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Abstract: The aim of this article is to study the qualitative behavior of a host-parasitoid system with
a Beverton–Holt growth function for a host population and Hassell–Varley framework. Furthermore,
the existence and uniqueness of a positive fixed point, permanence of solutions, local asymptotic
stability of a positive fixed point and its global stability are investigated. On the other hand, it is
demonstrated that the model endures Hopf bifurcation about its positive steady-state when the
growth rate of the consumer is selected as a bifurcation parameter. Bifurcating and chaotic behaviors
are controlled through the implementation of chaos control strategies. In the end, all mathematical
discussion, especially Hopf bifurcation, methods related to the control of chaos and global asymptotic
stability for a positive steady-state, is supported with suitable numerical simulations.
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1. Introduction

The host–parasitoid interaction is the most underlying and substantial procedure in population
dynamics. Many species, such as semelparous animals and monocarpic plants, have discrete
seasonal (non-overlapping) generations and their births take place in customary reproduction seasons.
Their interactions are described by difference equations or formulated as discrete-time mappings.

Discrete-time models are widely used to explore the dynamics of host–parasitoid interactions in
an ecosystem. In nature, most of host–parasitoid systems have complexity due to the interaction of
species. On the other hand, in most of such cases, the coexistence of both species is mostly stable. We
propose a host–parasitoid model with the implementation of a Beverton–Holt growth function for the
host population and Hassell–Varley framework to make the coexistence stable. On the other hand,
chaotic behavior is also observed for the proposed model. In the case of ecological models related to the
breeding of biological species, chaos is considered as irregular and unpredictable behavior; therefore,
the presence of chaos is an unfavorable situation for the survival of a species [1]. Thus, chaos control
methods can be used by the species to avoid risks of irregular behavior. Qualitative analysis for various
classes of host–parasitoid interaction is a topic of great interest. Recently, many researchers have
focused their studies on the dynamics of host–parasitoid models. Some of these investigations, which
are very close to the present study, are summarized as follows. Taylor [2] investigated the dynamics
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of some host–parasitoid systems under competition. Kaitala et al. [3] discussed a comprehensive
study of the complex dynamics occurring in a basic discrete–time model of host–parasitoid interaction.
Tang and Chen [4] applied Holling type II and III functional response functions to a host–parasitoid
model. Xu and Boyce [5] reported that mutual interference in host–parasitoid interaction not only
can stabilize the dynamics but may strongly destabilize as well. Lv and Zhao [6] studied the complex
dynamics in a discrete–time model of host–parasitoid interaction based on a lower bound for the host.
Din [7] investigated global dynamics for a class of host–parasitoid systems related to plant–herbivore
interaction with strong predator functional response. Din [8] modified the host–parasitoid interaction
with implementation of constant refuge effects and reported global dynamics for the proposed model.
In [9], the authors modified the host–parasitoid interaction with a Pennycuick growth function for the
host population and studied Neimark-Sacker bifurcation and chaos control. In [10], global stability
and Hopf bifurcation were carried out for a class of host–parasitoid interaction. Din [11] reported
Neimark-Sacker bifurcation and chaos control in a Hassell–Varley model. Global dynamics and
Neimark-Sacker bifurcation were investigated for Beddington and generalized Beddington models
in [12] and [13], respectively. Global stability, bifurcation analysis and control for host–parasitoid
interactions were reported in [14] and [15]. Wu and Zhao [16] studied the qualitative behavior of a
discrete host–parasitoid model with the host subjected to refuge and strong Allee effects. Jamieson [17]
discussed global dynamics of the May host–parasitoid interaction. Liu et al. [18] explored a complex
behavior and bifurcation analysis for a class of host–parasitoid interaction with an application of
the Allee effect and Holling type III functional response. Moreover, in [19], chaos control and
bifurcation analysis were studied for a host–parasitoid model with a lower bound for the host.
In [20] and [21], the influence of a refuge effect was explored for certain classes of host–parasitoid
models. In [22], the authors numerically investigated a system of partial differential equations that
describe the interactions between populations of predators and prey. Suryanto et al. [23] considered
a model of predator–prey interaction at fractional-order with a ratio-dependent functional response.
Zhang et al. [24] reported dynamics of a predator–prey system with the weak Allee effect.

Generally, the host–parasitoid interaction is considered as non-overlapping generations. Therefore,
difference equations can be used to describe their mathematical framework. One of the pioneer works
for mathematical modeling of host–parasitoid interaction was presented by Nicholson and Bailey [25].
The general framework for mathematical modeling of a host–parasitoid system is presented as follows:

Hn+1 = rHn f (Hn, Pn),

Pn+1 = cHn (1− f (Hn, Pn)) ,

where Hn and Pn denote population densities for host and parasitoid, respectively, at the n-th
generation; f (Hn, Pn) represents the fraction of host population that does not parasitize; r represents
the number of eggs that are laid by a host; and c is used for the intrinsic growth rate of a
parasitoid population.

Nicholson and Bailey assume that f (Hn, Pn) = exp(−aPn), which is derived from the zero-th
term of the Poisson distribution, where a represents per capita searching efficiency of the parasitoid
population. With this particular implementation of f (Hn, Pn) = exp(−aPn), the Nicholson and Bailey
model is given as follows:

Hn+1 = rHn exp(−aPn),

Pn+1 = cHn (1− exp(−aPn)) .

It is worthwhile to note that coexistence is unstable in the case of the Nicholson–Bailey
model (NBM). On the other hand, in our universe, most of the host–parasitoid interactions are
stable. Therefore, many modifications are suggested to NBM to make its resemblance to natural
host–parasitoid systems. For this, it is more appropriate to interchange the constant reproduction rate
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of hosts to some density-dependent function for the host population. Consequently, the implementation
of such density-dependent factors can modify NBM to make its resemblance with the natural
host–parasitoid interaction.

Keeping in view the single species density-dependent model for the host population, the Ricker
model [26] is a classic discrete population model, which gives the expected number Hn+1 of individuals
in generation n + 1 as a function of the number of individuals in the previous generation. This model
is given as follows:

Hn+1 = Hn exp
(

s
(

1− Hn

l

))
,

where s is interpreted as an intrinsic growth rate and l as the carrying capacity of the environment.
The Ricker model was introduced in 1954 by Ricker in the context of stock and recruitment in fisheries.
The model can be used to predict the number of fish that will be present in a fishery. Subsequent work
has been derived from the model under other assumptions, such as scramble competition, within-year
resource-limited competition or even as the outcome of source–sink Malthusian patches linked by
density-dependent dispersal. The Ricker model is a limiting case of the Hassell model [27], which
takes the form:

Hn+1 =
r Hn

(1 + k Hn)b , (1)

where r ≥ 1 denotes the growth rate of the population; b > 0 is used to represent intra-specific
competition; and k > 0 is a scaling parameter for describing the steady population size. If we take
b = 1 in Equation (1), then the Hassell model is simply the Beverton–Holt model [28] given as follows:

Hn+1 =
r Hn

1 + k Hn
. (2)

Biological assumptions related to Equation (2) are given as follows [29]:

(i) It is assumed that the first encounter between the parasitoid and host is random. Moreover, one
viable egg is laid by a parasitoid on a single host, which is killed by the parasitoid’s progeny.

