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Abstract: In this paper, we show that the functions xm|β(m)(x)| are not completely monotonic on
(0, ∞) for all m ∈ N, where β(x) is the Nielsen’s β-function and we prove the functions xm−1|β(m)(x)|
and xm−1|ψ(m)(x)| are completely monotonic on (0, ∞) for all m ∈ N, m > 2, where ψ(x) denotes the
logarithmic derivative of Euler’s gamma function .

Keywords: completely monotonic functions; laplace transform; inequality; Nielsen’s β-function;
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1. Introduction

Completely monotonic functions have attracted the attention of many authors. Mathematicians
have proved many interesting results on this topic. For example, Koumandos [1] obtained upper and
lower polynomial bounds for the function x/(ex − 1) x > 0, with coefficients of the Bernoulli numbers
Bk. This enabled him to give simpler proofs of some results of H. Alzer and F. Qi et al., concerning
complete monotonicity of certain functions involving the functions Γ(x), ψ(x) and the polygamma
functions ψ(n), n = 1, 2, .... [2]. For example, he proved by simpler way the following theorem [3].

Theorem 1. The functions

ψ(x)− log(x) +
1

2x
+

1
12x2 ,

log(x)− 1
2x
− ψ(x),

ψ′(x)− 1
x
− 1

2x2 −
1

6x3 +
1

30x5 ,

1
x
+

1
2x2 +

1
6x3 − ψ′(x)

are strictly completely monotonic on (0, ∞).

Qi and Agarwal [4] surveyed some results related to the function [ψ′(x)]2 + ψ′′(x), its
q-analogous, variants, and divided difference forms; several ratios of gamma functions; and so
on. Their results include the origins, positivity, inequalities, generalizations, completely monotonic
degrees, (logarithmically) complete monotonicity, necessary and sufficient conditions, equivalences to
inequalities for sums, applications, etc. Finally, the authors listed several remarks and posed several
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open problems. We note that the seventh open problem ([4] p. 39) was solved by Matejicka [5] and the
fourth open problem ([4] p. 38) was solved by Matejicka [6]. H. Alzer et al. [7] disproved the following
conjecture:

Conjecture 1. Let Φm(x) = −xmψ(m)(x), where ψ(x) denotes the logarithmic derivative of Euler’s gamma
function [2]. Then, the function Φ(m)

m (x) is completely monotonic on (0, ∞) for each m ∈ N.

Clark and Ismail [2] proved that, if m ∈ 1, 2, ..., 16, then Φ(m)
m (x) is completely monotonic on (0, ∞),

and thus they conjectured that this is true for all natural numbers m. Alzer, Berg and Koumandos [7]
disproved Conjecture 1 by showing that there exists an integer m0 such that for all m ≥ m0 the
functions Φ(m)

m (x) are not completely monotonic on (0, ∞). They defined the function

∆α,m(x) = xα | ψ(m)(x) | f or x > 0, m ∈ N, α ∈ R,

and noted that it remains an open problem to determine all (α, m) ∈ R+ × N such that ∆α,m is
completely monotonic. We note that this problem is still open.

Nantomah ([8] p. 92) posed a similar open problem: Find all values of a ∈ R such that the function
Ha(x) = xa | β(m)(x) | is completely monotonic on (0, ∞), where β(x) is the Nielsen’s β-function.

Alzer, Berg and Koumandos [7] introduced new function

s(x) =
1
2
+

1
π

H
( x

2π

)
where

H(x) =
∞

∑
k=1

1
k

sin
( x

k

)

is the Hardy–Littlewood function [9–13] defined for x ∈ C. They showed that the functions Φ(m)
m (x)

are all completely monotonic on (0, ∞), m ∈ N if and only if s(x) ≥ 0 for x > 0. Their main result was
that for each K > 0 there is xK > 0 such that H(xK) < −K. It implies Conjecture 1 is not valid.

