
mathematics

Article

FastText-Based Local Feature Visualization Algorithm
for Merged Image-Based Malware Classification
Framework for Cyber Security and Cyber Defense

Sejun Jang, Shuyu Li and Yunsick Sung *

Department of Multimedia Engineering, Dongguk University-Seoul, Seoul 04620, Korea;
sejun@dongguk.edu (S.J.); lishuyu@dongguk.edu (S.L.)
* Correspondence: sung@dongguk.edu

Received: 18 February 2020; Accepted: 18 March 2020; Published: 24 March 2020
����������
�������

Abstract: The importance of cybersecurity has recently been increasing. A malware coder writes
malware into normal executable files. A computer is more likely to be infected by malware when users
have easy access to various executables. Malware is considered as the starting point for cyber-attacks;
thus, the timely detection, classification and blocking of malware are important. Malware visualization
is a method for detecting or classifying malware. A global image is visualized through binaries
extracted from malware. The overall structure and behavior of malware are considered when global
images are utilized. However, the visualization of obfuscated malware is tough, owing to the
difficulties encountered when extracting local features. This paper proposes a merged image-based
malware classification framework that includes local feature visualization, global image-based
local feature visualization, and global and local image merging methods. This study introduces
a fastText-based local feature visualization method: First, local features such as opcodes and API
function names are extracted from the malware; second, important local features in each malware
family are selected via the term frequency inverse document frequency algorithm; third, the fastText
model embeds the selected local features; finally, the embedded local features are visualized through
a normalization process. Malware classification based on the proposed method using the Microsoft
Malware Classification Challenge dataset was experimentally verified. The accuracy of the proposed
method was approximately 99.65%, which is 2.18% higher than that of another contemporary global
image-based approach.

Keywords: cyber security; deep learning; malware classification; malware visualization

1. Introduction

Technologies in various fields, such as autonomous control [1], music [2] and multimedia content,
are rapidly advancing [3–5]. Through these advancements, information access has progressively
become easy, which also exposes users to cyber threats. A malware is any malicious software designed
to harm computers or computer networks. Accessing a file that contains malware poses a direct threat
to personal information; therefore, malware files are blocked before execution. Every type of malware
acts differently, depending on the family it belongs to, and thus, countermeasures for them are also
different; this necessitates the classification of malware into different families.

For detecting malware, there are majorly two types of methods: signature-based and
heuristic-based; and the latter addresses the shortcomings of the former [6,7]. Heuristic-based
malware detection involves malware scanning to detect features suspected of malicious behavior.
Towards this end, many dynamic and static analysis methods have been developed [8–11]. A dynamic
analysis method detects malicious behavior by executing the malware itself in an isolated virtual

Mathematics 2020, 8, 460; doi:10.3390/math8030460 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-3732-5346
http://dx.doi.org/10.3390/math8030460
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/3/460?type=check_update&version=2

Mathematics 2020, 8, 460 2 of 13

environment [12], whereas a static analysis method detects malicious behavior by identifying the
overall structure without executing the malware [13,14].

Previously, a method for visualizing malware has been proposed through static analysis [15,16].
A global image can detect malware mutants as the overall structure is maintained, whereas small
changes in malware are captured. Global images generated from malware belonging to the same family
are similar; making them suitable for classifying malware. However, a global image cannot capture the
actual behavior of obfuscated malware. A method for combining the global image and local features
was proposed to increase classification accuracy by considering actual malware behavior [17]. The
application programming interface (API) and dynamic link library (DLL) information is utilized as a
feature from the text section of the bytes file to extract local features. The global image of malware
combined with local features can be used for accurate malware classification. However, there is a need
for a method to extract any local features of obfuscated malware, which is considered a difficult task.

This paper proposes a merged, image-based malware classification framework (MMCF) to classify
malware. MMCF includes local image visualization, global image-based local feature visualization,
and global image merging methods. This paper describes the local feature visualization technique
for MMCF. The local feature visualization method embeds the local features extracted from malware,
and generates local images based on the embedding results. As per our knowledge, there is no known
method for generating local images based on the embedding results of local features in malware
detection and classification. By creating a local image based on the embedding results, the relationship
between all the local features can be represented in a single image. The generated local image has
unique features for each family, because it selects important local features for each family of malware.
The contribution of this study is as follows:

• FastText model extensibility: The fastText model is used to embed local features, and it aids
malware classification.

• New local feature visualization: The local features of malware based on the embedding results are
visualized. Both relationship and order between local features in a single image can be considered
by visualizing the extracted local features based on embedding.

• Generating a local image for MMCF: A local image with a simple pattern is generated for MMCF.
The generated local image helps in applying a local feature visualization method based on the
global image proposed by MMCF.

The rest of the paper has the following structure: Section 2 covers related works. Section 3
introduces the local feature visualization method for MMCF. Section 4 derives the experimental
procedures and results. Section 5 discusses the results. Section 6 presents the conclusion.

2. Related Works

2.1. Portable Executable

Portable executable (PE) is a file format for executable files utilized by the Windows operating
system [18]. PE is the data structure that encapsulates the information required by the windows loader
that manages codes, and includes dynamic library references for linking and API import tables. The
PE file format could be of different types, such as *.exe file or a *.dll file. A PE file consists of several
headers and sections to map file to a memory. Specifically, the text section contains the program code,
and the data section contains the global variables. Each section is mapped to a different memory.

2.2. Global Image-Based Malware Detection or Classification

Nataraj et al. proposed a method for visualizing malware to address the shortcomings of static
and dynamic analyses [19]. They divided the binary information extracted from malware into an 8-bit
vector and used it as one pixel. Because the representation range of 8-bit vectors is between 0 and 255,

Mathematics 2020, 8, 460 3 of 13

it is suitable for grayscale images. They extracted texture features from the generated image and used
KNN (K-Nearest Neighbors) as a classifier, achieving good performance.

