Sub-Mesoscale Frontal Instabilities in the Omani Coastal Current
Abstract
:1. Introduction
2. Model Equations and Numerical Set-Up
2.1. The Primitive Equations
2.2. Vorticity and Potential Vorticity
2.3. Primitive Equation Model in Isopycnic Coordinates
2.4. Model Set-Up
3. Results
3.1. The Occ and Sub-Mesoscale Upwelling Fronts
3.2. Surface Sub-Mesoscale Eddies Generation off the Cape of Ra’S al Hadd
3.3. Peddies Interaction with the Ra’S al Hadd Dipole
3.4. Subsurface Sub-Mesoscale Eddies off the Southern Omani Coast
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. The Omega Equation
Appendix B. Energy Transfers
Appendix C. High-Frequency Waves
References
- Schott, F.A.; McCreary, J.P., Jr. The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 2001, 51, 1–123. [Google Scholar] [CrossRef]
- Defant, A. Physical Oceanography; Pergamon Press: New York, NY, USA, 1961; Volume 1. [Google Scholar]
- Shi, W.; Morrison, J.M.; Böhm, E.; Manghnani, V. The Oman upwelling zone during 1993, 1994 and 1995. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2000, 47, 1227–1247. [Google Scholar] [CrossRef]
- Flagg, C.N.; Kim, H.S. Upper ocean currents in the northern Arabian Sea from shipboard ADCP measurements collected during the 1994–1996 US JGOFS and ONR programs. Deep. Sea Res. Part II Top. Stud. Oceanogr. 1998, 45, 1917–1959. [Google Scholar] [CrossRef]
- De Marez, C.; l’Hégaret, P.; Morvan, M.; Carton, X. On the 3D structure of eddies in the Arabian Sea. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2019, 150, 103057. [Google Scholar] [CrossRef]
- L’Hégaret, P.; Duarte, R.; Carton, X.; Vic, C.; Ciani, D.; Baraille, R.; Corréard, S. Mesoscale variability in the Arabian Sea from HYCOM model results and observations: Impact on the Persian Gulf Water path. Ocean. Sci. 2015, 11, 667. [Google Scholar]
- Pous, S.; Lazure, P.; Carton, X. A model of the general circulation in the Persian Gulf and in the Strait of Hormuz: Intraseasonal to interannual variability. Cont. Shelf Res. 2015, 94, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Bower, A.S.; Hunt, H.D.; Price, J.F. Character and dynamics of the Red Sea and Persian Gulf outflows. J. Geophys. Res. Ocean. 2000, 105, 6387–6414. [Google Scholar] [CrossRef]
- Pous, S.; Carton, X.; Lazure, P. Hydrology and circulation in the Strait of Hormuz and the Gulf of Oman—Results from the GOGP99 Experiment: 1. Strait of Hormuz. J. Geophys. Res. Ocean. 2004, 109, 42–56. [Google Scholar] [CrossRef] [Green Version]
- Pous, S.; Carton, X.; Lazure, P. Hydrology and circulation in the Strait of Hormuz and the Gulf of Oman—Results from the GOGP99 Experiment: 2. Gulf of Oman. J. Geophys. Res. Ocean. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Carton, X.; L’Hegaret, P.; Baraille, R. Mesoscale variability of water masses in the Arabian Sea as revealed by ARGO floats. Ocean. Sci. 2012, 8, 227–248. [Google Scholar] [CrossRef] [Green Version]
- L’Hégaret, P.; Carton, X.; Louazel, S.; Boutin, G. Mesoscale eddies and submesoscale structures of Persian Gulf Water off the Omani coast in spring 2011. Ocean. Sci. 2016, 12. [Google Scholar] [CrossRef] [Green Version]
- Mensa, J.A.; Garraffo, Z.; Griffa, A.; Özgökmen, T.M.; Haza, A.; Veneziani, M. Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean. Dyn. 2013, 63, 923–941. [Google Scholar] [CrossRef]
- Gula, J.; Molemaker, M.J.; McWilliams, J.C. Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr. 2014, 44, 2617–2643. [Google Scholar] [CrossRef]
- Gula, J.; Molemaker, M.J.; McWilliams, J.C. Submesoscale dynamics of a Gulf Stream frontal eddy in the South Atlantic Bight. J. Phys. Oceanogr. 2016, 46, 305–325. [Google Scholar] [CrossRef]
