd \ {0}, we define

Dm(F) := (Dρm1 (F1)
, Dρm2 (F2)

, . . . , Dρmd (Fd)
).

By QF
m, we denote the monic polynomial whose zeros are the poles of F in Dm(F) counting

multiplicities. This set of poles is denoted by Pm(F). For ` = 1, 2, . . . , d, set Pm,`(F) := Pm(F) ∩ Dρm`
(F`).

To each pole λ of F in this system of domains

Dm(F) := (Dρm1 (F1)
, Dρm2 (F2)

, . . . , Dρmd (Fd)
),
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we associate an index `(λ) ∈ {1, 2, . . . , d} as follows. The index `(λ) verifies that λ ∈ Dρm`(λ)
(F`(λ)) and λ

is a pole of F`(λ) of the same order as is a pole of F in Dm(F). If there are several indices ` satisfying this
condition, then we choose one among those with greatest ρm`

(F`).

Theorem 14. Let m ∈ Nd be a fixed multi-index, F = (F1, F2, . . . , Fd) ∈ H(E)d, Pm(F) = {λ1, λ2, . . . , λq},
and µ ∈ Rat1,2(E). Suppose that F ∈ H(E)d has exactly |m| poles in Dm(F). Then, Rµ,S

n,m and RE,S
n,m is uniquely

determined for all sufficiently large n and for each ` = 1, 2, . . . , d, Rµ,S
n,m,` and RE,S

n,m,` converge uniformly to F` on
compact subsets of Dρm`

(F`) \ Pm,`(F). Moreover, for all ` = 1, 2, . . . , d,

lim sup
n→∞

‖F` − Rµ,S
n,m,`‖

1/n
K ≤ ‖Φ‖K

ρm`
(F`)

and lim sup
n→∞

‖F` − RE,S
n,m,`‖

1/n
K ≤ ‖Φ‖K

ρm`
(F`)

, (36)

where K is any compact subset of Dρm`
(F`) \ Pm,`(F) and if K ⊂ E, then ‖Φ‖K is replaced by 1. Additionally,

we have

lim sup
n→∞

‖QF
m −Qµ,S

n,m‖1/n ≤ max
j=1,2,...,q

 |Φ(λj)|
ρm`(λj)

(F`(λj)
)

 ,

lim sup
n→∞

‖QF
m −QE,S

n,m‖1/n ≤ max
j=1,2,...,q

 |Φ(λj)|
ρm`(λj)

(F`(λj)
)

 , (37)

Note that Theorems 13 and 14 have their own values. Section 3 in [51] and Section 2 in [59] gave
examples showing when Theorem 13 is applicable but Theorem 14 is not applicable or vice versa.

During my visit to Universidad Carlos III de Madrid in the summer of 2016, López and I initiated
a project emphasizing the study of analogs of the inverse statement of Montessus de Ballore–Gonchar’s
Theorem for SOHP and SFHP approximations. As guided by the principle of the definition of system pole
in [40] (see Definition 3), we define

Definition 13. Given F = (F1, F2, . . . , Fd) ∈ H(E)d and m = (m1, m2, . . . , md) ∈ Nd, we say that λ ∈ C is a
system pole of order τ of F with respect to m if τ is the largest positive integer such that, for each t = 1, 2, . . . , τ,
there exists at least one polynomial combination of the form

d

∑
`=1

v`F`, deg(v`) < m`, ` = 1, 2, . . . , d, (38)

which is holomorphic in a neighborhood of D|Φ(λ)| except for a pole at z = λ of exact order t.

We had an application in my mind that we wanted to use the zeros of {Qµ,S
n,m}n≥|m| and {QE,S

n,m}n≥|m|
to detect |m| system poles of F ∈ H(E)d nearest the set E. Although we are not able to solve our initial
aim (Conjecture 6 below), we observed that the system poles of F with respect to m and their orders are
the same as the system poles of