(ii) Keeping in view the law of mass action, the number of encounters He of resources (hosts) with
consumers (parasitoids) in generation n are proportional to the product of hosts and parasitoids
present densities, and consequently, one has:

He := aHnPn

where a is a positive constant representing the searching efficiency of the parasitoid, and Pn, Hn

denote the population densities of the parasitoid and host, respectively, in generation n.
(iii) The next generation of parasitoids is produced due to infection of hosts in the present generation.
(iv) The hosts that are not infected produce their own offspring.

Keeping in view the assumptions (i)–(iv) and the Beverton–Holt model in Equation (2), we have
the following system for host–parasitoid interaction:

Hn+1 =
r (Hn − He)

1 + k (Hn − He)
,

Pn+1 = c He,
(3)

where c is used for the intrinsic growth rate of the parasitoid population. Due to the randomness
of encounters between hosts and parasitoids, it is more appropriate to represent the probability of
N encounters by a distribution, which depends on the average number of encounters per unit time.
Consequently, this condition leads to implementation of the Poisson distribution, and probability mass
function is described as follows:

P(N) := exp(−aP)(aP)N

N! , N = 0, 1, 2, · · · ,
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where P represents the number of parasitoids, N denotes the number of encounters per unit time,
and aP is used for the mean of the distribution, which represents the average number of encounters
per unit time. Therefore, the portion of the hosts without parasitism are given as follows:

P(0) := exp (−aP) .

Furthermore, it follows that

Pn+1 = cHe = cHn (1− P(0)) = cHn (1− exp(−aPn)) . (4)

Next, from Equation (4), it follows that

Hn − He := exp (−aPn) . (5)

Then, from Equations (3)–(5), it follows that:

Hn+1 =
rHn exp(−aPn)

1 + kHn exp(−aPn)
,

Pn+1 = cHn (1− exp(−aPn)) .
(6)

Arguing as in [30], one may consider the influence of parasitoid interference on the interaction of
the host–parasitoid model. For this, the searching efficiency a of parasitoids can be taken as a = −qP−m

n ,
where m is a constant for mutual interference, and q represents the quest constant, which denotes the
searching efficiency of the parasitoid as Pn = 1. Keeping in view the Hassell–Varley modification of
the host–parasitoid interaction, System (6) is modified as follows:

Hn+1 =
rHn exp

(
−qP1−m

n
)

1 + kHn exp
(
−qP1−m

n

) ,

Pn+1 = cHn

(
1− exp

(
−qP1−m

n

))
.

(7)

The remaining discussion of this paper is summarized as follows. In Section 2, we discuss the
permanence of solutions of System (7). In Section 3, the existence, uniqueness and local stability
analysis of the positive fixed point of System (7) are studied. Section 4 is dedicated to examining
the parametric conditions for global asymptotic stability of the positive fixed point of System (7).
Neimark-Sacker bifurcation about the positive fixed point of System (7) is studied in Section 5 with the
implementation of the theory of normal forms. In Section 6, the pole-placement method and hybrid
control strategy are implemented for controlling the chaotic and fluctuating behavior of System (7)
about its positive fixed point. At the end, numerical simulations are presented to authenticate the
mathematical analysis in Section 7. Moreover, theoretical findings are validated through experimental
and field data based on statistical analysis of previous literatures.

2. Permanence

In the case of difference equations, the permanence of solutions is an important tool to discuss
further dynamical behavior of the equations.

Definition 1. Suppose {(Hn, Pn)} denotes a positive solution for System (7). Then, we say that System (7) is
permanent if the following hold true:

m ≤ lim
n→∞

inf (Hn, Pn) ≤ lim
n→∞

sup (Hn, Pn) ≤ M,

where m and M are some positive constants.
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Theorem 1. Assume that {(Hn, Pn)} is an arbitrary solution of System (7). Moreover, suppose that
exp

(
qM1−m

2

)
< r and Mm

2 < qcm1, then the following results hold true:

m1 ≤ lim
n→∞

inf Hn ≤ lim
n→∞

sup Hn ≤ M1, m2 ≤ lim
n→∞

inf Pn ≤ lim
n→∞

sup Pn ≤ M2,

where

M1 :=
r− 1

k
, M2 =: cM1, m1 =:

r− exp
(

qM1−m
2

)
k

, m2 =:
qcm1 −Mm

2
qcm1

. (8)

Proof. Keeping in view the first equation of Model (7), it follows that Hn+1 ≤ rHn
1+kHn

, then the

comparison argument yields that lim
n→∞

sup Hn ≤
r− 1

k
= M1 for every n = 1, 2, · · · . Next, the second

equation of System (7) gives that Pn+1 ≤ cHn; therefore, it is easy to see that lim
n→∞

sup Pn ≤
c(r− 1)

k
=

M2 for every n = 1, 2, · · · . Next, focusing on the first equation of System (7), one has that

Hn+1 ≥
rHn

eqM1−m
2 + kHn

, n = 0, 1, 2, · · · . (9)

Next, one can implement the transformation Sn = 1/Hn in Inequality (9) to obtain Sn+1 ≤ α+ βSn

for all n = 0, 1, 2, · · · , where β = eqM1−m
2 /r and α = k/r. If we suppose that S0 = 1/H0 and β < 1,

then due to the comparison argument, one has m1 := 1−β
α ≤ lim

n→∞
inf Hn for every n = 1, 2, · · · , and it

follows from the fact that lim
n→∞

inf(1/Sn) = lim
n→∞

sup Sn. Next, we again focus on the second equation

of System (7) and see that Pn+1 ≥ qcm1Pn
Mm

2 +qPn
for every n = 0, 1, 2, · · · . On the other hand, we consider

a transformation of the form Pn = 1/Qn, then one has Qn+1 ≤ α1 + β1Qn for every n = 0, 1, 2, · · · ,
where β1 = Mm

2 /qcm1 and α1 = 1/cm1. Furthermore, let P0 = 1/Q0 and β1 < 1, then it is quite simple
to see that m2 = (1− β1)/α1 ≤ lim

n→∞
inf Pn for all n = 1, 2, · · · . Consequently, one has the desired

results as follows:
m1 ≤ lim

n→∞
inf Hn ≤ lim

n→∞
sup Hn ≤ M1,

and
m2 ≤ lim

n→∞
inf Pn ≤ lim

n→∞
sup Pn ≤ M2.