Kesav Kancherla et al. converted the binary value extracted from executable files into an 8-bit
vector, and used it as the pixel intensity [20]. They detected malware using a support vector machine
(SVM) as a classifier by extracting the intensity, wavelet and three Gabor features from the generated
image. They detected and classified malware based on various features using different feature
extraction algorithms.

2.3. Local Feature-Based Malware Detection or Classification

Sang Ni et al. proposed a malware classification method using SimHash and Convolutional neural
network (MCSC), which combined malware visualization and deep learning [21]. They extracted
an opcode sequence from malware files and encoded it using SimHash. They then converted the
SimHash result of the extracted opcodes into a grayscale image using the pixel, and verified it through
a convolutional neural network (CNN) using 10,805 malware samples.

Jianwen Fu et al. generated a global image using the global features of malware along with local
features [17]. They used entropy values, byte values and relative sizes of all the sections for each
section from the malware-infected PE files to generate the global image; they extracted the texture
and color features from this global image using the gray-level co-occurrence matrix (GLCM) and color
moment. They extracted local features from the code and data sections of the malware, and accurately
classified malware through the random forest (RF) method by combining global and local features.

2.4. Comparison between Prior Works and Our Proposed Method

Table 1 summarizes the difference between conventional malware detection and classification
methods and MMCF. Nataraj and Kesav Kancherla generated a global image using binary information
of malware; they detected and classified malware based on the features of the generated global
image [19,20]. When detecting and classifying obfuscated malware only with global images, it is
difficult to attain accuracy, as the actual malware behavior is not considered. We accurately classify
non-obfuscated and obfuscated malware by visualizing the opcodes and API function names that
represent malware behavior.

Table 1. Comparison between the proposed method and prior methods.

Lakshmanan
Nataraj [19] Keshav [20] Sang Ni [21] Jian Fu [17] MMCF

(Proposed)

Image Variable Global Global Local Global Global, Local

Global Feature Texture
Wavelet

Transforms,
Gabor Filter

- GLCM, Color
Moments -

Local Feature - - Opcode DLL, API Opcode, API
Model KNN SVM CNN RF GAN, CNN

Sing Ni et al. visualized local features using the opcode sequence extracted through static analysis
to classify malware into different families [21]. However, there is a problem with their method—the
relationships among opcodes cannot be represented when the extracted opcodes are encoded with
SimHash. Our method embeds opcodes and API function names through the fastText model and
visualizes them, thereby overcoming these shortcomings to a significant extent.

Jianwen Fu et al. classified malware by generating a global image with the global features of
malware and extracting local features from the code and data sections of malware [17]. Such extraction
of local features from obfuscated malware through static analysis remains to be a difficult task. We
therefore propose MMCF, which visualizes local features based on the global images generated by

Mathematics 2020, 8, 460 4 of 13

the binary information of non-obfuscated and obfuscated malware; it classifies malware by merging
global and local images.

3. Merged Image-Based Malware Classification Framework

3.1. Overview

The proposed method includes the input, preprocessing, and training and classification phases, as
illustrated in Figure 1. The input phase extracts ASM and bytes files from a database with a disassembler.

Mathematics 2020, 8, x FOR PEER REVIEW 4 of 13

generated by the binary information of non-obfuscated and obfuscated malware; it classifies malware

by merging global and local images.

3. Merged Image-Based Malware Classification Framework

3.1. Overview

The proposed method includes the input, preprocessing, and training and classification phases,

as illustrated in Figure 1. The input phase extracts ASM and bytes files from a database with a

disassembler.

Figure 1. Overview of the merged, image-based malware classification framework (MMCF) .

The preprocessing phase includes global image generation and local feature visualization. A

global image is generated using the binary information extracted from the bytes file through a binary

extractor as pixels. The local features are extracted from ASM files through a local feature extractor,

and are visualized. The extracted local features are input into an obfuscation checker to determine

whether they are obfuscated. If malware is obfuscated, the local features are entered in a GAN

executor. If malware has not been obfuscated, the local features are visualized through the local

feature visualizer and then a local image is generated. The phases are as follows:

1. Global and local images are input into a GAN trainer. A global image of the obfuscated malware

is input into a GAN executor that outputs a local image of the obfuscated malware.

2. The generated global and local images are merged through an image merger.

3. The merged image is input into a CNN trainer to train the CNN. The CNN executor classifies

malware into different families by receiving the merged image and the trained CNN.

The training and classification phase that utilizes a generative adversarial network (GAN) and

CNN includes (1) GAN training and execution, (2) global and local image merge and (3) CNN

training and classification stages.

Figure 1. Overview of the merged, image-based malware classification framework (MMCF).

The preprocessing phase includes global image generation and local feature visualization. A global
image is generated using the binary information extracted from the bytes file through a binary extractor
as pixels. The local features are extracted from ASM files through a local feature extractor, and are
visualized. The extracted local features are input into an obfuscation checker to determine whether they
are obfuscated. If malware is obfuscated, the local features are entered in a GAN executor. If malware
has not been obfuscated, the local features are visualized through the local feature visualizer and then
a local image is generated. The phases are as follows:

1. Global and local images are input into a GAN trainer. A global image of the obfuscated malware
is input into a GAN executor that outputs a local image of the obfuscated malware.

2. The generated global and local images are merged through an image merger.
3. The merged image is input into a CNN trainer to train the CNN. The CNN executor classifies

malware into different families by receiving the merged image and the trained CNN.