F := (F1, . . . , zm1−1F1, F2, . . . , zmd−1Fd) (39)

with respect to
m = (1, 1, . . . , 1), with|m| = |m|
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and their orders. The creation of the vector in Equation (39) motivated us to define MOHP and MFHP
approximations. Importantly, the zeros of {Qµ,M

n,m }n≥|m| and {QE,M
n,m }n≥|m| enable us to detect |m| system

poles of F ∈ H(E)d nearest the set E (see [47,49]).
To state main results in [47,49,55], we need a generalization of Rλ(F, m). For each system pole λ of F

with respect to m, we define a characteristic index ρλ(F, m) as follows. Let τ be the order of λ as a system
pole of F. For each t = 1, 2, . . . , τ, denote by ρλ,t(F, m) the largest of all the numbers ρt(G) (the index of
the largest canonical domain containing at most t poles of G), where G is a polynomial combination of the
type in Equation (38) that is holomorphic in a neighborhood of D|Φ(λ)| except for a pole at z = λ of order t.
There is only a finite number of such possible values so the maximum is indeed attained. Then, we define

ρλ(F, m) := min
t=1,2,...,τ

ρλ,t(F, m).

Combining Theorem 1.2 in [47], Corollary 1.6 in [49], and Theorem 1.3 in [55], we arrive at the
following theorem which contains analogs of Montessus de Ballore–Gonchar’s Theorem for MOHP, MFHP,
and MHP approximations.

Theorem 15. Let F = (F1, F2, . . . , Fd) ∈ H(E)d, m ∈ Nd be a fixed multi-index, µ ∈ Reg|m|1,2 (E), and α ∈
Strong(E). Denote by Qm(F) the monic polynomial whose zeros are the system poles of F with respect to m taking
account of their order and by P(F, m) the set of all zeros of Qm(F). Then, the following assertions are equivalent:

(a) F has exactly |m| system poles with respect to m counting multiplicities.
(b) The polynomials Qµ,M

n,m are uniquely determined for all sufficiently large n, and there exists a polynomial Q̂|m|
of degree |m| such that

lim sup
n→∞

‖Qµ,M
n,m − Q̂|m|‖1/n = θ̂ < 1. (40)

(c) The polynomials QE,M
n,m are uniquely determined for all sufficiently large n, and there exists a polynomial Q̃|m|

of degree |m| such that
lim sup

n→∞
‖QE,M

n,m − Q̃|m|‖1/n = θ̃ < 1.

(d) The polynomials Qα
n,m are uniquely determined for all sufficiently large n, and there exists a polynomial Q̌|m|

of degree |m| such that
lim sup

n→∞
‖Qα

n,m − Q̌|m|‖1/n = θ̌ < 1. (41)

Moreover, if one of Assertions (a)–(d) takes place, then Q̂|m| = Q̃|m| = Q̌|m| = Qm(F) and

θ̂ = θ̃ = θ̌ = max
{
|Φ(λ)|

ρλ(F, m)
: λ ∈ P(F, m)

}
. (42)

Remark 2. (i) To prove that (a) implies (b) with Equation (40) replaced by

lim sup
n→∞

‖Qµ,M
n,m −Qm(F)‖1/n < 1,

we only need to impose that µ ∈ Reg2(E).
(ii) To prove that (a) implies (d) with Equation (41) replaced by

lim sup
n→∞

‖Qα
n,m −Qm(F)‖1/n < 1,



Mathematics 2020, 8, 366 23 of 27

we only need to impose that α ∈ Root(E).
(iii) For the estimates on the convergences of {Rµ,M

n,m }n≥|m|, {RE,M
n,m }n≥|m|, and {Rα

n,m}n≥|m|, we refer the readers to
Theorem 1.2 of [47], Theorem 1.4 of [49], and Theorem 1.3 of [55] to avoid introducing a complicated collection
of notations.

As Conjecture 5 (the scalar case) stands open, the exact rate of convergences
{Rµ,M

n,m }n≥|m|, {RE,M
n,m }n≥|m|, and {Rα

n,m}n≥|m| are still unknown.
Our expected result for the study SOHP and SFHP approximations is stated below.

Conjecture 6. Let F ∈ H(E)d, m ∈ Nd be a fixed multi-index, and µ ∈ Rat1,2(E). Then, the following assertions
are equivalent:

(a) F has exactly |m| system poles with respect to m counting multiplicities.

(b) The polynomials Qµ,S
n,m of F are uniquely determined for all sufficiently large n, and there exists a polynomial

Q̂|m| of degree |m| such that

lim sup
n→∞

‖Qµ,S
n,m − Q̂|m|‖1/n = θ̂ < 1.