Next, one can apply Theorem 1 along with mathematical induction to prove the following result:

Lemma 1. Suppose r > 1, then the rectangle
[
0, r−1

k

]
×
[
0, c(r−1)

k

]
is an invariant set for each solution

{(Hn, Pn)} of Model (7).

3. Existence of Positive Fixed Point and Stability Analysis

The equilibria of System (7) satisfy H =
rH exp(−qP1−m)

1+kH exp(−qP1−m)
and P = cH

(
1− exp

(
−qP1−m)).

Obviously, System (7) has a trivial equilibrium (0, 0), the second is a boundary equilibrium(
r−1

k , 0
)

and a positive equilibrium (H∗, P∗), which satisfies 1 = r
exp(q(P∗)1−m)+kH∗

and P∗ =

cH∗
(
1− exp

(
−q(P∗)1−m)). The positive equilibrium (H∗, P∗) cannot be found in closed form.

The following result shows the existence and uniqueness of a positive equilibrium point (H∗, P∗) ∈[
0, r−1

k

]
×
[
0, c(r−1)

k

]
of System (7).

Theorem 2. Suppose that 0 < m < 1 and r > 1, then there exists an interior fixed point (H∗, P∗) ∈[
0, r−1

k

]
×
[
0, c(r−1)

k

]
for System (7).
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Proof. In order to show the existence and uniqueness of positive equilibrium, we construct a
real-valued function F :

[
0, r−1

k

]
→ R defined as follows:

F(x) :=
f (x)

c (1− exp (−q( f (x))1−m))
− x,

where

f (x) :=
(

1
q

ln (r− kx)
) 1

1−m
.

Due to the fact r > 1 and f (0) =
(

1
q ln(r)

) 1
1−m

> 0, one has

F(0) =
r
(

1
q ln(r)

) 1
1−m

c(r− 1)
> 0.

On the other hand, one has f
(

r−1
k

)
= 0, and lim

x→ r−1
k

F(x) = − r− 1
k

< 0. Furthermore, assuming

that 0 < m < 1, then for any ξ ∈
[
0, r−1

k

]
one has that r− kξ > 1 and

f ′(ξ) = − k
q(1−m)(r− kξ)

(
1
q

ln(r− kξ)

) m
1−m

< 0.

Consequently, one has

F′(ξ) =
exp

(
q( f (ξ))1−m) f ′(ξ)

[
exp

(
q( f (ξ))1−m)− 1− (1−m)q( f (ξ))1−m]

c (exp (q( f (ξ))1−m)− 1)2 − 1 < 0.

In order to see the existence of a positive fixed point geometrically, it is easy to see that ordinate
of a positive fixed point (H∗, P∗) satisfies the following transcendental equation:

Υ1(P) = Υ2(P),

where
Υ1(P) := c

(
r− exp

(
qP1−m

))
,

and
Υ2(P) :=

k P
1− exp (−q P1−m)

.

The intersection of Υ1(P) and Υ2(P) is depicted in Figure 1.
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Figure 1. Existence of the unique positive fixed point of System (7).

Suppose that (H, P) be any equilibrium point of System (7), then the Jacobian matrix of System (7)
evaluated at equilibrium point (H, P) is given as follows:

J(H, P) =

 eqP1−m
r(

eqP1−m
+kH

)2 − eqP1−m
(1−m)qrHP−m(

eqP1−m
+kH

)2

c
(

1− e−qP1−m
)

cq(1−m)He−qP1−m
P−m

 . (10)

Furthermore, about interior fixed point (H∗, P∗) ∈
[
0, r−1

k

]
×
[
0, c(r−1)

k

]
of Model (7), the Jacobian

matrix J(H, P) given in Equation (10) becomes:

J(H∗, P∗) =

 exp(q(P∗)1−m)
r − q(1−m)H∗ exp(q(P∗)1−m)

r(P∗)m

c
(
1− exp

(
−q(P∗)1−m)) cq(1−m)H∗ exp(−q(P∗)1−m)

(P∗)m

 .

The following Lemma gives the conditions for local stability of a positive fixed point.

Theorem 3. The steady-state (H∗, P∗) ∈
[
0, r−1

k

]
×
[
0, c(r−1)

k

]
of Model (7) is a sink if the following

inequalities are fulfilled:

(P∗)m exp
(

q(P∗)1−m
)
+ rqc(1−m)H∗ exp

(
−q(P∗)1−m

)
< r(P∗)m + qc(1−m)H∗ exp

(
q(P∗)1−m

)
,

and
qc(1−m)H∗ exp

(
q(P∗)1−m

)
< r(P∗)m.

Proof. It is easy to compute the characteristic equation for Jacobian matrix J(H∗, P∗) as follows

P(λ) = λ2 − Tr J(H∗, P∗)λ + det J(H∗, P∗), (11)

where

Tr J(H∗, P∗) =
exp

(
q(P∗)1−m)

r
+

qc(1−m)H∗ exp
(
−q(P∗)1−m)

(P∗)m ,

and

det J(H∗, P∗) =
qc(1−m)H∗ exp

(
q(P∗)1−m)

r(P∗)m .
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Arguing as in [31], the roots of Equation (11) lie inside the open unit disk if P(1) > 0, P(−1) > 0 and
P(0) < 1, that is,

(P∗)m exp
(

q(P∗)1−m
)
+ rqc(1−m)H∗ exp

(
−q(P∗)1−m

)
< r(P∗)m + qc(1−m)H∗ exp

(
q(P∗)1−m

)
,

(12)

(P∗)m exp
(

q(P∗)1−m
)
+ rqc(1−m)H∗ exp

(
−q(P∗)1−m

)
+ r(P∗)m + qc(1−m)H∗ exp

(
q(P∗)1−m

)
> 0,

(13)

and
qc(1−m)H∗ exp

(
q(P∗)1−m

)
< r(P∗)m. (14)

As Inequality (13) is satisfied automatically, the interior fixed point of System (7) is a sink and,
thus, asymptotically stable if the Inequalities (12) and (14) are satisfied.

For r = 2.52, c = 1.245, q = 0.286 and m = 0.194, a phase analysis for the topological classification
of a positive fixed point is depicted in Figure 2.

Saddle

Sink

Source

Saddle

0 2 4 6 8 10

0

2

4

6

8

10

H

P

Figure 2. Topological classification for the positive fixed point of System (7).

4. Global Stability

The global stability of the interior fixed point of System (7) is explored in this section.
Arguing as in [32], first of all, the following Lemma is considered.