The training and classification phase that utilizes a generative adversarial network (GAN) and
CNN includes (1) GAN training and execution, (2) global and local image merge and (3) CNN training
and classification stages.

Mathematics 2020, 8, 460 5 of 13

3.2. Input Phase

D refers to a database, f refers to the malware family number, and i refers to the malware sample
number. Database D consists of malware samples [m f ,1, m f ,2, . . . m f ,i, . . . , m f ,|m f |

]. The malware

sample m f ,i is input into a binary extractor that outputs the ASM file mA
f ,i and the bytes file mB

f ,i.

3.3. Preprocessing Phase

GL
f refers to a local image set, and GL

f consists of local images [gL
f ,1, gL

f ,2, . . . , gL
f ,i, . . . , gL

f ,|g f |
].

A local image gL
f ,i is an image generated by the processes detailed in Figure 2 using a local feature

p j extracted from the ASM file mA
f ,i. The text section refers to the section with the program code in

the PE file. A feature extractor receives an ASM file mA
f ,i and extracts a local feature p j from the text

section of the ASM file mA
f ,i based on a predefined list. The local feature p j is composed of opcodes

and API function names. A feature selector receives the local feature p j and outputs the selected local
feature p′ j based on the term frequency inverse document frequency (TFIDF) algorithm [15]. The top
Y local features are derived in the ascending order of TFIDF of the local feature p j for each family.
The selected local feature p′ j is derived after removing the same local features and the local features
belonging to all families. The fastText model represents words with a similar meaning, among the
words inputted through distributed representation, as similar vector values [22]. A fastText trainer
learns by receiving the local feature p j and outputs the trained fastText model t. The fastText executor
outputs the embedded local feature p∗j by receiving the local feature p j and the trained fastText model t.

Mathematics 2020, 8, x FOR PEER REVIEW 5 of 13

3.2. Input Phase

𝐷 refers to a database, 𝑓 refers to the malware family number, and 𝑖 refers to the malware

sample number. Database 𝐷 consists of malware samples [𝑚𝑓,1 , 𝑚𝑓,2 , … 𝑚𝑓,𝑖 , …, 𝑚𝑓,|𝑚𝑓|]. The

malware sample 𝑚𝑓,𝑖 is input into a binary extractor that outputs the ASM file 𝑚𝑓,𝑖
𝐴 and the bytes

file 𝑚𝑓,𝑖
𝐵 .

3.3. Preprocessing Phase

𝐺𝑓
𝐿 refers to a local image set, and 𝐺𝑓

𝐿 consists of local images [𝑔𝑓,1
𝐿 , 𝑔𝑓,2

𝐿 , …, 𝑔𝑓,𝑖
𝐿 , …, 𝑔𝑓,|𝑔𝑓|

𝐿]. A

local image 𝑔𝑓,𝑖
𝐿 is an image generated by the processes detailed in Figure 2 using a local feature 𝑝𝑗

extracted from the ASM file 𝑚𝑓,𝑖
𝐴 . The text section refers to the section with the program code in the

PE file. A feature extractor receives an ASM file 𝑚𝑓,𝑖
𝐴 and extracts a local feature 𝑝𝑗 from the text

section of the ASM file 𝑚𝑓,𝑖
𝐴 based on a predefined list. The local feature 𝑝𝑗 is composed of opcodes

and API function names. A feature selector receives the local feature 𝑝𝑗 and outputs the selected

local feature 𝑝′
𝑗
 based on the term frequency inverse document frequency (TFIDF) algorithm [15].

The top 𝑌 local features are derived in the ascending order of TFIDF of the local feature 𝑝𝑗 for each

family. The selected local feature 𝑝′
𝑗
 is derived after removing the same local features and the local

features belonging to all families. The fastText model represents words with a similar meaning,

among the words inputted through distributed representation, as similar vector values [22]. A

fastText trainer learns by receiving the local feature 𝑝𝑗 and outputs the trained fastText model 𝑡. The

fastText executor outputs the embedded local feature 𝑝𝑗
∗ by receiving the local feature 𝑝𝑗 and the

trained fastText model 𝑡.

Figure 2. Local feature visualization process.

Algorithm 1 is a local feature visualization algorithm. The local feature visualization function

outputs a local image 𝑔𝑓,𝑖
𝐿 by receiving the non-obfuscated malware 𝑚𝑓,𝑖

𝑈 and the embedded local

feature 𝑝𝑗
∗. The range from 𝛼 to 𝛽 is the pixel range of a grayscale image. Ω𝑓,𝑖 is a two-dimensional

matrix for generating a local image. To generate a local image, the element 𝑝𝑗,𝑘
∗ of the embedded

local feature 𝑝𝑗
∗ is used. The element 𝑝𝑗,𝑘

∗ is a real number ranging from the minimum value

𝑀𝐼𝑁(𝑝𝑗,𝑘
∗) to the maximum value 𝑀𝐴𝑋(𝑝𝑗,𝑘

∗). The element 𝑝𝑗,𝑘
∗ of the embedded local feature 𝑝𝑗

∗ is

extracted to generate a local image. The range from the minimum value 𝑀𝐼𝑁(𝑝𝑗,𝑘
∗) of the element

𝑝𝑗,𝑘
∗ to the maximum value 𝑀𝐴𝑋(𝑝𝑗,𝑘

∗) of the element 𝑝𝑗,𝑘
∗ is normalized from 𝛼 to 𝛽.

Because the normalized local feature 𝑝𝑗,𝑘
^ consists of pixels ranging from 𝛼 to 𝛽 of a grayscale

image, a local image is generated by using the pixels. The size of the normalized local feature 𝑝𝑗,𝑘
^ is

the same as the size 𝑀 of the local feature 𝑝𝑗,𝑘
∗ embedded through the fastText model 𝑡. The row

size of the 2-D matrix Ω𝑓,𝑖 is 𝑆𝐼𝑍𝐸(𝑝𝑗), which is the size of the local feature 𝑝𝑗 extracted from the

Figure 2. Local feature visualization process.