The goal of this paper is to show that the functions Υm(x) = xm | β(m)(x) | are not completely
monotonic on (0, ∞) for all m ∈ N, but the functions xm−1 | ψ(m)(x) |, xm−1 | β(m)(x) | are completely
monotonic on (0, ∞) for all m ∈ N, m > 2. A detailed list of references on completely monotonic
functions can be found in [1–39].

Now, recall some useful definitions and theorems. The classical Nielsen’s β-function [8,31,32] is
defined as

Definition 1.

β(x) =

∞∫
0

e−xt

1 + e−t dt =
1∫

0

tx−1

1 + t
dt =

∞

∑
m=0

(−1)m

m + x
=

=
1
2

(
ψ

(
1 + x

2

)
− ψ

( x
2

))
for x > 0, where ψ(x) = d ln Γ(x)/dx is a digamma function and Γ(x) is the Euler’s Gamma function [4,24].
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It is generally known (see [8]) that the special function β(x) is related to the Euler’s beta function
B(x, y) and to the Gauss hypergeometric function 2F1(a, b; c; d) by

β(x) = − d
dx

(
ln B

(
x
2

,
1
2

))
β(x) =

1
x
(2F1(1, x; 1 + x;−1))

for x > 0.
For additional information on the Nielsen’s β-function, one may refer to [8,32] and the related

references therein.

Definition 2 ([4,24]). We say that a function f is a completely monotonic on the interval I, if f (x) has
derivatives of all orders on I and the inequality (−1)n f (n)(x) ≥ 0 holds for x ∈ I and n ∈ N0.

A characterization of completely monotonic function can be given by the Bernsten–Widder
theorem [36,37], which reads that a function f (x) on (0, ∞) is completely monotonic if and only if
there exists bounded and non-decreasing function α(t) such that the integral

f (x) =
∞∫

0

e−xtdα(t)

converges for x ∈ (0, ∞).

Definition 3 ([24]). Let h(t) be a completely monotonic function on (0, ∞) and let h(∞) = lim
t→∞

h(t) ≥ 0. If

the function tα [h(t)− h(∞)] is a completely monotonic on (0, ∞) when and only when 0 ≤ α ≤ r ∈ R, then
we say h(t) is of completely monotonic degree r; if tα [h(t)− h(∞)] is a completely monotonic on (0, ∞) for all
α ∈ R, then we say that the completely monotonic degree of h(t) is ∞.

For convenience, Guo [21] designed a notation degt
cmh(t) to denote the completely monotonic

degree r of h(t) with respect to t ∈ (0, ∞).
Matejicka [31] s showed that the function xm

∣∣∣β(m)(x)
∣∣∣ is completely monotonic on (0, ∞) for

m = 1, 2, 3.

Definition 4 ([35]). A function f has exponential order α if there exist constants M > 0 and α such that for
some t0 ≥ 0

| f (t)| ≤ Meαt, t ≥ t0.

Definition 5. We say

α∗ = inf
{

α; there are constants M, t0 such that | f (t)| ≤ Meαt, t ≥ t0
}

is a lower exponential order of function f .

Theorem 2 ([19,20]). (Weierstrass’s criterion for uniform convergence) Suppose f (x, t) is a continuous on
[a, b]× [0 , ∞) and g(t) is integrable on [0 , ∞) . If | f (x, t)| ≤ g(t) for all a ≤ x ≤ b and all t ≥ 0 then the

integral
∞∫
0

f (x, t)dt is uniformly convergent on [a, b] .
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Theorem 3 ([19,20]). Suppose f (x, t) is continuous on [a, b]× [0 , ∞) together with its partial derivative
∂ f
∂x (x, t). In this case,

d
dx

∞∫
0

f (x, t)dt =
∞∫

0

∂

∂x
f (x, t)dt,

when the first integral is convergent and the second is uniformly convergent on [a, b] .