(c) The polynomials QE,S
n,m of F are uniquely determined for all sufficiently large n, and there exists a polynomial

Q̃|m| of degree |m| such that
lim sup

n→∞
‖QE,S

n,m − Q̃|m|‖1/n = θ̃ < 1.

Moreover, if one of Assertions (a)–(c) takes place, then Q̂|m| = Q̃|m| = Qm(F) and

θ̂ = θ̃ = θ̌ = max
{
|Φ(λ)|

ρλ(F, m)
: λ ∈ P(F, m)

}
.

Concerning Conjectures 1–4 replacing Qn,m by Qµ,S
n,m, Qµ,M

n,m , QE,S
n,m, QE,M

n,m , and Qα
n,m, much less is known

except the scalar case (see Theorem 10 above). Especially, the structures of Rµ,S
n,m, Rµ,M

n,m , RE,S
n,m, and RE,M

n,m
are much more complicated than HP approximants. There is no nice equality (similar to Equality (3.3)
in [41]) which allows us to say something about the convergence and divergence of incomplete Padé
approximation appear in SOHP, MOHP, SFHP, and MFHP approximations. Such equality is also a main
ingredient for the proofs of Gonchar’s theorem and Suetin’s theorem for classical Padé approximation
stated in Section 1 and an analog of Gonchar’s theorem for the scalar MHP approximation when α is a
Newton type in Theorem 2 of [31].

4. Conclusions

The study of classical Padé approximants on row sequences roots from the work of Montessus de
Ballore [29] on the uniform convergence of row sequences of the approximants. The subject received
renewed interest by Gonchar [30], who proved the converse statement of Montessus de Ballore’s theorem.
Soon after that, he studied an attraction of an individual pole of F in BRm(F) to the zeros of Qn,m when
m is fixed as n → ∞ in [31]. In the same paper, Gonchar proposed his conjecture (which is commonly
called Gonchar’s conjecture and remains unsolved). Since its introduction, several positive answers have
supported the conjecture (see, e.g., [32–35]).

Graves-Morris and Saff [38] extended Montessus de Ballore’s theorem to the vector case (which we
call HP approximation). Recently, Cacoq, de la Calle Ysern, and López [40] defined the notion of system
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pole and proved the inverse result of Graves-Morris and Saff’s result. In the spirit of Gonchar’s conjecture,
López and Gerpe proposed the following conjectures.

Conjecture 1. Let F be a vector of formal Taylor expansions at the origin and fix a multi-index m ∈ Nd. If the
denominators Qn,m are uniquely determined for all sufficiently large n and σ(λ) ≥ 1, then λ is a system pole of F
with respect to m of order τ = σ(λ).

Conjecture 2. Let F be a vector of formal Taylor expansions at the origin and fix a multi-index m ∈ Nd. If the
denominators Qn,m are uniquely determined for all sufficiently large n and γ(λ) ≥ 1, then λ is a system singularity
of F with respect to m.

Some progress on Conjecture 2 was made in [41–43]. However, both conjectures are still
open. Concurrently, generalizations of HP approximation were introduced and studied on row
sequences [47,49,51,55,61]. Both conjectures can be asked for all generalizations of HP approximation.
Although SOHP and SFHP approximations are natural, the proofs of analogs of Montessus de
Ballore–Gonchar’s theorem for such approximations are not available (see Conjecture 6 for our expectation).

Analogs of Montessus de Ballore–Gonchar’s theorem and Suetin’s theorem for the scalar case
of all generalizations were completely proved. However, the exact rates of convergences of
{Rµ,S

n,m}n≥m, {Rµ,M
n,m }n≥m, {RE,S

n,m}n≥m, {RE,M
n,m }n≥m, and {Rα

n,m}n≥m (when α is not a Newton type) are
unknown (see Conjecture 5 for our expectation).
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Abbreviations

The following abbreviations are used in this manuscript:

HP approximation Hermite–Padé approximation
SOHP approximation standard orthogonal Hermite–Padé approximation
MOHP approximation modified orthogonal Hermite–Padé approximation
SFHP approximation standard Faber–Hermite–Padé approximation
MFHP approximation modified Faber–Hermite–Padé approximation
MHP approximation multipoint Hermite–Padé approximation
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