Refined Expected Value Decision Rules under Orthopair Fuzzy Environment
Abstract
:1. Introduction
2. Preliminaries
2.1. Aggregation Function
2.2. Measure
2.3. Dual
2.4. Choquet Integral
2.5. Primal Monotonic Function
2.6. Refined Expected Value
2.7. Generalized Orthopair Fuzzy Sets
3. The Proposed Model
4. Study Case
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yuan, R.; Tang, M.; Wang, H.; Li, H. A Reliability Analysis Method of Accelerated Performance Degradation Based on Bayesian Strategy. IEEE Access 2019, 7, 169047–169054. [Google Scholar] [CrossRef]
- Li, H.; Yuan, R.; Fu, J. A reliability modeling for multi-component systems considering random shocks and multistate degradation. IEEE Access 2019, 7, 168805–168814. [Google Scholar] [CrossRef]
- Borzooei, R.; Sabetkish, M.; Roh, E.; Kologani, M.A. Int-Soft Filters in Hoops. Int. J. Fuzzy Log. Intell. Syst. 2019, 19, 213–222. [Google Scholar] [CrossRef]
- Khademan, S.; Zahedi, M.M.; Jun, Y.B.; Borzooei, R.A. Fuzzy soft positive implicative hyper BCK-ideals in hyper BCK-algebras. J. Intell. Fuzzy Syst. 2019, 36, 2605–2613. [Google Scholar] [CrossRef]
- Qian, H.M.; Huang, H.Z.; Li, Y.F. A novel single-loop procedure for time-variant reliability analysis based on Kriging model. Appl. Math. Model. 2019, 75, 735–748. [Google Scholar] [CrossRef]
- Sun, C.; Li, S.; Deng, Y. Determining Weights in Multi-Criteria Decision Making Based on Negation of Probability Distribution under Uncertain Environment. Mathematics 2020, 8, 191. [Google Scholar] [CrossRef] [Green Version]
- Borzooei, R.; Shenavaei, M.; Di Nola, A.; Zahiri, O. On EMV-Semirings. Math. Slovaca 2019, 69, 739–752. [Google Scholar] [CrossRef]
- Mi, J.; Li, Y.; Beer, M.; Broggi, M.; Cheng, Y. Importance measure of probabilistic common cause failures under system hybrid uncertainty based on Bayesian network. Eksploat. I Niezawodn. Maint. Reliab. 2020, 22, 112–120. [Google Scholar] [CrossRef]
- Jun, Y.B.; Song, S.Z.; Kim, S.J. Distances between hyper structures and length fuzzy ideals of BCK/BCI-algebras based on hyper structures. J. Intell. Fuzzy Syst. 2018, 35, 2257–2268. [Google Scholar] [CrossRef]
- Yager, R.R.; Reformat, M.Z.; To, N.D. Drawing on the iPad to input fuzzy sets with an application to linguistic data science. Inf. Sci. 2019, 479, 277–291. [Google Scholar] [CrossRef]
- Xiao, F.; Ding, W. Divergence measure of Pythagorean fuzzy sets and its application in medical diagnosis. Appl. Soft Comput. 2019, 79, 254–267. [Google Scholar] [CrossRef]
- Gou, X.; Liao, H.; Xu, Z.; Herrera, F. Double hierarchy hesitant fuzzy linguistic term set and MULTIMOORA method: A case of study to evaluate the implementation status of haze controlling measures. Inf. Fusion 2017, 38, 22–34. [Google Scholar] [CrossRef]
- Song, S.Z.; Bordbar, H.; Jun, Y.B. A new type of hesitant fuzzy subalgebras and ideals in BCK/BCI-algebras. J. Intell. Fuzzy Syst. 2017, 32, 2009–2016. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L.; Li, Z.; Ding, L. Improved Fuzzy Bayesian Network-Based Risk Analysis With Interval-Valued Fuzzy Sets and D-S Evidence Theory. IEEE Trans. Fuzzy Syst. 2019. [Google Scholar] [CrossRef]
- Xiao, F. Generalization of Dempster–Shafer theory: A complex mass function. Appl. Intell. 2019. [Google Scholar] [CrossRef]
- Pan, L.; Deng, Y. An association coefficient of belief function and its application in target recognition system. Int. J. Intell. Syst. 2020, 35, 85–104. [Google Scholar] [CrossRef]
