Short Remarks on Complete Monotonicity of Some Functions
Abstract
:1. Introduction
2. Main Results
- (1)
- for and
- (2)
- for and
- () for all .
- () for some
3. Open Problem
- Find the value such that is not completely monotonic on for and
- Find the value such that is not completely monotonic on for and
- What is the relation between and
4. Materials and Methods
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Koumandos, S. Remarks on some completely monotonic functions. J. Math. Anal. Appl. 2006, 324, 1458–1461. [Google Scholar] [CrossRef] [Green Version]
- Clark, W.E.; Ismail, M.E.H. Inequalities involving gamma and psi functions. Anal. Appl. 2003, 1, 129–140. [Google Scholar] [CrossRef]
- Qi, F.; Cui, R.Q.; Chen, C.P.; Guo, B.N. Some completely monotonic functions involving polygamma functions and an application. J. Math. Anal. Appl. 2005, 310, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Agarwal, R.P. On complete monotonicity for several classes of functions related to ratios of gamma functions. J. Ineqaul. Appl. 2019, 36, 44. [Google Scholar] [CrossRef] [Green Version]
- Matejíčka, L. A Solution to Qi’s Conjecture on a Double Inequality for a Function Involving the Tri- and Tetra-Gamma Functions. Mathematics 2019, 7, 1098. [Google Scholar] [CrossRef] [Green Version]
- Matejíčka, L. A Solution to Fourth Qi’s Conjecture on a Complete Monotonicity. Probl. Anal. Issues Anal. 2020. submitted. [Google Scholar]
- Alzer, H.; Berg, C.; Koumandos, S. On a conjecture of Clark and Ismail. J. Approx. Theory 2005, 134, 102–113. [Google Scholar] [CrossRef]
- Nantomah, K. Monotonicity and convexity properties of the Nielsen’s β function. Probl. Anal. Issues Anal. 2017, 6, 81–93. [Google Scholar] [CrossRef]
- Flett, T.M. On the function (1/n)sin(t/n). J. Lond. Math. Soc. 1950, 25, 5–19. [Google Scholar] [CrossRef]
- Gautschi, W. The Hardy–Littlewood function: An exercise in slowly convergent series. J. Comp. Appl. Math. 2005, 179, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Hardy, G.H.; Littlewood, J.E. Notes on the theory of series (XX): On Lambert series. Proc. Lond. Math. Soc. 1936, 41, 257–270. [Google Scholar] [CrossRef]
- Kuznetsov, A. Asymptotic approximations to the Hardy-Littlewood function. J. Comp. Appl. Math. 2013, 237, 603–613. [Google Scholar] [CrossRef] [Green Version]
- Segal, S.L. On ∑(1/n)sin(x/n). J. Lond. Math. Soc. 1972, s2-4, 385–393. [Google Scholar] [CrossRef]
- Alzer, H.; Berg, C. Some classes of completely monotonic functions. Ann. Acad. Sci. Fenn. 2002, 27, 445–460. [Google Scholar] [CrossRef]
- Alzer, H. Complete monotonicity of a function related to the binomial probability. J. Math. Anal. Appl. 2018, 459. [Google Scholar] [CrossRef]
- Boas, R.P. Signs of derivatives and analytic behavior. Am. Math. Mon. 1971, 78, 1085–1093. [Google Scholar] [CrossRef]
- Berg, C. Stieltjes-Pick-Bernstein-Schoenberg and Their Connection to Complete Monotonicity, Positive Definite Functions: From Schoenberg to Space…. 2008. Available online: http://web.math.ku.dk//berg/manus/castellon.pdf (accessed on 31 March 2020).