Lemma 2. Taking into account some real intervals I = [a, b] and J = [c, d], and assume that f : I× J → I and
g : I× J → J are real-valued continuous functions defined on rectangle I× J. Considering the following system:(

xn+1

yn+1

)
=

(
f (xn, yn)

g(xn, yn)

)
, (15)
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where n = 0, 1, 2, · · · and initial conditions (x0, y0) ∈ I × J. Meanwhile, we assume that the following
conditions are satisfied:
(i) The function f (x, y) is non-decreasing with respect to x, and non-increasing with respect to y.
(ii) The function g(x, y) is non-decreasing in both variables x and y.
(iii) Assume that (m1, M1, m2, M2) ∈ I2 × J2 solves the following algebraic system:

m1 = f (m1, M2), M1 = f (M1, m2)

m2 = g(m1, m2), M2 = g(M1, M2)

with m1 = M1 and m2 = M2. Then, there exists a fixed point (x∗, y∗) for System (15) with satisfying
lim

n→∞
(xn, yn) = (x∗, y∗).

Lemma 3. Suppose that 0 < m < 1 and r > 1, then interior fixed point of System (7) is a global attractor,
if the following inequality holds true:

k
(1−m)r ln(r)

− cr > 0. (16)

Proof. Keeping in view the right hand sides of System (7), we consider two real-valued functions

f :
[

0,
r− 1

k

]
×
[

0,
c(r− 1)

k

]
→
[

0,
r− 1

k

]
and

g :
[

0,
r− 1

k

]
×
[

0,
c(r− 1)

k

]
→
[

0,
c(r− 1)

k

]
such that f (x, y) := rxe−qy1−m

1+kxe−qy1−m , and g(x, y) := cx
(

1− e−qy1−m
)

with q, k, c > 0, 0 < m < 1 and

r > 1, then the function f is non-decreasing in abscissa and non-increasing in ordinate. On the
other hand, g is non-decreasing in both abscissa and ordinate. Assume that t1 ≤ T1 and t2 ≤ T2,
and (t1, T1, t2, T2) 6= (0, 0, 0, 0) solves the following system:

t1 = f (t1, T2), T1 = f (T1, t2),

t2 = g(t1, t2), T2 = g(T1, T2).

One can obtain the following systems:

t1 =
rt1e−qT1−m

2

1 + kt1e−qT1−m
2

, T1 =
rT1e−qt1−m

2

1 + kT1e−qt1−m
2

, (17)

and

t2 = ct1

(
1− e−qt1−m

2

)
, T2 = cT1

(
1− e−qT1−m

2

)
. (18)

Since (t1, T1) 6= (0, 0), from Equation (17), we have

eqT1−m
2 + kt1 = r, eqt1−m

2 + kT1 = r. (19)

Elimination of r from Equation (19) gives

k(T1 − t1) = eqT1−m
2 − eqt1−m

2 . (20)
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From Equation (19), we have eqt1−m
2 ≤ eqt1−m

2 ≤ r, and t1−m
2 ≤ T1−m

2 ≤ ln(r)
q . Therefore, from

Equation (20), it follows that

k(T1 − t1) = q(1−m)eqθ1−m
θ−m(T2 − t2)

≤ (1−m)r ln(r)(T2 − t2),
(21)

where t2 ≤ θ ≤ T2. Moreover, subtracting Equation (18), and using Equation (20) with t1 ≤ T1 ≤ r−1
k

we have

T2 − t2 = c(T1 − t1) + c
(

t1e−qt1−m
2 − T1e−qT1−m

2

)
≤ c(T1 − t1) + cT1

(
e−qt1−m

2 − e−qT1−m
2

)
≤ cr(T1 − t1).

(22)

Finally, combining Equations (21) and (22), we have the following inequality(
k

(1−m)r ln(r)
− cr

)
(T1 − t1) ≤ 0. (23)

Suppose that k
(1−m)r ln(r) − cr > 0, then from Equation (23) we have t1 = T1 and Equation (22)

gives t2 = T2. Consequently, Lemma 2 gives confirmation that the interior fixed point of System (7) is
a global attractor.

Theorem 4. Suppose that 0 < m < 1 and r > 1. In addition, if Equations(12), (14) and (16) are fulfilled, then
the interior fixed point of System (7) is globally asymptotically stable.

5. Hopf Bifurcation

This section is dedicated to the existence and direction of Hopf bifurcation about an interior fixed
point of System (7).

The roots of Equation (11) are complex conjugate numbers if the following inequality holds true:

exp
(

q(P∗)1−m
)
(P∗)m + qcr(1−m)H∗ exp

(
−q(P∗)1−m

)
< 2r(P∗)m. (24)

Suppose that Inequality (24) holds true, then System (7) experiences Hopf bifurcation about its
interior fixed point whenever det J(H∗, P∗)

∣∣
c=c1

= 1, where

c1 =
r(P∗)m

q(1−m)H∗ exp (q(P∗)1−m)
. (25)

Next, we define a Hopf bifurcation curve SNB for System (7) as follows:

SNB :=
{
(r, q, m, k, c1) ∈ R5

+ : det J(H∗, P∗) < 2, c1 =
r(P∗)m

q(1−m)H∗ exp (q(P∗)1−m)

}
.

Assume that (r, q, m, k, c1) ∈ SNB, and consider(
H
P

)
→

 rH exp(−qP1−m)
1+kH exp(−qP1−m)

c1H
(
1− exp

(
−qP1−m))

 . (26)
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Suppose that c̃ indicates a very small perturbation in c1 such that |c̃| � 1, and interchanging c1

into c1 + c̃ in Equation (26), we have a perturbed map of the following form:(
H
P

)
→

 rH exp(−qP1−m)
1+kH exp(−qP1−m)

(c1 + c̃)H
(
1− exp

(
−qP1−m))

 . (27)

Further, we suppose that c1 + c̃ > 1 and 0 < m < 1, then positive fixed point of Equation (27) is
given by (H∗, P∗) ∈

[
0, r−1

k

]
×
[
0, (c1+c̃)(r−1)

k

]
. Focusing on the following translations

x = H − H∗, y = P− P∗. (28)

From Equations (27) and (28), it follows that:

(
x
y

)
→

 a11 a12

a21 a22

( x
y

)
+

(
f1(x, y)
f2(x, y)

)
, (29)

where

f1(x, y) = a13x2 + a14xy + a15y2 + b1x3 + b2x2y + b3xy2 + b4y3 + O
(
(|x|+ |y|)4

)
,

f2(x, y) = a23xy + a24y2 + d1xy2 + d2y3 + O
(
(|x|+ |y|)4

)
,

a11 =
exp

(
q(P∗)1−m)

r
, a12 = −

q(1−m)H∗ exp
(
q(P∗)1−m)

r(P∗)m ,

a21 = (c1 + c̃)
(

1− exp
(
−q(P∗)1−m

))
, a22 =

(c1 + c̃)q(1−m)H∗ exp
(
−q(P∗)1−m)