- Yager, R.R.; Petry, F.E. Using Quality Measures in the Intelligent Fusion of Probabilistic Information. In Information Quality in Information Fusion and Decision Making; Springer: Berlin/Heidelberg, Germany, 2019; pp. 51–77. [Google Scholar]
- Liang, S.; Deng, X.; Jiang, W. Optimal data fusion based on information quality function. Appl. Intell. 2019, 49, 3938–3946. [Google Scholar] [CrossRef]
- Liu, Q.; Tian, Y.; Kang, B. Derive knowledge of Z-number from the perspective of Dempster-Shafer evidence theory. Eng. Appl. Artif. Intell. 2019, 85, 754–764. [Google Scholar] [CrossRef]
- Jiang, W.; Cao, Y.; Deng, X. A Novel Z-network Model Based on Bayesian Network and Z-number. IEEE Trans. Fuzzy Syst. 2019. [Google Scholar] [CrossRef]
- Liu, B.; Deng, Y. Risk Evaluation in Failure Mode and Effects Analysis Based on D Numbers Theory. Int. J. Comput. Commun. Control 2019, 14, 672–691. [Google Scholar]
- Wen, T.; Deng, Y. The vulnerability of communities in complex networks: An entropy approach. Reliab. Eng. Syst. Saf. 2020, 196, 106782. [Google Scholar] [CrossRef]
- Li, M.; Xu, H.; Deng, Y. Evidential Decision Tree Based on Belief Entropy. Entropy 2019, 21, 897. [Google Scholar] [CrossRef] [Green Version]
- Yager, R.R. A class of belief structures based on possibility measures. Soft Comput. 2018, 22, 7909–7917. [Google Scholar] [CrossRef]
- Wang, T.; Wei, X.; Huang, T.; Wang, J.; Valencia-Cabrera, L.; Fan, Z.; Pérez-Jiménez, M.J. Cascading Failures Analysis Considering Extreme Virus Propagation of Cyber-Physical Systems in Smart Grids. Complexity 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wang, T.; Zang, T.; Huang, Z.; Wang, J.; Huang, T.; Wei, X.; Li, C. A fault diagnosis method for power transmission networks based on spiking neural P systems with self-updating rules considering biological apoptosis mechanism. Complexity 2020, 2020, 2462647. [Google Scholar] [CrossRef] [Green Version]
- Habib, S.; Garg, H.; Nie, Y.; Khan, F.M. An Innovative Approach towards Possibility Fuzzy Soft Ordered Semigroups for Ideals and Its Application. Mathematics 2019, 7, 1183. [Google Scholar] [CrossRef] [Green Version]
- Yager, R.R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 2016, 25, 1222–1230. [Google Scholar] [CrossRef]
- Wang, J.; Wang, P.; Wei, G.; Wei, C.; Wu, J. Some power Heronian mean operators in multiple attribute decision-making based on q-rung orthopair hesitant fuzzy environment. J. Exp. Theor. Artif. Intell. 2019, 1–29. [Google Scholar] [CrossRef]
- Liu, P.; Liu, W. Multiple-attribute group decision-making method of linguistic q-rung orthopair fuzzy power Muirhead mean operators based on entropy weight. Int. J. Intell. Syst. 2019, 34, 1755–1794. [Google Scholar] [CrossRef]
- Wang, P.; Wang, J.; Wei, G.; Wei, C. Similarity measures of q-rung orthopair fuzzy sets based on cosine function and their applications. Mathematics 2019, 7, 340. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Wang, P. Multiple-attribute decision-making based on Archimedean Bonferroni Operators of q-rung orthopair fuzzy numbers. IEEE Trans. Fuzzy Syst. 2018, 27, 834–848. [Google Scholar] [CrossRef]
- Wei, G.; Gao, H.; Wei, Y. Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Int. J. Intell. Syst. 2018, 33, 1426–1458. [Google Scholar] [CrossRef]