2. Main Results

Theorem 4. Let m ∈ N and ϕ, ϕ′, ... ϕ(m) be continuous functions of lower exponential orders L∗0 , L∗1 , ... L∗m,,
respectively, on (0, ∞). Let

L = max
{

L∗0 , L∗1 , ..., L∗m
}
≥ 0; F(x) =

∞∫
0

ϕ(t)e−xtdt ≥ 0 for x > L; ϕ(m)(t) ≥ 0 on (0, ∞). Let

p1 : lim
t→+∞

ϕ(k)(t)
∂m−1−k

∂tm−1−k

(
tne−xt) = 0

and

p2 : lim
t→0+

ϕ(k)(t)
∂m−1−k

∂tm−1−k

(
tne−xt) = 0

for x > L, n ∈ N, k = 0, ..., m− 1. Then, xmF(x) is a completely monotonic function on (L,+∞).

Remark 1. We note that, if the following conditions

lim
t→0+

ϕ(k)(t) = 0, lim
t→∞

ϕ(k)(t)e−xt = 0

are fulfilled for k = 0, ..., m− 1, and x > L where m ∈ N, then p1, p2 are also valid.

Proof. Let a, b be fixed and such that L < a < b. To prove Theorem 4, it suffices to show

Lm,n = (−1)n (xmF(x))(n) ≥ 0 (0)

for n ≥ 1 and a ≤ x ≤ b. Some computation gives

Lm,n = (−1)n+m

 ∞∫
0

ϕ(t)
∂m

∂tm e−xtdt

(n)

.

Denote

f (x, t) = ϕ(t)xme−xt.

Let ε∗ > 0 such that ε∗ < a− L. Then, there are M, t0 such that | ϕ(t) |≤ Me(L+ε∗)t for t ≥ t0.
This implies

| f (x, t)| ≤ Me(L+ε∗)t(max{|a|, |b|})me−xt ≤ g(t) = C(a, b, m, M)e(L+ε∗−a)t f or t ≥ t0.

It is evident that g(t) is an integrable function on (0,+∞).
A straightforward differentiation yields

∂

∂x
f (x, t) = ϕ(t)mxm−1e−xt − tϕ(t)xme−xt.
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It follows immediately that∣∣∣∣ ∂

∂x
f (x, t)

∣∣∣∣ ≤ C(a, b, m, M)e(L+ε∗−a)t
(m

a
+ t
)

f or t ≥ t0.

Thus, according to Theorems 2 and 3, the integral

∞∫
0

∂

∂x
f (x, t)dt

is uniformly convergent on [a, b] and we observe that

d
dx

 ∞∫
0

f (x, t)dt

 =

∞∫
0

∂

∂x
f (x, t)dt.

It is easy to see that the function h(t) = tke−εt, where k ∈ N, ε = a − L − ε∗ is integrable on
(0,+∞). Using mathematical induction and considering the formulas

∞∫
0

te−εtdt =
1
ε2 ,

∞∫
0

tke−εtdt =
k
ε

∞∫
0

tk−1e−εtdt

for k ∈ N, ε > 0 bring the desired result. If we repeat the process n times, we obtain

Lm,n = (−1)n+m
∞∫

0

ϕ(t)
∂n

∂xn

(
∂m

∂tm e−xtdt
)

.

Using Schwartz theorem (mixed partial derivatives) [19] yields

Lm,n = (−1)n+m
∞∫

0

ϕ(t)
∂m

∂tm

(
∂n

∂xn e−xtdt
)
= (−1)m

∞∫
0

ϕ(t)
∂m

∂tm

(
tne−xtdt

)
dt.

Applying to Lm,n integration by parts m times and using p1, p2 leads to

Lm,n =

∞∫
0

ϕ(m)(t)tne−xtdt.

This completes the proof of our theorem.

Lemma 1. Let

ϕ1(t) =
tm

1− e−t and ϕ2(t) =
tm

1 + e−t

for t > 0 and m > 2, m ∈ N. Then,

(1) lim
t→a

ϕ
(k)
2 (t)

∂m−1−k

∂tm−1−k (t
ne−xt) = 0 for a = 0+ and a = +∞, k = 0, ..., m− 1, n ∈ N, x > 0,

(2) lim
t→a

ϕ
(k)
i (t)

∂m−2−k

∂tm−2−k (t
ne−xt) = 0 for i = 1, 2, a = 0+ and a = +∞, k = 0, ..., m− 2, n ∈ N, x > 0.