(P∗)m ,

a13 = −
k exp

(
q(P∗)1−m)
r2 , a14 = −

q(1−m) exp
(
q(P∗)1−m) (exp

(
q(P∗)1−m)− kH∗

)
r2(P∗)m ,

a15 =
qS1

(P∗)2m

(
H∗km−m exp

(
q(P∗)1−m

)
− H∗k + exp

(
q(P∗)1−m

))
+

mS1

(P∗)1+m

(
kH∗ + exp

(
q(P∗)1−m

))
, S1 =

H∗q(1−m) exp
(
q(P∗)1−m)

2r2 ,

b1 =
k2 exp

(
q(P∗)1−m)
r3 , b2 =

qk(1−m) exp
(
q(P∗)1−m) (2 exp

(
q(P∗)1−m)− kH∗

)
(P∗)mr3 ,

b3 =
q(1−m)S2

(P∗)2m

(
(H∗)2k2 − 4H∗k + exp

(
2q(P∗)1−m

))
+

mS2

(P∗)1+m

(
exp

(
2q(P∗)1−m

)
− (H∗)2k2

)
, S2 =

q(1−m) exp
(
q(P∗)1−m)

2r3 ,

b4 = −H∗S3

6r

(
(P∗)−3mq2(1−m)2 − 3qm(1−m)(P∗)−1−2m + m(1 + m)(P∗)−2−m

)
+

H∗S2
3

r2

(
q(1−m)(P∗)−3m −m(P∗)−1−2m

)
−

H∗S3
3

r3 , S3 = q(1−m) exp
(

q(P∗)1−m
)

,

a23 = −(c1 + c̃)q(1−m)(P∗)−m exp
(

q(P∗)1−m
)

,

a24 = −1
2
(c1 + c̃)H∗q(1−m) exp

(
q(P∗)1−m

) (
q(1−m)(P∗)−2m −m(P∗)−1−m

)
,
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d1 = −1
2
(c1 + c̃)q(1−m) exp

(
q(P∗)1−m

) (
q(1−m)(P∗)−2m −m(P∗)−1−m

)
,

d2 = S4

(
q2(1−m)2(P∗)−3m − 3mq(1−m)(P∗)−1−2m + m(1 + m)(P∗)−2−m

)
,

S4 = −1
6
(c1 + c̃)qH∗(1−m) exp

(
q(P∗)1−m

)
.

Taking into account Equation (29), then the characteristic equation for its variational matrix about
(0, 0) is of the following form:

λ2 − A(c̃)λ + B(c̃) = 0, (30)

where

A(c̃) =
exp

(
q(P∗)1−m)

r
+

q(c1 + c̃)(1−m)H∗ exp
(
−q(P∗)1−m)

(P∗)m ,

and

B(c̃) =
q(c1 + c̃)(1−m)H∗ exp

(
q(P∗)1−m)

r(P∗)m .

The roots of Equation (30) are given as follows:

λ1, λ2 =
A(c̃)

2
± i

2

√
4B(c̃)− A2(c̃).

On the other hand, we have

|λ1| = |λ2| =
√

B(c̃),

and (
d|λ1|

dc̃

)
c̃=0

=

(
d|λ2|

dc̃

)
c̃=0

=

√
q(1−m)H∗ exp (q(P∗)1−m)

2
√

c1r(P∗)m
> 0.

Assume that c̃ = 0, then we have A(0) =
exp(q(P∗)1−m)

r +
qc1(1−m)H∗ exp(−q(P∗)1−m)

(P∗)m > 0 and
A(0) < 2 because (r, q, m, k, c1) ∈ SNB. Consequently, one has A(0) 6= ±2, 0,−1 gives λn

1 , λn
2 6= 1 at

c̃ = 0 for all n = 1, 2, 3, 4. Consequently, the roots of Equation (30) do not meet the unit circle at c̃ = 0.
Next, we suppose that α = A(0)

2 and β = 1
2

√
4B(0)− A2(0) and considering a transformation of the

following form: (
x
y

)
=

 −
q(1−m)H∗ exp(q(P∗)1−m)

r(P∗)m 0

α− exp(q(P∗)1−m)
r −β


(

u
v

)
. (31)

From Equations (29) and (31), one has

(
u
v

)
→

 α −β

β α

( u
v

)
+

(
f̃ (u, v)
g̃(u, v)

)
, (32)

where

f̃ (u, v) =
a13

a12
x2 +

a14

a12
xy +

a15

a12
y2 +

b1

a12
x3 +

b2

a12
x2y +

b3

a12
xy2 +

b4

a12
y3 + O

(
(|u|+ |v|)4

)
,
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g̃(u, v) =
a13(α− a11)

βa12
x2 +

(
a14(α− a11)

βa12
− a23

β

)
xy +

(
a15(α− a11)

βa12
− a24

β

)
y2

+
b1(α− a11)

βa12
x3 +

b2(α− a11)

βa12
x2y +

(
b3(α− a11)

βa12
− d1

β

)
xy2

+

(
b4(α− a11)

βa12
− d2

β

)
y3 + O

(
(|u|+ |v|)4

)
,

x = a12u and y = (α− a11)u− βv. Next, we consider the following first Lyapunov exponent:

L =

([
−Re

(
(1− 2λ1)λ

2
2

1− λ1
ξ20ξ11

)
− 1

2
|ξ11|2 − |ξ02|2 + Re(λ2ξ21)

])
r̃=0

,

where
ξ20 =

1
8

[
f̃uu − f̃vv + 2g̃uv + i

(
g̃uu − g̃vv − 2 f̃uv

)]
,

ξ11 =
1
4

[
f̃uu + f̃vv + i (g̃uu + g̃vv)

]
,

ξ02 =
1
8

[
f̃uu − f̃vv − 2g̃uv + i

(
g̃uu − g̃vv + 2 f̃uv

)]
,

ξ21 =
1
16

[
f̃uuu + f̃uvv + g̃uuv + g̃vvv + i

(
g̃uuu + g̃uvv − f̃uuv − f̃vvv

)]
.

Keeping in view the above calculations and normal form theory of bifurcation [33–36], we have
the following result:

Theorem 5. Assuming that L 6= 0, then Model (7) experiences Hopf bifurcation around its interior fixed point
denoted by (H∗, P∗) whenever c deviates in small locality of

c1 =
r(P∗)m

q(1−m)H∗ exp (q(P∗)1−m)
.

In addition, if L < 0, then a closed invariant curve of attracting nature bifurcates from the positive fixed point
towards c > c1, on the other hand, if L > 0, then a repelling invariant closed curve bifurcates from the fixed
point towards c < c1.

6. Chaos and Bifurcation Control

Control of bifurcation and chaos is a topic of great interest. Particularly, chaos and bifurcation
control methods are more applicable for models of discrete nature because such system are of complex
behavior as compare to continuous ones. On the other hand, chaos control methods are widely used
in almost all branches of applied science [37]. For further details related to chaos control methods in
discrete-time systems, we refer to [38–48].

