Stability of Unbounded Differential Equations in Menger k-Normed Spaces: A Fixed Point Technique
Abstract
:1. Introduction
2. Preliminaries
- (a)
- and for all ;
- (b)
- for all ;
- (c)
- whenever and for all .
- (1)
- (: the product t-norm);
- (2)
- (: the minimum t-norm);
- (3)
- (: the Lukasiewicz t-norm).
- () for if and only if are linearly dependent;
- () is invariant under any permutation of ;
- () if ;
- () .
- (1)
- ;
- (2)
- the fixed point of Λ is the convergent point of sequence ;
- (3)
- in the set , is the unique fixed point of Λ;
- (4)
- for every .
3. Hyers–Ulam–Rassias Stability in M-k-NLS
- (1)
- A fixed point for , is , i.e.,
- (2)
- as .
- (3)
- , which implies that
4. Hyers-Ulam Stability in M-k-NLS
- (1)
- A fixed point for , is , i.e.,
- (2)
- as .
- (3)
- , which implies that
5. Examples
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of functional equations in several variables. In Progress in Nonlinear Differential Equations and their Applications; Birkhäuser Boston: Boston, MA, USA, 1998. [Google Scholar]
- Jung, S.-M. Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Analysis; Hadronic Press, Inc.: Palm Harbor, FL, USA, 2001. [Google Scholar]
- Obłoza, M. Hyers stability of the linear differential equation. Rocznik Nauk. Dydakt. Prace Mat. 1993, 13, 259–270. [Google Scholar]
- Obłoza, M. Connections between Hyers and Lyapunov stability of the ordinary differential equations. Rocznik Nauk. Dydakt. Prace Mat. 1997, 14, 141–146. [Google Scholar]
- Miura, T.; Jung, S.-M.; Takahasi, S.-E. Hyers–Ulam–Rassias stability of the Banach space valued linear differential equations y′ = λy. J. Korean Math. Soc. 2004, 41, 995–1005. [Google Scholar] [CrossRef] [Green Version]
- Miura, T.; Miyajima, S.; Takahasi, S.-E. A characterization of Hyers-Ulam stability of first order linear differential operators. J. Math. Anal. Appl. 2003, 286, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Miura, T.; Miyajima, S.; Takahasi, S.-E. Hyers-Ulam stability of linear differential operator with constant coefficients. Math. Nachr. 2003, 258, 90–96. [Google Scholar] [CrossRef]
- Takahasi, S.-E.; Miura, T.; Miyajima, S. On the Hyers-Ulam stability of the Banach space-valued differential equation y′ = λy. Bull. Korean Math. Soc. 2002, 39, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 2004, 17, 1135–1140. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order. II. Appl. Math. Lett. 2006, 19, 854–858. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-M. Hyers-Ulam stability of a system of first order linear differential equations with constant cofficients. J. Math. Anal. Appl. 2006, 320, 549–561. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-M. A fixed point approach to the stability of isometrics. J. Math. Anal. Appl. 2007, 329, 879–890. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-M. A fixed point approach to the stability of differential equations y′=F(x,y). Bull. Malays. Math. Sci. Soc. 2010, 33, 47–56. [Google Scholar]
- Cădariu, L.; Radu, V. Fixed points and the stability of Jensen’s functional equation. JIPAM J. Inequal. Pure Appl. Math. 2003, 4, 7. [Google Scholar]
- Cădariu, L.; Radu, V. On the Stability of the Cauchy Functional Equation: A Fixed Point Approach, in Iteration Theory (ECIT ’02), 43–52; Karl-Franzens-University: Graz, Austria, 2004. [Google Scholar]
- Schweizer, B.; Sklar, A. Probabilistic Metric Spaces; North-Holland Series in Probability and Applied Mathematics; North-Holland Publishing Co.: New York, NY, USA, 1983. [Google Scholar]
- S̆erstnev, A.N. On the notion of a random normed space. Dokl. Akad. Nauk. USSR 1963, 149, 280–283. [Google Scholar]
- Saadati, R. Random Operator Theory; Elsevier/Academic Press: London, UK, 2016. [Google Scholar]
- Hadzic, O.; Pap, E. Fixed point theory in probabilistic metric spaces. In Mathematics and its Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Bakery, A.A.; Mohammed, M.M. On lacunary mean ideal convergence in generalized random n-normed spaces. Abstr. Appl. Anal. 2014, 11, 101782. [Google Scholar] [CrossRef]
- Jebril, I.H.; Hatamleh, R. Random n-normed linear space. Int. J. Open Probl. Comput. Sci. Math. 2009, 2, 489–495. [Google Scholar]
- Savaş, E. Some new double sequence spaces defined by Orlicz function in n-normed space. J. Inequal. Appl. 2011, 9, 592840. [Google Scholar] [CrossRef] [Green Version]
- Hazarika, B.; Savaş, E. λ-statistical convergence in n-normed spaces. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 2013, 21, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Savaş, E.; Gürdal, M. Generalized statistically convergent sequences of functions in fuzzy 2-normed spaces. J. Intell. Fuzzy Syst. 2014, 27, 2067–2075. [Google Scholar] [CrossRef]
- Ns̆dăban, S.; Bînzar, T.; Pater, F. Some fixed point theorems for φ-contractive mappings in fuzzy normed linear spaces. J. Nonlinear Sci. Appl. 2017, 10, 5668–5676. [Google Scholar] [CrossRef] [Green Version]
- Font, J.J.; Galindo, J.; Macario, S.; Sanchis, M. Mazur-Ulam type theorems for fuzzy normed spaces. J. Nonlinear Sci. Appl. 2017, 10, 4499–4506. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.; Mahendra, S.Y.; Maniu, G.; Postolache, M. On (α,p)-convex contraction and asymptotic regularity. J. Math. Comput. Sci. 2018, 18, 132–145. [Google Scholar] [CrossRef] [Green Version]
- El-Moneam, M.A.; Ibrahim, T.F.; Elamody, S. Stability of a fractional difference equation of high order. J. Nonlinear Sci. Appl. 2019, 12, 65–74. [Google Scholar] [CrossRef]
- Diaz, J.B.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull. Amer. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Radu, V. The fixed point alternative and the stability of functional equations. Fixed Point Theory 2003, 4, 91–96. [Google Scholar]
- Miheţ, D.; Radu, V. On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 2008, 343, 567–572. [Google Scholar] [CrossRef] [Green Version]
- Miheţ, D.; Saadati, R. On the stability of the additive Cauchy functional equation in random normed spaces. Appl. Math. Lett. 2011, 24, 2005–2009. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madadi, M.; Saadati, R.; De la Sen, M. Stability of Unbounded Differential Equations in Menger k-Normed Spaces: A Fixed Point Technique. Mathematics 2020, 8, 400. https://doi.org/10.3390/math8030400
Madadi M, Saadati R, De la Sen M. Stability of Unbounded Differential Equations in Menger k-Normed Spaces: A Fixed Point Technique. Mathematics. 2020; 8(3):400. https://doi.org/10.3390/math8030400
Chicago/Turabian StyleMadadi, Masoumeh, Reza Saadati, and Manuel De la Sen. 2020. "Stability of Unbounded Differential Equations in Menger k-Normed Spaces: A Fixed Point Technique" Mathematics 8, no. 3: 400. https://doi.org/10.3390/math8030400
APA StyleMadadi, M., Saadati, R., & De la Sen, M. (2020). Stability of Unbounded Differential Equations in Menger k-Normed Spaces: A Fixed Point Technique. Mathematics, 8(3), 400. https://doi.org/10.3390/math8030400