Proof. Differentiating k times the following equations(
1− e−t) ϕ1(t) = tm and

(
1 + e−t) ϕ2(t) = tm
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leads to

ϕ
(k)
1 (t) =

[
(tm)(k) +

k−1

∑
j=0

(
k
j

)
(−1)k−j ϕ

(j)
1 (t)e−t

]
1

1− e−t (1)

and

ϕ
(k)
2 (t) =

[
(tm)(k) −

k−1

∑
j=0

(
k
j

)
(−1)k−j ϕ

(j)
2 (t)e−t

]
1

1 + e−t . (2)

Similarly, we get

α =
∂m−1−k

∂tm−1−k (t
ne−xt) = e−xt

m−1−k

∑
i=0

(
m− 1− k

i

)
(−1)m−1−k−i (tn)(i) xm−1−k−i (3)

and

γ =
∂m−2−k

∂tm−2−k (t
ne−xt) = e−xt

m−2−k

∑
i=0

(
m− 2− k

i

)
(−1)m−2−k−i (tn)(i) xm−2−k−i. (4)

H. Alzer et al. [7] (p. 108) demonstrated that the generating function for Bernoulli numbers Bk
yields for |t| < 2π

t
1− e−t = 1 +

t
2
+

∞

∑
k=2

Bk
k!

tk, (5)

the series on the right side of Equation (5) is uniformly convergent on each [−c, c] where 0 < c < 2π.
This implies

ϕ1(t) = tm−1 +
tm

2
+

∞

∑
j=2

Bj

j!
tj+m−1

and

ϕ
(k)
1 (t) =

(
tm−1

)(k)
+

(tm)(k)

2
+

∞

∑
j=2

Bj

j!

(
tj+m−1

)(k)
. (6)

From Equation (6), we get lim
t→0+

ϕ
(k)
1 (t) = 0 for k = 0, ..., m− 2. Using mathematical induction

and Equation (2), we deduce that lim
t→0+

ϕ
(k)
2 (t) = 0 for k = 0, ..., m− 1. It is evident that lim

t→0+
α = 0 or

lim
t→0+

α = c where c ∈ R. Thus, if a = 0, then (1) is valid. Next, we have

α∗ = ϕ
(k)
2 (t)

∂m−1−k

∂tm−1−k (t
ne−xt) = ϕ

(k)
2 (t)e

−
x
2

t
e
−

x
2

t m−1−k

∑
i=0

(
m− 1− k

i

)
(−1)m−1−k−i (tn)(i) xm−1−k−i. (7)

By using mathematical induction it is easy to show that lim
t→∞

ϕ
(k)
2 (t)e

−
x
2

t
= 0 for k = 0, ..., m− 1.

Thus, lim
t→∞

α∗ = 0 for k = 0, ..., m− 1. The proof of (1) is complete.
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Similarly, it can be shown that

lim
t→∞

ϕ
(k)
1 (t)

∂m−2−k

∂tm−2−k (t
ne−xt) = 0

for k = 0, ..., m− 2 and

lim
t→∞

ϕ
(k)
2 (t)

∂m−2−k

∂tm−2−k (t
ne−xt) = 0.

The proof of the Lemma 1 would be done if we show

lim
t→0+

ϕ
(k)
1 (t)

∂m−2−k

∂tm−2−k (t
ne−xt) = 0

for k = 0, ..., m− 2, n ∈ N, x > 0. However, it follows from Equation (6). This completes our proof.

Theorem 5. There exists an integer m0 such that for each m > m0 the function xm|β(m)(x)| is not completely
monotonic on (0, ∞).

Proof. Using Theorem 4 and Lemma 1 yields

Lm,n = (−1)n
(

xm|β(m)(x)|
)(n)

=

∞∫
0

dm

dtm

(
tm

1 + e−t

)
tne−xtdt.

