On Pata–Suzuki-Type Contractions
Abstract
:1. Introduction and Preliminaries
- for all ;
- if are sequences in such that , then
2. Main Results
3. Application to Ordinary Differential Equations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khojasteh, F.; Shukla, S.; Radenović, S. A new approach to the study of fixed point theorems via simulation functions. Filomat 2015, 29, 1189–1194. [Google Scholar] [CrossRef]
- Alsulami, H.H.; Karapınar, E.; Khojasteh, F.; Roldán-López-de-Hierro, A.F. A proposal to the study of contractions in quasi-metric spaces. Discr. Dyn. Nat. Soc. 2014, 2014, 10. [Google Scholar] [CrossRef]
- Alharbi, A.S.S.; Alsulami, H.H.; Karapinar, E. On the Power of Simulation and Admissible Functions in Metric Fixed Point Theory. J. Funct. Spaces 2017, 2017, 7. [Google Scholar] [CrossRef]
- Alqahtani, B.; Fulga, A.; Karapinar, E. Fixed Point Results On Δ-Symmetric Quasi-Metric Space Via Simulation Function With An Application To Ulam Stability. Mathematics 2018, 6, 208. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Felhi, A.; Karapinar, E.; Alojail, F.A. Fixed points on quasi-metric spaces via simulation functions and consequences. J. Math. Anal. (Ilirias) 2018, 9, 10–24. [Google Scholar]
- Roldán-López-de-Hierro, A.F.; Karapınar, E.; Roldán-López-de-Hierro, C.; Martínez-Moreno, J. Coincidence point theorems on metric spaces via simulation functions. J. Comput. Appl. Math. 2015, 275, 345–355. [Google Scholar] [CrossRef]
- Suzuki, T. A generalized Banach contraction principle which characterizes metric completeness. Proc. Am. Math. Soc. 2008, 136, 1861–1869. [Google Scholar] [CrossRef]
- Karapinar, E.; Erhan, I.M.; Aksoy, U. Weak ψ-contractions on partially ordered metric spaces and applications to boundary value problems. Bound. Value Probl. 2014, 2014, 149. [Google Scholar] [CrossRef] [Green Version]
- Pata, V. A fixed point theorem in metric spaces. J. Fixed Point Theory Appl. 2011, 10, 299–305. [Google Scholar] [CrossRef]
- Balasubramanian, S. A Pata-type fixed point theorem. Math. Sci. 2014, 8, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, B.S.; Metiya, N.; Bandyopadhyay, C.; Maity, P. Fixed points of multivalued mappings satisfying hybrid rational Pata-type inequalities. J. Anal. 2019, 27, 813–828. [Google Scholar] [CrossRef]
- Choudhury, B.S.; Kadelburg, Z.; Metiya, N.; Radenović, S. A Survey of Fixed Point Theorems Under Pata-Type Conditions. Bull. Malays. Math. Soc. 2019, 43, 1289–1309. [Google Scholar] [CrossRef]
- Choudhury, B.S.; Metiya, N.; Kundu, S. End point theorems of multivalued operators without continuity satisfying hybrid inequality under two different sets of conditions. Rend. Circ. Mat. Palermo 2019, 68, 65–81. [Google Scholar]
- Geno, K.J.; Khan, M.S.; Park, C.; Sungsik, Y. On Generalized Pata Type Contractions. Mathematics 2018, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Kadelburg, Z.; Radenovic, S. Fixed point theorems under Pata-type conditions in metric spaces. J. Egypt. Math. Soc. 2016, 24, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Kadelburg, Z.; Radenovic, S. A note on Pata-type cyclic contractions. Sarajevo J. Math. 2015, 11, 235–245. [Google Scholar]
- Kadelburg, Z.; Radenovic, S. Pata-type common fixed point results in b-metric and b-rectangular metric spaces. J. Nonlinear Sci. Appl. 2015, 8, 944–954. [Google Scholar] [CrossRef]
- Kadelburg, Z.; Radenovic, S. Fixed point and tripled fixed point theprems under Pata-type conditions in ordered metric spaces. Int. J. Anal. Appl. 2014, 6, 113–122. [Google Scholar]
- Kolagar, S.M.; Ramezani, M.; Eshaghi, M. Pata type fixed point theorems of multivalued operators in ordered metric spaces with applications to hyperbolic differential inclusions. Proc. Am. Math. Soc. 2016, 6, 21–34. [Google Scholar]
- Ramezani, M.; Ramezani, H. A new generalized contraction and its application in dynamic programming. Cogent Math. 2018, 5, 1559456. [Google Scholar] [CrossRef]
- Ćirić, L. Some Recent Results in Metrical Fixed Point Theory; University of Belgrade: Belgrade, Serbia, 2003. [Google Scholar]
- Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer Nature Switzerland AG: Basel, Switzerland, 2019. [Google Scholar]
- Chanda, A.; Dey, L.K.; Radenović, S. Simulation functions: A Survey of recent results. RACSAM 2019, 113, 2923–2957. [Google Scholar] [CrossRef]
- Radenović, S.; Vetro, F.; Vujaković, J. An alternative and easy approach to fixed point results via simulation functions. Demonstr. Math. 2017, 50, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Radenović, S.; Chandok, S. Simulation type functions and coincidence point results. Filomat 2018, 32, 141–147. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karapınar, E.; Hima Bindu, V.M.L. On Pata–Suzuki-Type Contractions. Mathematics 2020, 8, 389. https://doi.org/10.3390/math8030389
Karapınar E, Hima Bindu VML. On Pata–Suzuki-Type Contractions. Mathematics. 2020; 8(3):389. https://doi.org/10.3390/math8030389
Chicago/Turabian StyleKarapınar, Erdal, and V. M. L. Hima Bindu. 2020. "On Pata–Suzuki-Type Contractions" Mathematics 8, no. 3: 389. https://doi.org/10.3390/math8030389
APA StyleKarapınar, E., & Hima Bindu, V. M. L. (2020). On Pata–Suzuki-Type Contractions. Mathematics, 8(3), 389. https://doi.org/10.3390/math8030389