- Wang, J.; Wei, G.; Lu, J.; Alsaadi, F.E.; Hayat, T.; Wei, C.; Zhang, Y. Some q-rung orthopair fuzzy Hamy mean operators in multiple attribute decision-making and their application to enterprise resource planning systems selection. Int. J. Intell. Syst. 2019, 34, 2429–2458. [Google Scholar] [CrossRef]
- Wei, G.; Wei, C.; Wang, J.; Gao, H.; Wei, Y. Some q-rung orthopair fuzzy maclaurin symmetric mean operators and their applications to potential evaluation of emerging technology commercialization. Int. J. Intell. Syst. 2019, 34, 50–81. [Google Scholar] [CrossRef]
- Wang, J.; Gao, H.; Wei, G.; Wei, Y. Methods for multiple-attribute group decision making with q-rung interval-valued orthopair fuzzy information and their applications to the selection of green suppliers. Symmetry 2019, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Wei, G.; Wang, J.; Lin, R.; Wei, Y. Dual hesitant q-Rung orthopair fuzzy hamacher aggregation operators and their applications in scheme selection of construction project. Symmetry 2019, 11, 771. [Google Scholar] [CrossRef] [Green Version]
- Gou, X.; Liao, H.; Wang, X.; Xu, Z.; Herrera, F. Consensus based on multiplicative consistent double hierarchy linguistic preferences: Venture capital in real estate market. Int. J. Strateg. Prop. Manag. 2020, 24, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Mo, H.; Deng, Y. A New Divergence Measure of Pythagorean Fuzzy Sets Based on Belief Function and Its Application in Medical Diagnosis. Mathematics 2020, 8, 142. [Google Scholar] [CrossRef] [Green Version]
- Yager, R.R. Refined expected value decision rules. Inf. Fusion 2018, 42, 174–178. [Google Scholar] [CrossRef]
- Wang, T.; Wang, J.; Ming, J.; Sun, Z.; Wei, C.; Lu, C.; Pérez-Jiménez, M.J. Application of neural-like P systems with state values for power coordination of photovoltaic/battery microgrids. IEEE Access 2018, 6, 46630–46642. [Google Scholar] [CrossRef]
- Tan, Z.X.; Cheong, K.H. Cross-issue solidarity and truth convergence in opinion dynamics. J. Phys. A Math. Theor. 2018, 51, 355101. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Wei, X.; Huang, T.; Wang, J.; Peng, H.; Pérez-Jiménez, M.J.; Valencia-Cabrera, L. Modeling fault propagation paths in power systems: A new framework based on event SNP systems with neurotransmitter concentration. IEEE Access 2019, 7, 12798–12808. [Google Scholar] [CrossRef]
- Gao, X.; Deng, Y. Quantum Model of Mass Function. Int. J. Intell. Syst. 2020, 35, 267–282. [Google Scholar] [CrossRef]
- Dzitac, I.; Filip, F.G.; Manolescu, M.J. Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh. Int. J. Comput. Commun. Control 2017, 12, 748–789. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Jiang, W. A new distance measure of interval-valued intuitionistic fuzzy sets and its application in decision making. Soft Comput. 2019, 23. [Google Scholar] [CrossRef]
- Gao, S.; Deng, Y. An evidential evaluation of nuclear safeguards. Int. J. Distrib. Sens. Netw. 2019, 15. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F. EFMCDM: Evidential fuzzy multicriteria decision making based on belief entropy. IEEE Trans. Fuzzy Syst. 2019. [Google Scholar] [CrossRef]
- Wang, T.; Liu, W.; Zhao, J.; Guo, X.; Terzija, V. A rough set-based bio-inspired fault diagnosis method for electrical substations. Int. J. Electr. Power Energy Syst. 2020, 119, 105961. [Google Scholar] [CrossRef]
- Song, Y.; Deng, Y. A new soft likelihood function based on power ordered weighted average operator. Int. J. Intell. Syst. 2019, 34, 2988–2999. [Google Scholar] [CrossRef]