Denote

fm(t) =
dm

dtm

(
tm

1− e−t

)
and gm(t) =

dm

dtm

(
tm

1 + e−t

)
.

H. Alzer et al. [7] (p. 109 (3.4)) proved that

lim
m→∞

1
m!

fm

( x
m

)
= s(x) f or x > 0,

where ([7] p. 109 (3.7))

s(x) =
1
2
+

1
π

H
( x

2π

)
and

H(x) =
∞

∑
k=1

1
k

sin
( x

k

)
f or x ∈ C.

Elementary calculation yields

1
1 + e−t +

1
1− e−t =

2
1− e−2t . (8)

A straightforward computation gives

dm

dtm

(
tm

1 + e−t

)
+

dm

dtm

(
tm

1− e−t

)
=

1
2m−1

dm

dtm

(
(2t)m

1− e−2t

)
. (9)
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This establishes

gm(x) = 2 fm(2x)− fm(x). (10)

By using (see ([7] p. 109 (3.4)))

lim
m→∞

fm(x)
m!

= s(x),

we obtain

g(x) = lim
m→∞

gm(x)
m!

= 2s(2x)− s(x).

Let m be any natural number and xm|β(m)(x)| be completely monotonic on (0,+∞).
The Bernstein–Widder theorem [36] implies gm(x) ≥ 0 on (0,+∞). Thus, if xm|β(m)(x)| is completely
monotonic on (0,+∞) for all m ∈ N then g(x) ≥ 0 on (0,+∞). It is easy to see that s(0) = 1/2.
Continuity of s(x) at 0 gives that there is ε > 0 such that s(x) > 0 for x ∈ (0, ε). From Theorem 2.1
(see ([7] p. 105)), we can derive that there is x0 > 0 such that s(x0) < 0. Denote

M = {x0; such that s(x0) = 0}.

It is obvious that M 6= ∅. Then, there is x∗ = inf M. It is easy to see that 0 < ε ≤ x∗ and s(x∗) = 0.
From the definition of x∗, we deduce

g
(

x∗

2

)
= 2s(x∗)− s

(
x∗

2

)
= −s

(
x∗

2

)
< 0.

Thus, there is m0 ∈ N such that, if m ≥ m0, m ∈ N, then gm(x∗/2) < 0. The Bernstein–Widder
theorem [36] implies xm|β(m)(x)| is not completely monotonic on (0, ∞). This completes the proof.

Lemma 2. Let y > 0. Then,

V(y) =
∞

∑
n=1

sin2
( y

n

)
−

∞

∑
n=1

sin2
( y

2n

)
> 0.

Proof. Straightforward calculation gives that, for m ∈ N,

V(y) = Am(y)− Bm(y) + Cm(y)

where

Am(y) =
m+1

∑
n=1

sin2
(

y
2n− 1

)
,

Bm(y) =
m+1

∑
n=1

sin2
(

y
2m + 2n

)
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and

Cm =
∞

∑
n=2m+2

(
sin2

( y
n

)
− sin2

( y
2n

))
.

It is clear that, if 0 < y < π(2m + 2)/2, then sin2(y/(2m + 2)) < y2/(2m + 2)2. Thus, we obtain
that

−Bm(y) > −y2

(
m+1

∑
n=1

1
(2m + 2n)2

)
.

There are two cases:

• (α) 0 < y 6= kπ for all k ∈ N.
• (β) y = k0π for some k0 ∈ N.

In the case (α), there is j0 ∈ N such that y < π(2j0 + 2)/2. Put ε = sin2(y) > 0. It is obvious that
there is m0 ∈ N, m0 > j0 such that |Cm(y)| < ε/2 and Bm(y) < ε/2 for m > m0. This implies V(y) > 0.

Consider the case β) y = k0π for some k0 ∈ N. One can easily see that ε = sin2(k0π/(2k0 + 1)) >
0. It is obvious again that there is m0 > k0 such that |Cm(y)| < ε/2 and Bm(y) < ε/2 for m > m0. This
implies V(y) > 0. The proof is complete.