Algorithm 1 is a local feature visualization algorithm. The local feature visualization function
outputs a local image gL

f ,i by receiving the non-obfuscated malware mU
f ,i and the embedded local

feature p∗j. The range from α to β is the pixel range of a grayscale image. Ω f ,i is a two-dimensional
matrix for generating a local image. To generate a local image, the element p∗j,k of the embedded local

feature p∗j is used. The element p∗j,k is a real number ranging from the minimum value MIN
(
p∗j,k

)
to the

maximum value MAX
(
p∗j,k

)
. The element p∗j,k of the embedded local feature p∗j is extracted to generate

a local image. The range from the minimum value MIN
(
p∗j,k

)
of the element p∗j,k to the maximum value

MAX
(
p∗j,k

)
of the element p∗j,k is normalized from α to β.

Because the normalized local feature p̂ j,k consists of pixels ranging from α to β of a grayscale

image, a local image is generated by using the pixels. The size of the normalized local feature p̂ j,k is the
same as the size M of the local feature p∗j,k embedded through the fastText model t. The row size of the

Mathematics 2020, 8, 460 6 of 13

2-D matrix Ω f ,i is SIZE
(
p j
)
, which is the size of the local feature p j extracted from the non-obfuscated

malware mU
f ,i. The column size of the 2-D matrix Ω f ,i is M, which is the size of the embedded local

feature p∗j.

Algorithm 1. Local Feature Visualization Algorithm

1. FUNCTION LocalFeatureVisualization (mU
f ,i, p∗j)

2. OUTPUT
3. gL

f ,i//Local Image

4. BEGIN
5. α←Local image minimum pixel value
6. β←Local image maximum pixel value
7. Ω f ,i ←2-Dimension matrix for local image gL

f ,i

8. FOR Zero to SIZE
(
p j
)

9. p∗j,k←Extract element of p∗j

10. p̂ j,k←
p∗j,k−α
β−α ∗ 255

11. END FOR

12. FOR Zero to m← SIZE
(
mU

f ,i

)
13. FOR Zero to n← SIZE

(
p̂ j

)
14. Ω f ,i←p̂ j,k

15. END FOR
16. END FOR
17. END

4. Experiments

An experiment was conducted to verify the proposed method by performing the local feature
visualization process, and deriving its results and malware classification results through MMCF.

4.1. Dataset and Experimental Environment

The dataset used to verify the proposed method is the Microsoft Malware Classification Challenge
(BIG 2015) [23]. The BIG 2015 dataset is divided into: (1) training data with label information; and
(2) test data without label information. The training and test data consist of ASM files and bytes files
extracted from malicious samples through IDA Pro. The datasets composed of 9 families includes
10,868 types of malware with a size of 500 GB. Table 2 details the names and numbers of malware used
in the experiment. Ramnit is a worm-type malware, and its total count was 1541, of which 28 were
obfuscated. The total number of Lollipop malware was 2478, of which 8 were obfuscated. Vundo,
Tracur, Obfuscator.ACY, and Gatak are Trojan-type malware, and their total count was 3467, of which
544 were obfuscated. Kelihos_ver3 and Kelihos_ver1 are botnet-type malware, and their total count
was 3340, of which 17 were obfuscated. Simda is backdoor-type malware. In the experiment, the 10,868
ASM files and 10,868 bytes files were used among the training data with label information, because the
proposed method could not verify data without label information. A total of 90% of the training data
was used for training and 10% for testing.

Mathematics 2020, 8, 460 7 of 13

Table 2. Malware used in the experiment.

Family Index Family Name Non-Obfuscated
Malware

Obfuscated
Malware Total Number

1 Ramnit 1513 28 1541
2 Lollipop 2470 8 2478
3 Kelihos_ver3 2936 6 2942
4 Vundo 447 28 475
5 Simda 34 8 42
6 Tracur 294 457 751
7 Kelihos_ver1 387 11 398
8 Obfuscator.ACY 1170 58 1228
9 Gatak 1012 1 1013

Table 3 lists the parameters used in the experiment; batchsize is the number of images inputted at
a time, and imageshape is the size of an image. The 32 × 32 local images outputted from the GAN
model are reshaped into 256 × 128 images. The learning rate is represented by learningrate, and epoch
is the learning number. Similarly, filter_size is the size of the filter, G_h0 is the size of the first layer of
the generator, G_h1 is the size of the first CNN layer of the generator, G_h1 is the size of the second
CNN layer of the generator, G_h3 is the size of the output layer of the generator, D_h0 is the size of the
first CNN layer of the discriminator, D_h1 is the size of the second CNN layer of the discriminator,
D_h1 is the size of the third CNN layer of the discriminator, D_h3 is the size of the output layer of the
discriminator, conv1 is the size of the first CNN layer, conv2 is the size of the second CNN layer, conv3
is the size of the third CNN layer, fc1 is the size of the first FC layer and fc2 is the size of the second
FC layer.

Table 3. Generative adversarial network (GAN) and convolutional neural network (CNN) parameters.