In this section, we discuss two chaos control methods for System (7). The first method is a
modification of the Ott–Grebogi–Yorke (OGY) method [49], known as the pole-placement method [50].
For the application of the pole-placement method to Model (7), we rewrite this system as follows:

Hn+1 =
rHn exp

(
−qP1−m

n
)

1 + kHn exp
(
−qP1−m

n

) = f (Hn, Pn, c)

Pn+1 = cHn

(
1− exp

(
−qP1−m

n

))
= g (Hn, Pn, c) ,

(33)

where c is used for the sake of the control parameter. On the other hand, it is assumed that control
parameter c satisfies |c− c0| < δ, where δ > 0 and c0 represents some nominal value, which is located
in the chaotic or bifurcating region. Next, we suppose that (H∗, P∗) is an interior unstable fixed point
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of System (7). Furthermore, it is also assumed that (H∗, P∗) is located in some chaotic region. Our
main target is to move the unstable fixed point towards a stable one. For this, System (33) is linearized
about the an unstable fixed point (H∗, P∗) as follows:[

Hn+1 − H∗

Pn+1 − P∗

]
≈ A

[
Hn − H∗

Pn − P∗

]
+ B[c− c0], (34)

where

A =

[
∂ f (H∗ ,P∗ ,c0)

∂Hn

∂ f (H∗ ,P∗ ,c0)
∂Pn

∂g(H∗ ,P∗ ,c0)
∂Hn

∂g(H∗ ,P∗ ,c0)
∂Pn

]
, B =

[
∂ f (H∗ ,P∗ ,c0)

∂c
∂g(H∗ ,P∗ ,c0)

∂c

]
=

[
0

H∗
(
1− exp

(
−q(P∗)1−m))

]
.

Next, we define the following controllability matrix for System (33):

C = [B : AB] =

 0
(

∂ f (H∗ ,P∗ ,c0)
∂Pn

) (
H∗
(
1− exp

(
−q(P∗)1−m)))

H∗
(
1− exp

(
−q(P∗)1−m)) (

∂g(H∗ ,P∗ ,c0)
∂Pn

) (
H∗
(
1− exp

(
−q(P∗)1−m)))

 . (35)

Then, it is easy to see that rank matrix C is two. Indeed, H∗
(
1− exp

(
−q(P∗)1−m)) 6= 0; thus, the

system is controllable. Furthermore, in order to apply the pole-placement method, we consider that [c−

c0] = −K

[
Hn − H∗

Pn − P∗

]
, where K =

[
k1 k2

]
. Consequently, System (34) takes the following form:

[
Hn+1 − H∗

Pn+1 − P∗

]
≈ [A− BK]

[
Hn − H∗

Pn − P∗

]
. (36)

On the other hand, fixed point (H∗, P∗) is asymptotically stable provided that the multipliers for
the variational matrix A− BK lie inside the open unit disk. Assume that µ1 and µ2 are multipliers of
variational matrix A− BK. In addition, we take λ2 + α1λ + α2 = 0 as a characteristic polynomial for
matrix A and µ2 + β1µ + β2 = 0 is taken as a characteristic polynomial for A− BK. Then, a unique
solution of the pole-placement method is provided as follows:

K =
[

β2 − α2 β1 − α1

]
T−1, (37)

where T = CM and M =

[
α1 1
1 0

]
. Due to some simple computation, one has

T = CM =

[
∂ f

∂Pn

∂g
∂c 0

α1
∂g
∂c +

∂g
∂Pn

∂g
∂c

∂g
∂c

]
, (38)

here, all these partial derivatives are calculated at (H∗, P∗, c0). Next, from Equations (37) and (38), it
follows that:

k1 =
β2 − α2(

∂ f (H∗ ,P∗ ,c0)
∂Pn

) (
∂g(H∗ ,P∗ ,c0)

∂c

) − (β1 − α1)
(

α1 +
∂g(H∗ ,P∗ ,c0)

∂Pn

)
(

∂ f (H∗ ,P∗ ,c0)
∂Pn

) (
∂g(H∗ ,P∗ ,c0)

∂c

) , k2 =
β1 − α1

∂g(H∗ ,P∗ ,c0)
∂c

.
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Secondly, the hybrid control method [51] is applied to System (7). For this, the controlled system
related to System (7) is written in the following form:

Hn+1 = α
rHn exp

(
−qP1−m

n
)

1 + kHn exp
(
−qP1−m

n

) + (1− α)Hn

Pn+1 = αcHn

(
1− exp

(
−qP1−m

n

))
+ (1− α)Pn,

(39)

Then, a variational matrix for System (39) about a positive fixed point (H∗, P∗) is given as follows: 1− α + α
r eq(P∗)1−m − α(1−m)qH∗eq(P∗)1−m

r(P∗)m

αc
(

1− e−q(P∗)1−m
)

αc(1−m)qH∗e−q(P∗)1−m
(P∗)−m + 1− α

 . (40)

For controllability of System (39) about its positive fixed point, the following result is presented:

Lemma 4. The positive steady-state (H∗, P∗) for System (39) is controllable, if the following inequalities
are satisfied:

eq(P∗)1−m
+ rc(1−m)qH∗e−q(P∗)1−m

(P∗)−m < r + c(1−m)qH∗eq(P∗)1−m
(P∗)−m,

and

(1− α)
(

1− α +
α

r
eq(P∗)1−m

)
+ αc(1−m)qH∗(P∗)−m

(
(1− α)e−q(P∗)1−m

+
α

r
eq(P∗)1−m

)
< 1.

7. Numerical Simulations and Discussion

This section is dedicated to the numerical verification of our theoretical discussion. For plots
related to phase portraits, bifurcation diagrams and maximum Lyapunov exponents, Mathematica and
Matlab are used.

Example 1. For the verification of Hopf bifurcation about a positive steady-state of System (7), we choose
(r, q, m, k) = (5.4, 0.9, 0.4, 8.3) and initial conditions are taken as (H0, P0) = (0.0952, 2.416). Furthermore,
we assume that bifurcation parameter c ∈ [25, 50], then System (7) goes through Hopf bifurcation at c ≈ 32.49.
Then, corresponding diagrams for bifurcation and maximum Lyapunov exponents (MLE) are shown in Figure 3.
On the other hand, for (r, q, m, k, c) = (5.4, 0.9, 0.4, 8.3, 32.49), System (7) possesses a positive fixed point,
which is given by (H∗, P∗) = (0.095015, 2.41759735), and characteristic polynomial for variational matrix
about (H∗, P∗) = (0.095015, 2.41759735) is computed as follows:

λ2 − 1.1079103584517793λ + 1 = 0. (41)

It is easy to see that the roots of Equation (41) are given by λ1,2 = 0.5539551792258897 ±
0.8325464908392879i such that |λ1,2| = 1. Consequently, (r, q, m, k, c) = (5.4, 0.9, 0.4, 8.3, 32.49) ∈ SNB.
Moreover, some phase portraits for System (7) are depicted in Figure 4.
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(a) Bifurcation diagram for Hn (b) Bifurcation diagram for Pn

(c) Maximum Lyapunov exponents
Figure 3. Bifurcation diagrams and maximum Lyapunov exponents (MLE) for System (7) with
(r, q, m, k) = (5.4, 0.9, 0.4, 8.3), (H0, P0) = (0.0952, 2.416) and c ∈ [25, 50].