- Wang, C.; Tan, Z.X.; Ye, Y.; Wang, L.; Cheong, K.H.; Xie, N.G. A rumor spreading model based on information entropy. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef]
- Xiao, F. A new divergence measure for belief functions in D-S evidence theory for multisensor data fusion. Inf. Sci. 2019. [Google Scholar] [CrossRef]
- Gao, X.; Deng, Y. The Pseudo-Pascal Triangle of Maximum Deng Entropy. Int. J. Comput. Commun. Control 2020, 15, 1006. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Deng, Y. Entropic methodology for entanglement measures. Phys. A Stat. Mech. Its Appl. 2018, 512, 693–697. [Google Scholar] [CrossRef]
- Tan, Z.X.; Koh, J.M.; Koonin, E.V.; Cheong, K.H. Predator Dormancy is a Stable Adaptive Strategy due to Parrondo’s Paradox. Adv. Sci. 2019, 7, 1901559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Z.X.; Cheong, K.H. Nomadic-colonial life strategies enable paradoxical survival and growth despite habitat destruction. Elife 2017, 6, e21673. [Google Scholar] [CrossRef]
- Wei, B.; Xiao, F.; Shi, Y. Fully Distributed Synchronization of Dynamic Networked Systems with Adaptive Nonlinear Couplings. IEEE Trans. Cybern. 2019, 1–9. [Google Scholar] [CrossRef]
- Fei, L.; Zhang, Q.; Deng, Y. Identifying influential nodes in complex networks based on the inverse-square law. Phys. A Stat. Mech. Its Appl. 2018, 512, 1044–1059. [Google Scholar] [CrossRef]
- Wang, H.; Fang, Y.P.; Zio, E. Risk Assessment of an Electrical Power System Considering the Influence of Traffic Congestion on a Hypothetical Scenario of Electrified Transportation System in New York Stat. IEEE Trans. Intell. Transp. Syst. 2019. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, R.; Deng, Y. A Novel Visibility Graph Transformation of Time Series into Weighted Networks. Chaos Solitons Fractals 2018, 117, 201–208. [Google Scholar] [CrossRef]
- Wei, B.; Xiao, F.; Shi, Y. Synchronization in Kuramoto Oscillator Networks with Sampled-Data Updating Law. IEEE Trans. Cybern. 2019, 1–9. [Google Scholar] [CrossRef]
- Mo, H.; Deng, Y. Identifying node importance based on evidence theory in complex networks. Phys. A Stat. Mech. Its Appl. 2019. [Google Scholar] [CrossRef]
- Yager, R.R.; Alajlan, N.; Bazi, Y. Uncertain database retrieval with measure-based belief function attribute values. Inf. Sci. 2019, 501, 761–770. [Google Scholar] [CrossRef]
- Jin, L.; Mesiar, R.; Yager, R.R. Melting probability measure with OWA operator to generate fuzzy measure: The Crescent Method. IEEE Trans. Fuzzy Syst. 2018, 27, 1309–1316. [Google Scholar] [CrossRef]
- Romagnoli, S. A vague multidimensional dependency structure: Conditional versus Unconditional fuzzy copula models. Inf. Sci. 2019, 512, 1202–1213. [Google Scholar] [CrossRef]
- Garg, H. Novel neutrality operation–based Pythagorean fuzzy geometric aggregation operators for multiple attribute group decision analysis. Int. J. Intell. Syst. 2019, 34, 2459–2489. [Google Scholar] [CrossRef]
- Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976; Volume 42. [Google Scholar]
- Gou, X.; Xu, Z.; Liao, H.; Herrera, F. Multiple criteria decision making based on distance and similarity measures under double hierarchy hesitant fuzzy linguistic environment. Comput. Ind. Eng. 2018, 126, 516–530. [Google Scholar] [CrossRef]
- Adler, A.M.; Calvo, T.; Mayor, G. Aggregation Operators; Springer: Heidelberg, Germany, 2002. [Google Scholar]