No
GAN CNN

Parameter Value Parameter Value

1 batchsize 32 batchsize 64
2 imageshape [256, 256] imageshape [32, 32, 1]
3 learningrate 1 × 10–4 learningrate 0.0002
4 epoch 50 epoch 10
5 filter_size 3 × 3 filter_size 5 × 5
6 conv1 128 × 128 × 32 G_h0 4 × 4 × 128
7 conv2 64 × 64 × 32 G_h1 8 × 8 × 64
8 conv3 32 × 32 × 64 G_h2 16 × 16 × 32
9 fc1 128 G_h3 32 × 32 × 1
10 fc2 9 D_h0 16 × 16 × 32
11

-
D_h1 8 × 8 × 64

12 D_h2 4 × 4 × 128
13 D_h3 64 × 1

4.2. Local Feature Visualization Results

Table 4 lists the selected local features in descending order of the TFIDF values, spanning the
results of embedding and normalization and of local feature visualization for non-obfuscated and
obfuscated malware. The same local features were selected from the top 1–3 of the selected local
features for each family, but different local features were selected from the top 4. The results are derived
by extracting the top X opcodes and API function names for each family of malware, and removing the
duplicates. These results prove that different families of malware act differently. The top 45, 50, 55, 60
and 65 with high TFIDF values are selected to visualize the local image.

Mathematics 2020, 8, 460 8 of 13

Table 4. Term frequency inverse document frequency (TFIDF) algorithm results.

45 50 55 60 65

1 aad aad aad aad aad
2 aam aam aam aam aam
3 adc adc adc adc adc
4 arpl arpl addss addss addss
5 bswap bswap arpl arpl arpl
6 div div bound bound bound

. . .
92 - - - - xchg

Total Number 67 70 76 85 92

Table 5 summarizes the extracted opcodes and API function names, embedding results and
normalization results. Because the embedded opcodes and element values of API function names are
the most widely distributed between −1 and 1, pixels are defined by normalizing the values between
−1 and 1 of the elements to the values between 0 and 255. If the element value is less than −1, a pixel is
defined as 0, and if it is greater than 1, it is defined as 255. By normalizing the embedded results to
values between 0 to 255, which is the pixel range of a grayscale image, embedded results were included
in a single image; the image is one of malware, which is included in the relationship between opcodes
and API function names.

Table 5. Embedding and normalization results.

No Extracted Local Feature Embedding Results Normalization Results

1 in [−3.93824339, −1.38366544,
−4.90960407, . . . , 3.91097903] [0, 0,0, . . . , 255]

2 call
[1.96547285 × 10–1, 2.34460935 ×

10–1, −8.65871787 × 10–1, . . . ,
8.48949492 × 10–1]

[152, 157, 17, . . . , 19]

3 jmp [0.28522536, −2.9717305,
−1.2783291, . . . , −0.60219544] [163, 0, 0, . . . , 50]

. . .

1369 SetBitmapDimensionEx [−0.05661994, 0.22015877,
−0.37183163, . . . , −0.1277246] [120, 155, 80, . . . , 111]

Figure 3 presents the results of opcode and API function name visualization of each family of
malware. The opcodes and API function names of each family of malware, which have been imaged
through the proposed method, exhibit unique patterns. The trained GAN receives a global image of
obfuscated malware, and it outputs a local image. The outputted local image is normalized to the
256 × 128 size. Although unique patterns of the local image of obfuscated malware generated by the
GAN model are identified, families 2 and 8 exhibited similar patterns. The local image is ideal for
classifying malware into different families because unique patterns have been derived from each family
of malware.

4.3. Malware Classification through MMCF

Figure 4 presents the loss values of the CNN to classify obfuscated and non-obfuscated malware in
each family. The loss value represents the difference between the predicted and actual values. The loss
value of the CNN started with 2.6 at the first iteration, became 0.268 at the fifth iteration, and converged
to 0.0543 at the 2701st iteration.

Figure 5 details the learning accuracy of the CNN for classifying obfuscated and non-obfuscated
malware in each family. Accuracy is the rate at which the malware family predicted by the CNN
is included in the actual malware family. The learning accuracy that started with 15.6% at the first
iteration reached 84.4% at the 270th iteration, and converged to 100% at the 2701 iteration.

Mathematics 2020, 8, 460 9 of 13

Mathematics 2020, 8, x FOR PEER REVIEW 9 of 13

Family Index Non-Obfuscated Malware Obfuscated Malware

1

2

3

4

5

6

7

8

9

-

Figure 3. Local feature visualization results.

4.3. Malware Classification through MMCF

Figure 4 presents the loss values of the CNN to classify obfuscated and non-obfuscated malware

in each family. The loss value represents the difference between the predicted and actual values. The

loss value of the CNN started with 2.6 at the first iteration, became 0.268 at the fifth iteration, and

converged to 0.0543 at the 2701st iteration.

Figure 4. Learning loss of the CNN.

0

0.5

1

1.5

2

2.5

3

1
1
2
5

2
4
9

3
7
3

4
9
7

6
2
1

7
4
5

8
6
9

9
9
3

1
1
1
7

1
2
4
1

1
3
6
5

1
4
8
9

1
6
1
3

1
7
3
7

1
8
6
1

1
9
8
5

2
1
0
9

2
2
3
3

2
3
5
7

2
4
8
1

2
6
0
5

2
7
2
9

2
8
5
3

L
o
ss

Iteration

Figure 3. Local feature visualization results.

Mathematics 2020, 8, x FOR PEER REVIEW 9 of 13

Family Index Non-Obfuscated Malware Obfuscated Malware

1

2

3

4

5

6

7

8

9

-

Figure 3. Local feature visualization results.

4.3. Malware Classification through MMCF

Figure 4 presents the loss values of the CNN to classify obfuscated and non-obfuscated malware

in each family. The loss value represents the difference between the predicted and actual values. The

loss value of the CNN started with 2.6 at the first iteration, became 0.268 at the fifth iteration, and

converged to 0.0543 at the 2701st iteration.

Figure 4. Learning loss of the CNN.