Theorem 6. Let m ∈ N, m > 2. Then, xm−1
∣∣∣ψ(m)(x)

∣∣∣ is completely monotonic function on (0,+∞).

Proof. We need to prove

Km,n = (−1)n
(

xm−1
∣∣∣ψ(m)(x)

∣∣∣)(n) ≥ 0

for x > 0, n ∈ N.
Theorem 4 and Lemma 1 imply that the proof will be done if we show

rm(t) =
(

tm

1− e−t

)(m−1)
≥ 0

for t > 0 and m ∈ N, m > 2. It is clear that

rm(t) =
t∫

0

fm(u)du + rm(0),

where

fm(t) =
(

tm

1− e−t

)(m)

.

The formula ([7] p. 108)

xm

1− e−x = xm−1 +
xm

2
+

∞

∑
k=2

Bk
k!

xk+m−1
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for 0 < x < 2π, where Bk are Bernoulli numbers, implies rm(0) = (m− 1)!. The proof would be done
if we prove rm(x) ≥ 0 for x > 0. H. Alzer et al. [7] (p.113) showed that

fm(x) =
∞∫

0

e−ttms(xt)dt

for |x| < 2π, where

s(y) =
1
2
+

1
π

H
( y

2π

)
and

H(y) =
∞

∑
n=1

1
n

sin
( y

n

)
.

This implies

rm(u) =
u∫

0

∞∫
0

e−ttms(vt)dtdv + (m− 1)!

for |u| < 2π which can be rewritten as

rm(u) =
∞∫

0

e−ttm

 u∫
0

s(vt)dv

 dt + (m− 1)!.

Direct computation yields

u∫
0

s(vt)dv =
1
2

u +
1
π

u∫
0

H
(

vt
2π

)
dv =

1
2

u +
2
t

ut
2π∫

0

H(p)dp > 0

because of (see ([13] p. 1))

x∗∫
0

H(p)dp = 2
∞

∑
n=1

sin2
(

x∗

2n

)
≥ 0.

Thus, rm(u) > 0 for 0 < |u| < 2π.
H. Alzer et al. [7] (p. 112) showed that fm(x) ≥ 0 for x ≥ 2 log 2, m ∈ N. Thus, if x ≥ 2π, then

rm(x) =

x∫
0

fm(p)dp + (m− 1)! =

2 log 2∫
0

fm(p)dp +

x∫
2 log 2

fm(p)dp + (m− 1)!

= rm(2 log 2) +
x∫

2 log 2

fm(p)dp ≥ 0.

This completes the proof.

Theorem 7. Let m ∈ N, m > 2. Then, xm−1
∣∣∣β(m)(x)

∣∣∣ is completely monotonic function on (0,+∞).
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Proof. We need to show

Jm,n = (−1)n
(

xm−1
∣∣∣β(m)(x)

∣∣∣)(n) ≥ 0

for n ∈ N, x > 0. Theorem 4 and Lemma 1 imply that the proof would be done if we show

hm(t) =
(

tm

1 + e−t

)(m−1)
≥ 0.

It is clear that

hm(x) =
x∫

0

gm(t)dt + hm(0).

From Equation (8), we get

dm−1

dtm−1

(
tm

1 + e−t

)
+

dm−1

dtm−1

(
tm

1− e−t

)
=

1
2m−1

dm−1

dtm−1

(
(2t)m

1− e−2t

)
which can be rewritten as hm(t) = rm(2t) − rm(t). This implies hm(0) = 0. In the previous part,
Equation (10)

gm(x) = 2 fm(2x)− fm(x)

is derived. As a direct consequence, we deduce

hm(x) =
x∫

0

2 fm(2t)− fm(t)dt.

Let 0 < x < π. Due to result ([7] p. 113)

fm(x) =
∞∫

0

e−ttms(xt)dt f or | x |< 2π,

we obtain

hm(x) =

x∫
0

2
∞∫

0

e−ttms(2ut)dt−
∞∫

0

e−ttms(ut)dt

 du

=

∞∫
0

e−ttm

 2x∫
0

s(vt)dv−
x∫

0

s(vt)dv

 dt =
∞∫

0

e−ttm

 2x∫
x

s(vt)dv

 dt.