- Choquet, G. Theory of capacities. Annales de l’institut Fourier 1954, 5, 131–295. [Google Scholar] [CrossRef] [Green Version]
- George, J.K.; Bo, Y. Fuzzy Sets and Fuzzy Logic: Theory and Applications; PHI: New Delhi, India, 1995; pp. 443–455. [Google Scholar]
- Hussain, A.; Ali, M.I.; Mahmood, T.; Munir, M. q-Rung orthopair fuzzy soft average aggregation operators and their application in multicriteria decision-making. Int. J. Intell. Syst. 2020, 35, 571–599. [Google Scholar] [CrossRef]
- Li, H.; He, Y.; Nie, X. Structural reliability calculation method based on the dual neural network and direct integration method. Neural Comput. Appl. 2018, 29, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Garg, H.; Kumar, K. Linguistic interval-valued Atanassov intuitionistic fuzzy sets and their applications to group decision-making problems. IEEE Trans. Fuzzy Syst. 2019, 27, 2302–2311. [Google Scholar] [CrossRef]
- Li, N.; Garg, H.; Wang, L. Some Novel Interactive Hybrid Weighted Aggregation Operators with Pythagorean Fuzzy Numbers and Their Applications to Decision Making. Mathematics 2019, 7, 1150. [Google Scholar] [CrossRef] [Green Version]
- Fei, L.; Deng, Y. Multi-criteria decision making in Pythagorean fuzzy environment. Appl. Intell. 2020, 50, 537–561. [Google Scholar] [CrossRef]
- Bai, K.; Zhu, X.; Zhang, R.; Gao, J. Linguistic Reasoning Petri Nets Using q-Rung Orthopair Fuzzy Linguistic Sets and Weighted Ordered Weighted Averaging Operators. IEEE Access 2019, 7, 103167–103183. [Google Scholar] [CrossRef]
- Du, W.S. Research on arithmetic operations over generalized orthopair fuzzy sets. Int. J. Intell. Syst. 2019, 34, 709–732. [Google Scholar] [CrossRef]
- Hussain, A.; Irfan Ali, M.; Mahmood, T. Covering based q-rung orthopair fuzzy rough set model hybrid with TOPSIS for multi-attribute decision making. J. Intell. Fuzzy Syst. 2019, 37, 981–993. [Google Scholar] [CrossRef]
- Luqman, A.; Akram, M.; N Al-Kenani, A. q-Rung orthopair fuzzy hypergraphs with applications. Mathematics 2019, 7, 260. [Google Scholar] [CrossRef] [Green Version]
- Luqman, A.; Akram, M.; Davvaz, B. q-Rung orthopair fuzzy directed hypergraphs: A new model with applications. J. Intell. Fuzzy Syst. 2019, 37, 3777–3794. [Google Scholar] [CrossRef]
- Yager, R.R.; Alajlan, N.; Bazi, Y. Aspects of generalized orthopair fuzzy sets. Int. J. Intell. Syst. 2018, 33, 2154–2174. [Google Scholar] [CrossRef]
- Yager, R.R. Extending Set Measures to Pythagorean Fuzzy Sets. Int. J. Fuzzy Syst. 2019, 21, 343–354. [Google Scholar] [CrossRef]
T | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 0.5 | 0.3 | 0.4 | 0.7 | 0.8 | 0.8 | 1 |
x | |||||
---|---|---|---|---|---|
0.641 | 0.667 | 0.593 | 0.676 | 0.467 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Deng, Y. Refined Expected Value Decision Rules under Orthopair Fuzzy Environment. Mathematics 2020, 8, 442. https://doi.org/10.3390/math8030442
Xue Y, Deng Y. Refined Expected Value Decision Rules under Orthopair Fuzzy Environment. Mathematics. 2020; 8(3):442. https://doi.org/10.3390/math8030442
Chicago/Turabian StyleXue, Yige, and Yong Deng. 2020. "Refined Expected Value Decision Rules under Orthopair Fuzzy Environment" Mathematics 8, no. 3: 442. https://doi.org/10.3390/math8030442
APA StyleXue, Y., & Deng, Y. (2020). Refined Expected Value Decision Rules under Orthopair Fuzzy Environment. Mathematics, 8(3), 442. https://doi.org/10.3390/math8030442