0

0.5

1

1.5

2

2.5

3

1
1
2
5

2
4
9

3
7
3

4
9
7

6
2
1

7
4
5

8
6
9

9
9
3

1
1
1
7

1
2
4
1

1
3
6
5

1
4
8
9

1
6
1
3

1
7
3
7

1
8
6
1

1
9
8
5

2
1
0
9

2
2
3
3

2
3
5
7

2
4
8
1

2
6
0
5

2
7
2
9

2
8
5
3

L
o
ss

Iteration

Figure 4. Learning loss of the CNN.

Table 6 lists the accuracy of malware classification achieved by the proposed method at 99.65%
accuracy for each family. The method proposed by Jianwen Fu [17] classifies malware into different
families; a global image is generated using a global feature and a local feature extracted from malware.
The method is similar to the proposed method, in that it uses local features with images of malware.
The performance of the method proposed in this study was 2.18% better than that of the method

Mathematics 2020, 8, 460 10 of 13

proposed by Jianwen Fu [17]. The method proposed by Sang Ni [21] classifies malware into different
families; local images are created using local features extracted from malware. The performance of the
method proposed in this study was 0.39% better than that of the method proposed by Sang Ni [21].
Furthermore, in comparison with the global image-based malware detection and classification method
proposed by Nataraj [19] and Kancherla [20], the method proposed in this study achieved a 1.6%
higher accuracy.

Mathematics 2020, 8, x FOR PEER REVIEW 10 of 13

Figure 5 details the learning accuracy of the CNN for classifying obfuscated and non-obfuscated

malware in each family. Accuracy is the rate at which the malware family predicted by the CNN is

included in the actual malware family. The learning accuracy that started with 15.6% at the first

iteration reached 84.4% at the 270th iteration, and converged to 100% at the 2701 iteration.

Figure 5. Learning accuracy of the CNN.

Table 6 lists the accuracy of malware classification achieved by the proposed method at 99.65%

accuracy for each family. The method proposed by Jianwen Fu [17] classifies malware into different

families; a global image is generated using a global feature and a local feature extracted from

malware. The method is similar to the proposed method, in that it uses local features with images of

malware. The performance of the method proposed in this study was 2.18% better than that of the

method proposed by Jianwen Fu [17]. The method proposed by Sang Ni [21] classifies malware into

different families; local images are created using local features extracted from malware. The

performance of the method proposed in this study was 0.39% better than that of the method proposed

by Sang Ni [21]. Furthermore, in comparison with the global image-based malware detection and

classification method proposed by Nataraj [19] and Kancherla [20], the method proposed in this study

achieved a 1.6% higher accuracy.

Table 6. Comparison between the proposed method and methods introduced in related works.

 Accuracy (%) TFIDF (top) Used Image

Proposed Method 99.39 45 Merge Image

Proposed Method 99.47 50 Merge Image

Proposed Method 99.65 55 Merge Image

Proposed Method 99.56 60 Merge Image

Proposed Method 99.39 65 Merge Image

Jianwen Fu et al. [17] 97.47 - Global Image, Local Feature

Sang Ni et al. [21] 99.26 - Local Image

Nataraj et al. [19] 98.00 - Global Image

Kancherla et al. [20] 95.95 - Global Image

5. Discussion

5.1. Non-Obfuscated and Obfuscated Malware Classification Results Achieved by the Proposed MMCF

The non-obfuscated malware classified all the 1024 types of test malware for each family,

resulting in 100% accuracy. The obfuscated malware classified 124 out of 128 types for each family,

resulting in 96.87% accuracy. The local image of the obfuscated malware based on the global image

0

10

20

30

40

50

60

70

80

90

100
1

1
2
5

2
4
9

3
7
3

4
9
7

6
2
1

7
4
5

8
6
9

9
9
3

1
1
1
7

1
2
4
1

1
3
6
5

1
4
8
9

1
6
1
3

1
7
3
7

1
8
6
1

1
9
8
5

2
1
0
9

2
2
3
3

2
3
5
7

2
4
8
1

2
6
0
5

2
7
2
9

2
8
5
3

A
cc

u
ra

cy
(%

)

Iteration

Figure 5. Learning accuracy of the CNN.

Table 6. Comparison between the proposed method and methods introduced in related works.

Accuracy (%) TFIDF (Top) Used Image

Proposed Method 99.39 45 Merge Image
Proposed Method 99.47 50 Merge Image
Proposed Method 99.65 55 Merge Image
Proposed Method 99.56 60 Merge Image
Proposed Method 99.39 65 Merge Image

Jianwen Fu et al. [17] 97.47 - Global Image, Local Feature
Sang Ni et al. [21] 99.26 - Local Image
Nataraj et al. [19] 98.00 - Global Image

Kancherla et al. [20] 95.95 - Global Image

5. Discussion

5.1. Non-Obfuscated and Obfuscated Malware Classification Results Achieved by the Proposed MMCF

The non-obfuscated malware classified all the 1024 types of test malware for each family, resulting
in 100% accuracy. The obfuscated malware classified 124 out of 128 types for each family, resulting in
96.87% accuracy. The local image of the obfuscated malware based on the global image was generated
through the GAN model. However, the generated local image was inaccurate in comparison with the
local image of the non-obfuscated malware. The classification accuracy of the obfuscated malware
was lower than that of non-obfuscated malware, because the unique patterns of each family were not
clearly displayed. Table 7 summarizes the confusion matrix that classifies obfuscated malware into
different families. Yellow color in Table 7 means the numbers of accurate classification and red color
means that of inaccurate classification.

Mathematics 2020, 8, 460 11 of 13

Table 7. Confusion matrix that classifies obfuscated malware. (Yellow shading means the numbers of
accurate classification and red shading means that of inaccurate classification.)