Mathematics 2020, 8, 536 17 of 26

(a) Phase portrait for c = 32.46 (b) Phase portrait for c = 32.49

(c) Phase portrait for c = 32.6 (d) Phase portrait for c = 32.8

(e) Phase portrait for c = 33 (f) Phase portrait for c = 33.5

Figure 4. Phase portraits of System (7) for different values of c with (r, q, m, k) = (5.4, 0.9, 0.4, 8.3) and
initial conditions (H0, P0) = (0.0952, 2.416).

Example 2. Now, we discuss the affectivity of chaos control methods. First, we implement the pole-placement
method. For this, let us consider that r = 12.5, q = 0.6, m = 0.5, k = 15.5, and 80 ≤ c ≤
130, then Model (7) goes through Hopf bifurcation when c ≈ 93.7 (cf. Figure 5d). The diagrams
for bifurcation of System (7) are shown in Figure 5 (see Figure 5a,b). Furthermore, Figure 5c reveals
that an invariant closed curve vanishes at c = 125 and, consequently, a chaotic orbit appears. Next,
choosing (r, q, m, k, c) = (12.5, 0.6, 0.5, 15.5, 125). For these selected parameters, System (7) possesses
a positive fixed point (0.13491760154988774, 15.244461821003831), which is unstable because, for these
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parametric values, the characteristic polynomial for variational matrix of Equation (7) about (H∗, P∗) =

(0.13491760154988774, 15.244461821003831) is of the following form:

λ2 − 0.9571949410778701λ + 1.0790300259105057 = 0. (42)

Then, one can easily compute the roots of Equation (42), which are given by λ1,2 = 0.478597471± 0.92194061i
and further calculation yields that |λ1,2| = 1.03876 > 1. Here, we select c0 = 125 as the nominal value in the
chaotic region for the following controlled system:

Hn+1 =
12.5Hn exp

(
−0.6

√
Pn
)

1 + 15.5Hn exp
(
−0.6

√
Pn
) ,

Pn+1 = (125− k1(Hn − H∗)− k2(Pn − P∗)) Hn

(
1− exp

(
−0.6

√
Pn

))
,

(43)

where (H∗, P∗) is positive fixed point of Equation (43) and given by (H∗, P∗) = (0.1349176, 15.244461821).
Furthermore, one has the following matrices:

A =

[
0.8327021740781393 −0.00863224020728405
112.99090441781215 0.124492766999731

]
, B =

[
0

0.12195569456803064

]

and C =

[
0 −0.0010527508501574072

0.12195569456803064 0.015182601868148198

]
is a matrix with rank 2. Therefore, it is

easy to see that System (43) is controllable. Furthermore, we choose K =
[

k1 k2

]
. On the other hand,

the variational matrix for System (43) is computed as follows:

A− BK =

[
0.832702 −0.00863224

112.991− 0.121956k1 0.124493− 0.121956k2

]
.

With some simple calculation, one can easily find characteristic polynomial for matrix A− BK in the following:

λ2 − (0.957195− 0.121956k2) λ + 1.07903− 0.00105275k1 − 0.101553k2 = 0. (44)

Calculations performing with Mathematica yields that the roots of Equation (44) lie inside the unit open disk
if and only if 0.00471012k1 + k2 < 13.5844, −2264 < k1 ≤ 899.905 and 0.0103665k1 + k2 > 0.778216, or
899.905 < k1 < 1217.74 and 0.051598k1 < 54.984 + k2. Next, if we choose k1 = 1, then it is easy to see that
the roots of Equation (44) lie inside the unit open disk if and only if 0.76785 < k2 < 13.5797. With choosing
k1 = 1 and k2 as the bifurcation parameter for System (43) such that k2 ∈ [−2, 12], then System (43) goes
through Hopf bifurcation. The diagrams for bifurcation for System (43) are depicted in Figure 6.

Secondly, we apply the hybrid control method. For this, let us consider r = 12.5, q = 0.6, m = 0.5,
k = 15.5, and c = 93.7, then System (7) possesses a positive fixed point which is given by (0.17236, 14.50693)
and characteristic polynomial for variational matrix of (7) about fixed point (0.17236, 14.50693) is computed
as follows:

λ2 − 0.9157008538239737λ + 1 = 0. (45)

A simple calculation yields that the roots of Equation (45) are of the form λ1,2 = 0.45785042691198685±
0.889029238313629i with their absolute values |λ1,2| = 1. In this case, System (39) can be rewritten as follows:

Hn+1 =
12.5αHn exp

(
−0.6

√
Pn
)

1 + 15.5Hn exp
(
−0.6

√
Pn
) + (1− α)Hn,

Pn+1 = 93.7αHn

(
1− exp

(
−0.6

√
Pn

))
+ (1− α)Pn.

(46)
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It is easy to see that System (46) possesses a positive fixed point (H∗, P∗) = (0.17236, 14.50693). On the
other hand, the variational matrix for Equation (46) around (0.17236, 14.50693) is computed as follows:[

1− 0.213727α −0.0106744α

84.1664α 1− 0.870573α

]
. (47)

Furthermore, one can simply find characteristic polynomial for Equation (47) as follows:

λ2 − (2− 1.0843α) λ + 1− 1.0843α + 1.08449α2 = 0. (48)

An application of Jury condition gives that roots of Equation (48) lie inside the open unit disk iff 0 < α <

0.999823. Therefore, Hopf bifurcation is almost eliminated completely. Next, choosing α = 0.9995 plots for
System (46) are shown in Figure 7. These plots reveal that the positive fixed point (0.17236, 14.50693) of System
(46) is a sink (see Figure 7a–c).

(a) Bifurcation diagram for Hn (b) Bifurcation diagram for Pn

(c) Chaotic attractor of System (7) at c = 125 (d) Phase portrait of System (7) at c = 93.7

Figure 5. Bifurcation diagrams and phase portraits for System (7) with (r, q, m, k) = (12.5, 0.6, 0.5, 15.5),
and c ∈ [80, 130].
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(a) Bifurcation diagram of Hn for System (43)

(b) Bifurcation diagram of Pn for System (43)
Figure 6. Bifurcation diagrams for the controlled System (43) with k1 = 1, k2 ∈ [−2, 12] and initial
conditions (H0, P0) = (0.13, 15).
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(a) Plot of Hn for System (46)

(b) Plot of Pn for System (46)

(c) Phase portrait for System (46)
Figure 7. Plots for the controlled System (46) with α = 0.9995 and initial conditions (H0, P0) =

(0.1724, 14.51).