- Boyadzhiev, K.N. Lah numbers, Laguerre polynomials of order negative one, and the nth derivative of exp(1 = x). Acta Univ. Sapientiae Math. 2016, 8, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Demidovich, B.P. Collection of Problems and Exercises in Mathematical Analysis; Nauka: Moscow, Russia, 1990. [Google Scholar]
- Fikhtengolts, G.M. A Course of Differential and Integral Calculus (Russian); Nauka: Moscow, Russia, 1966; Volume 2, Abbreviated version in English: The Fundamentals of Mathematical Analysis; Pergamon Press: London, UK, 1965. [Google Scholar]
- Guo, B.N.; Qi, F. On the degree of the weighted geometric mean as a complete Bernstein function. Afr. Mater. 2015, 26, 1253–1262. [Google Scholar] [CrossRef]
- Gao, P. Some monotonicity properties of gamma and q-gamma functions. ISRN Math. Anal. 2011, 2011, 375715. [Google Scholar] [CrossRef] [Green Version]
- Gao, P. A note on the volume of sections of Bpn. J. Math. Anal. Appl. 2007, 326, 632–640. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Mahmoud, M. Completely monotonic degrees of remainders of asymptotic expansions of the digamma function. arXiv 2019, arXiv:1912.07989v1. [Google Scholar]
- Ismail, M.E.H.; Lorch, L.; Muldoon, M.E. Completely monotonic functions associated with the gamma function and its q-analogues. J. Math. Anal. Appl. 1986, 116, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Koumandos, S. On completely monotonic and related functions. In Mathematics Without Boundaries; Springer: Berlin, Germany, 2014. [Google Scholar]
- Koumandos, S. Monotonicity of some functions involving the gamma and psi functions. Math. Comp. 2008, 77, 2261–2275. [Google Scholar] [CrossRef]
- Koumandos, S.; Lamprecht, M. Complete monotonicity and related properties of some special functions. Math. Comp. 2013, 82, 1097–1120. [Google Scholar] [CrossRef] [Green Version]
- Koumandos, S.; Pedersen, H.L. Absolutely monotonic functions related to Euler’s gamma function and Barnes’ double and triple gamma function. Monatsh. Math. 2011, 163, 51–69. [Google Scholar] [CrossRef]
- Koumandos, S.; Pedersen, H.L. Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler’s gamma function. J. Math. Anal.Appl. 2009, 355, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Matejíčka, L. Some notes on complete monotonicity of functions involving derivatives of the Nielsen’s β-function. Probl. Anal. Issues Anal. 2020. submited. [Google Scholar]
- Nielsen, N. Handbuch der Theorie der Gamma Funktion, 1st ed.; B.G. Teubner: Liepzig, Germany, 1906. [Google Scholar]
- Pedersen, H.L. Completely monotonic functions related to logarithmic derivatives of entire functions. Anal. Appl. 2011, 9, 409–419. [Google Scholar] [CrossRef]
- Roberts, A.W.; Varberg, D.E. Convex Functions; Academic Press: NewYork, NY, USA, 1973. [Google Scholar]
- Schiff, J.L. The Laplace Transform: Theory and Applications; Springer-Verlag: New York, NY, USA; Berlin/Heilderberg, Germany, 2013. [Google Scholar]
- Schilling, R.L.; Song, R.; Vondracek, Z. Bernstein Functions|Theory and Applications, 2nd ed.; de Gruyter Studies in Mathematics 37; Walter de Gruyter: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Widder, D.V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Yang, Z.H.; Zheng, S.Z. Complete monotonicity involving some ratios of gamma functions. J. Inequal. Appl. 2017. [Google Scholar] [CrossRef]
- Zhao, J.-L. A completely monotonic function relating to the q-trigamma function. J. Math. Inequal. 2015, 9, 53–60. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matejíčka, L. Short Remarks on Complete Monotonicity of Some Functions. Mathematics 2020, 8, 537. https://doi.org/10.3390/math8040537
Matejíčka L. Short Remarks on Complete Monotonicity of Some Functions. Mathematics. 2020; 8(4):537. https://doi.org/10.3390/math8040537
Chicago/Turabian StyleMatejíčka, Ladislav. 2020. "Short Remarks on Complete Monotonicity of Some Functions" Mathematics 8, no. 4: 537. https://doi.org/10.3390/math8040537
APA StyleMatejíčka, L. (2020). Short Remarks on Complete Monotonicity of Some Functions. Mathematics, 8(4), 537. https://doi.org/10.3390/math8040537