0 1 2 3 4 5 6 7 8 9

1 5 0 0 0 0 0 0 0 0
2 0 4 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 1 0
4 0 0 0 6 0 0 0 0 0
5 0 0 0 0 2 0 0 0 0
6 0 0 0 0 0 86 0 0 0
7 0 0 0 0 0 0 4 0 0
8 0 0 0 0 0 1 1 16 0
9 0 0 0 0 0 1 0 0 0

5.2. Comparison between the Results of the Proposed MMCF and Those of Other Research

The malware classification technique based on the global image and local features (text) proposed
by Jian Fu et al. [17] is similar to the method proposed in this study. However, MMCF, using the
proposed global and local images, yields a 2.18% higher accuracy. The local image-based malware
classification method proposed by Sang Ni et al. [21] used the same dataset as the proposed MMCF.
Comparing MMCF (with the global and local images) to the method proposed by Sang Ni (with
local images) [21], the result of the former is 0.39% better than that of the latter. On one hand,
Sang Ni et al. [21] experimented using only 10,805 of the 10,868 BIG 2015 datasets. On the other hand,
MMCF was experimented using all the 10,868 BIG 2015 datasets. Even though Sang Ni et al. [21]
experimented with limited datasets, MMCF yielded a higher accuracy.

5.3. Computational Complexity

The proposed MMCF has a strong advantage, in that it delivers higher accuracy than other methods
proposed in recent research studies; however, it has the disadvantage of increased computational
complexity. When detecting or classifying malware in real-time, computational complexity is one of
the important considerations. However, this study does not consider computational complexity, given
that the proposed MMCF focuses on demonstrating the availability of fastText model, which is one of
embedding models frequently utilized in natural language processing to express the co-relationship of
malware local features by a single image. To further explore the computational complexity of MMCF,
the reduction of the computational complexity of generating a local image using embedded models
will be studied in future.

5.4. Security of Big Data

Big data contains a wide variety of data. Information protection for big data is necessary, especially
when it contains personal information or important company information. My T. Thai et al. describe
the applications of big data and social networks, and the protection of privacy and security [24].

If a system that handles big data is infected with malware, the root authority of the system is
hijacked. Personal information or confidential information contained in the database is stolen easily
if the hacker gains root authority of the system that controls the database. Therefore, the ability to
detect and classify malware before their execution is important, because malwares are considered as
the starting point of cyberattacks.

6. Conclusions

MMCF offers three methods—local feature visualization, global image-based local feature imaging
and global and local image merging methods. This paper described the local feature visualization
method. First, the ASM and bytes files were extracted from a database. Second, the local features
of each family of malware were selected, based on the TFIDF algorithm. Third, the selected local

Mathematics 2020, 8, 460 12 of 13

features were embedded through fastText. Fourth, the embedding results were normalized for each
local feature to use them as pixels. Fifth, a local image was generated using the normalized results.
Sixth, based on the generated local and global images, malware were classified into different families.

The performance of the proposed method was experimentally verified as follows: First, the
selected local feature results based on TFIDF were derived. Second, the embedding results through
fastText and the normalized results through the embedding results were derived. Third, the local
feature visualization results of obfuscated and non-obfuscated malware based on the normalized results
were derived. In comparison with the method proposed by Jianwen Fu, which is the most similar to
the proposed method, the proposed method achieved approximately 2.18% higher performance.

Future work will focus on improving the local image of obfuscated malware visualized based
on a GAN. Because the derived local image is blurry, it is necessary to obtain a simpler pattern to
generate an image based on the GAN. Methods for reducing the number of local features extracted
from malware or selecting meaningful local features will also be studied. Also, MMCF will improve
the ability to detect files as malicious/benign, and classify malicious files (malware) into each family.

Author Contributions: Conceptualization, S.L., S.J., and Y.S.; Methodology, S.L., J.S., and Y.S.; Software, S.L., S.J.,
and Y.S.; Validation, S.L., S.J., and Y.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science, ICT), Korea, under the High-Potential
Individuals Global Training Program (2019-0-01585) supervised by the IITP (Institute for Information and
Communications Technology Planning and Evaluation).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kwak, J.; Park, J.; Sung, Y. Affective Social Big Data Generation Algorithm for Autonomous Controls by
CRNN-based end-to-end Controls. Multimed. Tools Appl. 2019, 78, 27175–27192. [CrossRef]

2. Li, S.; Jang, S.; Sung, Y. Automatic Melody Composition Using Enhanced GAN. Mathematics 2019, 7, 883–893.
[CrossRef]

3. Sung, Y.; Kwak, J.; Park, J. Decision Tree Generation Algorithm for Image-based Video Conferencing. J. Intern.
Technol. 2019, 20, 1535–1545.

4. Stai, E.; Kafetzoglou, S.; Tsiropoulou, E.E.; Papavassiliou, S. A Holistic Approach for Personalization,
Relevance Feedback & Recommendation in Enriched Multimedia Content. Multimed. Tools Appl. 2018, 77,
283–326.

5. Balabanović, M.; Shoham, Y. Fab: Content-Based, Collaborative Recommendation. Commun. ACM 1997, 40,
66–72. [CrossRef]

6. Sangaiah, A.K.; Medhane, D.V.; Bian, G.B.; Ghoneim, A.; Alrashoud, M.; Hossain, M.S. Energy-Aware Green
Adversary Model for Cyber Physical Security in Industrial System. IEEE Trans. Ind. Inform. 2020, 16,
3322–3329. [CrossRef]

7. Sangaiah, A.K.; Hosseinabadi, A.A.R.; Sadeghilalimi, M.; Zhang, W. Energy Consumption in Point-Coverage
Wireless Sensor Networks via Bat Algorithm. IEEE Access 2019, 7, 180258–180269. [CrossRef]

8. Bilar, D. Opcodes as Predictor for Malware. Int. J. Electron. Secur. Digit. Forensics 2007, 1, 156–168. [CrossRef]
9. Albladi, S.; Weir, G.R. User Characteristics that Influence Judgment of Social Engineering Attacks in Social

Networks. Hum. Centric Comput. Inf. Sci. 2018, 8, 1–24.
10. Gandotra, E.; Bansal, D.; Sofat, S. Malware Analysis and Classification: A Survey. J. Inf. Secur. 2014, 5, 56–64.