Example 3. In the end, we take r = 4.75, q = 0.99, m = 0.95, k = 5.5 and c = 3.1, then System
(7) possesses a unique positive steady-state (H∗, P∗) = (0.3816089836378311, 0.7367710807002495).
Moreover, for these selected values, the characteristic equation of the System (7) about fixed point (H∗, P∗) =
(0.3816089836378311, 0.7367710807002495) is given as follows:

λ2 − 0.5876616425180492λ + 0.043687815358447304 = 0. (49)
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The real distinct roots of characteristic Equation (49) are given by:

λ1 = 0.08731511686028993, λ2 = 0.5003465256577593.

Obviously, |λ1| < |λ2| < 1. Consequently, the positive steady-state for System (7) is a sink. On the other
hand, in order to discuss the global asymptotic stability of the system about this fixed point, one can easily verify
Condition (16) of Lemma 3 as follows:

k
(1−m)r ln(r)

− c r = 0.13748097167976425 > 0. (50)

Condition (50) shows that the unique positive equilibrium point (H∗, P∗) = (0.38161, 0.73677) is globally
asymptotically stable. In order to verify this fact numerically, we choose r = 4.75, q = 0.99, m = 0.95,
k = 5.5 and c = 3.1 with initial conditions (H0, P0) = (8× 1010, 5× 1010) , which are far away from the
neighborhood of the equilibrium point (H∗, P∗) = (0.38161, 0.73677), but Figure 8 shows that the equilibrium
point (H∗, P∗) = (0.38161, 0.73677) is globally asymptotically stable.

(a) Plot of Hn for System (7) (b) Plot of Pn for System (7)
Figure 8. Plots for System (7) with r = 4.75, q = 0.99, m = 0.95, k = 5.5, c = 3.1 and initial conditions
(H0, P0) = (8× 1010, 5× 1010).

8. Concluding Remarks

This paper is concerned with the investigation of some qualitative aspects of a host–parasitoid
model. The model is a modification of a generalized Hassell–Varley model of a host–parasitoid system,
which can be useful for the description of ecosystems. In addition, the host–parasitoid interactions in
which the growth of the host is governed by the Beverton–Holt law have been studied. These findings
reveal that the quest constant and mutual interference of parasitoid interaction can be sources for
stabilization or destabilization factors for this interaction. On the other hand, restrained interference
can assist coexistence between the parasitoid and the host. Meanwhile, this study reveals that the
reproductive rate of the parasitoid and the proceeding population growth can also produce a strong
destabilization factor, resulting in a variety of complexities and chaotic behavior. Our mathematical
findings include the persistence of solutions with the implementation of a method of comparison.
Moreover, the existence and uniqueness of an interior fixed point along its local stability analysis
are carried out. It is proved that an interior fixed point of the system is globally asymptotically
stable. On the other hand, the host–parasitoid model undergoes Neimark-Sacker bifurcation around
its interior fixed point. Two chaos control methods are applied for the control of bifurcating and
the chaotic behavior of the system. Our investigation reveals that the pole-placement method and
hybrid control strategy both are effective for the stability of corresponding controlled systems. In
order to validate the proposed generalized Hassell–Varley Model (7) with real data based on statistical
analysis using both field and experimental data, the parametric values for System (7) are estimated
in Table 1. Keeping in view the estimated parametric value in Table 1, it is easy to see that the
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positive equilibrium of System (7) is a sink for 20 ≤ c < 54.128. Moreover, System (7) undergoes
Neimark-Sacker bifurcation at its positive steady-state as bifurcation parameter c passes through a
critical value c ≈ 54.128. The bifurcation diagrams and phase portrait of System (7) are depicted
in Figure 9. Consequently, our theoretical investigations show an excellent validation of field and
experimental data.

Table 1. Estimation for values of the parameters.

ine Parameter Description Observed Value Source

ineine r Host maximum population growth rate 40 [27]
ine k Host steady population size 0.09 [27]
ine q Quest constant 0.1 [30]
ine m Mutual interference constant 0.6 [30]
ine c Intrinsic growth rate of parasitoid 20 ≤ c ≤ 100 Estimate
ine

(a) Bifurcation diagram for Hn (b) Bifurcation diagram for Pn

(c) Phase portrait at c = 54.128
Figure 9. Bifurcation diagrams and phase portrait of System (7) with respect to estimated values.

9. Future Problems

It is interesting to work on bifurcation analysis of the models presented in [52–55].
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9. Din, Q.Ö.; Gümüş, A.; Khalil, H. Neimark-Sacker bifurcation and chaotic behaviour of a modified

host-parasitoid model. Z. Naturforsch. A 2017, 72, 25–37. [CrossRef]
10. Din, Q. Global stability and Neimark-Sacker bifurcation of a host-parasitoid model. Int. J. Syst. Sci. 2017, 48,

1194–1202. [CrossRef]
11. Din, Q. Neimark-Sacker bifurcation and chaos control in Hassell-Varley model. J. Differ. Equ. Appl. 2017, 23,

741–762. [CrossRef]
12. Din, Q. Global stability of Beddington model. Qual. Theor. Dyn. Syst. 2017, 16, 391–415. [CrossRef]
13. Din, Q.; Khan, M.A.; Saeed, U. Qualitative Behaviour of Generalised Beddington Model. Z. Naturforsch. A

2016, 71, 145–155. [CrossRef]
14. Din, Q. Qualitative analysis and chaos control in a density-dependent host-parasitoid system. Int. J. Dyn.

Control 2018, 6, 778–798. [CrossRef]
15. Din, Q.; Hussain, M. Controlling chaos and Neimark–Sacker bifurcation in a host–parasitoid model. Asian J.

Control 2019, 21, 1202–1215. [CrossRef]
16. Wu, D.; Zhao, H. Global qualitative analysis of a discrete host–parasitoid model with refuge and strong

Allee effects. Math. Method. Appl. Sci. 2018, 41, 2039–2062. [CrossRef]
17. Jamieson, W.T. On the global behaviour of May’s host–parasitoid model. J. Differ. Equ. Appl. 2019, 25,

583–596. [CrossRef]
18. Liu, H.; Zhang, K.; Ye, Y.; Wei, Y.; Ma, M. Dynamic complexity and bifurcation analysis of a host–parasitoid

model with Allee effect and Holling type III functional response. Adv. Differ. Equ. 2019, 2019, 507. [CrossRef]
19. Liu, X.; Chu, Y.; Liu, Y. Bifurcation and chaos in a host–parasitoid model with a lower bound for the host.

Adv. Differ. Equ. 2018, 2018, 31. [CrossRef]
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