To prove our theorem, it suffices to show that

2x∫
x

s(vt)dv ≥ 0
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for 0 < x < π and t > 0. Simple computation yields

2x∫
x

s(vt)dv =

2x∫
x

1
2
+

1
π

H
(

vt
2π

)
dv =

x
2
+

2
t

xt
π∫

xt
2π

H(u)du.

The proof would be done if we show

2y∫
0

H(v)dv−
y∫

0

H(v)dv ≥ 0.

However, it follows from Segal [13] that

y∫
0

H(v)dv = 2
∞

∑
n=1

sin2
( y

2n

)
and Lemma 2.

Let x ≥ 2 log 2. One can easily determine

hm(x) =
x∫

0

gm(t)dt =
x∫

0

2 fm(2t)− fm(t)dt =
2x∫
x

fm(t)dt.

H. Alzer et al. [7] (p. 112) derived that fm(x) ≥ 0 for x ≥ 2 log 2. Thus, hm(x) ≥ 0 for x ≥ 2 log 2.
This implies the proof of our theorem.

Remark 2. We note that, in [8,31], it was proved that the function

xm|β(m)(x)|

is strictly completely monotonic on (0, ∞) for m = 2, 3, respectively, for m = 1.

Remark 3. We note that it is easy to show that functions

xm|β(m)(x)|

are strictly completely monotonic on (0, ∞) for m = 4, 5, 6 by using Theorem 4.

Remark 4. We note that our results and results obtained in [7] imply that

m− 1 ≤ degt
cm|ψ(m)(t)| ≤ m

and
m− 1 ≤ degt

cm|β(m)(t)| ≤ m + 1

for m ∈ N, m ≥ 3.

3. Open Problem

It is natural to pose the following problem.
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1. Find the value mβ such that xm|β(m)(x)| is not completely monotonic on (0,+∞) for m ≥ mβ,
and mβ = min{m0; xm|β(m)(x)| is not completely monotonic on (0,+∞) f or m ≥ m0}.

2. Find the value mψ such that xm|ψ(m)(x)| is not completely monotonic on (0,+∞) for m ≥ mψ,
and mψ = min{m1; xm|ψ(m)(x)| is not completely monotonic on (0,+∞) f or m ≥ m1}.

3. What is the relation between mβ and mψ?

4. Materials and Methods

In this paper, MATLAB software and methods of mathematical analysis were used.

5. Conclusions

The main result of this paper is proving that the functions Υm(x) = xm | β(m)(x) | are not
completely monotonic on (0, ∞) for all m ∈ N and that the functions xm−1|β(m)(x)| and xm−1|ψ(m)(x)|
are completely monotonic on (0, ∞) for all m ∈ N, m ≥ 3.

Funding: The work was supported by VEGA grants Nos. 1/0589/17, 1/0649/17, and 1/0185/19 and by Kega
grant No. 007 TnUAD-4/2017.

Acknowledgments: The author thanks to Ondrušová, dean of FPT TnUAD, and Vavro, deputy dean of FPT
TnUAD, Slovakia, for their kind grant support.

Conflicts of Interest: The author declares that he has no competing interests.

References

1. Koumandos, S. Remarks on some completely monotonic functions. J. Math. Anal. Appl. 2006, 324, 1458–1461.
[CrossRef]

2. Clark, W.E.; Ismail, M.E.H. Inequalities involving gamma and psi functions. Anal. Appl. 2003, 1, 129–140.
[CrossRef]

3. Qi, F.; Cui, R.Q.; Chen, C.P.; Guo, B.N. Some completely monotonic functions involving polygamma functions
and an application. J. Math. Anal. Appl. 2005, 310, 303–308. [CrossRef]

4. Qi, F.; Agarwal, R.P. On complete monotonicity for several classes of functions related to ratios of gamma
functions. J. Ineqaul. Appl. 2019, 36, 44. [CrossRef]
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