[CrossRef]
11. Santos, I.; Brezo, F.; Ugarte-Pedrero, X.; Bringas, P.G. Opcode Sequences as Representation of Executables for

Data-mining-based Unknown Malware Detection. Inf. Sci. 2013, 231, 64–82. [CrossRef]
12. Souri, A.; Hosseini, R. A State-of-the-Art Survey of Malware Detection Approaches using Data Mining

Techniques. Hum. Centric Comput. Inf. Sci. 2018, 8, 1–22. [CrossRef]
13. Homayoun, S.; Dehghantanha, A.; Ahmadzadeh, M.; Hashemi, S.; Khayami, R. Know Abnormal, Find Evil:

Frequent Pattern Mining for Ransomware Threat Hunting and Intelligence. IEEE Trans. Emerg. Top. Comput.
2017. to appear. [CrossRef]

http://dx.doi.org/10.1007/s11042-019-7703-4
http://dx.doi.org/10.3390/math7100883
http://dx.doi.org/10.1145/245108.245124
http://dx.doi.org/10.1109/TII.2019.2953289
http://dx.doi.org/10.1109/ACCESS.2019.2952644
http://dx.doi.org/10.1504/IJESDF.2007.016865
http://dx.doi.org/10.4236/jis.2014.52006
http://dx.doi.org/10.1016/j.ins.2011.08.020
http://dx.doi.org/10.1186/s13673-018-0125-x
http://dx.doi.org/10.1109/TETC.2017.2756908

Mathematics 2020, 8, 460 13 of 13

14. Zhao, B.; Han, J.; Meng, X. A Malware Detection Sysstem Based on Intermediate Language. In Proceedings
of the 2017 4th International Conference on Systems and Informatics (ICSAI), Hangzhou, China, 11–13
November 2017.

15. Zhang, H.; Xiao, X.; Mercaldo, F.; Ni, S.; Martinelli, F.; Sangaiah, A.K. Classification of Ransomware Families
with Machine Learning based on N-gram of Opcodes. Futur. Gener. Comput. Syst. 2019, 90, 211–221.
[CrossRef]

16. Kim, J.; Kim, H.; Kim, I.K. Cyber Genome Technology for Countering Malware. Electron. Telecommun. Trends
2015, 30, 118–128.

17. Fu, J.; Xue, J.; Wang, Y.; Liu, Z.; Shan, C. Malware Visualization for Fine-grained Classification. IEEE Access
2018, 6, 1–14. [CrossRef]

18. Bai, J.; Wang, J.; Zou, G. A Malware Detection Scheme Based on Mining Format Information. Sci. World J.
2014, 2014, 1–12. [CrossRef] [PubMed]

19. Nataraj, L.; Karthikeyan, S.; Jacob, G.; Manjunath, B.S. Malware Images: Visualization and Automatic Classification.
In Proceedings of the 8th International Symposium on Visualization for Cyber Security (VizSec ’11); Association for
Computing Machinery: New York, NY, USA, 20 July 2011.

20. Kancherla, K.; Mukkamala, S. Image Visualization based Malware Detection. In Proceedings of the 2013
IEEE Symposium on Computational Intelligence in Cyber Security (CICS), Singapore, 16–17 April 2013.

21. Ni, S.; Qian, Q.; Zhang, R. Malware Identification Using Visualization Images and Deep Learning.
Comput. Secur. 2018, 77, 871–885. [CrossRef]

22. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching Word Vectors with Subword Information.
Trans. Assoc. Comput. Linguist. 2017, 5, 135–146. [CrossRef]

23. Kalash, M.; Rochan, M.; Mohammed, N.; Bruce, N.D.; Wang, Y.; Iqbal, F. Malware Classification with
Deep Convolutional Neural Networks. In Proceedings of the 2018 9th IFIP International Conference on
New Technologies, Mobility and Security (NTMS), Paris, France, 26–28 February 2018.

24. Thai, M.T.; Wu, W.; Xiong, H. Big Data in Complex and Social Networks, 1st ed.; Taylor & Francis Inc: Portland,
OR, USA, 2016.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.future.2018.07.052
http://dx.doi.org/10.1109/ACCESS.2018.2805301
http://dx.doi.org/10.1155/2014/260905
http://www.ncbi.nlm.nih.gov/pubmed/24991639
http://dx.doi.org/10.1016/j.cose.2018.04.005
http://dx.doi.org/10.1162/tacl_a_00051
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related works
	Portable Executable
	Global Image-Based Malware Detection or Classification
	Local Feature-Based Malware Detection or Classification
	Comparison between Prior Works and Our Proposed Method

	Merged Image-Based Malware Classification Framework
	Overview
	Input Phase
	Preprocessing Phase

	Experiments
	Dataset and Experimental Environment
	Local Feature Visualization Results
	Malware Classification through MMCF

	Discussion
	Non-Obfuscated and Obfuscated Malware Classification Results Achieved by the Proposed MMCF
	Comparison between the Results of the Proposed MMCF and Those of Other Research
	Computational Complexity
	Security of Big Data

	Conclusions
	References