- Nagai, T.; Tandon, A.; Yamazaki, H.; Doubell, M.J. Evidence of enhanced turbulent dissipation in the frontogenetic Kuroshio Front thermocline. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Rocha, C.B.; Gille, S.T.; Chereskin, T.K.; Menemenlis, D. Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophys. Res. Lett. 2016, 43, 11–304. [Google Scholar] [CrossRef]
- Krug, M.; Swart, S.; Gula, J. Submesoscale cyclones in the Agulhas current. Geophys. Res. Lett. 2017, 44, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, P.; Gula, J.; Ménesguen, C.; Penven, P.; Krug, M. Generation of submesoscale frontal eddies in the Agulhas Current. J. Geophys. Res. Ocean. 2019. [Google Scholar] [CrossRef] [Green Version]
- Capet, X.; McWilliams, J.C.; Molemaker, M.J.; Shchepetkin, A. Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr. 2008, 38, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Capet, X.; McWilliams, J.C.; Molemaker, M.J.; Shchepetkin, A. Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr. 2008, 38, 44–64. [Google Scholar] [CrossRef] [Green Version]
- Capet, X.; McWilliams, J.C.; Molemaker, M.J.; Shchepetkin, A. Mesoscale to submesoscale transition in the California Current System. Part III: Energy balance and flux. J. Phys. Oceanogr. 2008, 38, 2256–2269. [Google Scholar] [CrossRef] [Green Version]
- Meunier, T.; Barton, E.D.; Barreiro, B.; Torres, R. Upwelling filaments off Cap Blanc: Interaction of the NW African upwelling current and the Cape Verde frontal zone eddy field? J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Chassignet, E.P.; Hurlburt, H.E.; Smedstad, O.M.; Halliwell, G.R.; Hogan, P.J.; Wallcraft, A.J.; Baraille, R.; Bleck, R. The HYCOM (hybrid coordinate ocean model) data assimilative system. J. Mar. Sys. 2007, 65, 60–83. [Google Scholar] [CrossRef]
- Morvan, M.; L’Hégaret, P.; de Marez, C.; Carton, X.; Corréard, S.; Baraille, R. Life cycle of mesoscale eddies in the Gulf of Aden. Geophys. Astrophys. Fluid Dyn. 2020, 1–19. [Google Scholar] [CrossRef]
- Debreu, L.; Vouland, C.; Blayo, E. AGRIF: Adaptive grid refinement in Fortran. Comput. Geosci. 2008, 34, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Large, W.G.; McWilliams, J.C.; Doney, S.C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 1994, 32, 363–403. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, B.J. The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech. 1982, 14, 131–151. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Bretherton, F.P. Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci. 1972, 29, 11–37. [Google Scholar] [CrossRef] [Green Version]
- Thomas, L.N.; Lee, C.M. Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr. 2005, 35, 1086–1102. [Google Scholar] [CrossRef]
- Siegelman, L.; Klein, P.; Rivière, P.; Thompson, A.F.; Torres, H.S.; Flexas, M.; Menemenlis, D. Enhanced upward heat transport at deep submesoscale ocean fronts. Nat. Geosci. 2020, 13, 50–55. [Google Scholar] [CrossRef]
- McDougall, T.J.; Krzysik, O.A. Spiciness. J. Mar. Res. 2015, 73, 141–152. [Google Scholar] [CrossRef]
- Gula, J.; Molemaker, M.J.; McWilliams, J.C. Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun. 2016, 7, 12811. [Google Scholar] [CrossRef] [PubMed]
- Chelton, D.B.; Deszoeke, R.A.; Schlax, M.G.; El Naggar, K.; Siwertz, N. Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr. 1998, 28, 433–460. [Google Scholar] [CrossRef]
- Okubo, A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. In Deep Sea Research and Oceanographic Abstracts; Elsevier: Amsterdam, The Netherlands, 1970; Volume 17, pp. 445–454. [Google Scholar]
- Weiss, J. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D 1991, 48, 273–294. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morvan, M.; Carton, X. Sub-Mesoscale Frontal Instabilities in the Omani Coastal Current. Mathematics 2020, 8, 562. https://doi.org/10.3390/math8040562
Morvan M, Carton X. Sub-Mesoscale Frontal Instabilities in the Omani Coastal Current. Mathematics. 2020; 8(4):562. https://doi.org/10.3390/math8040562
Chicago/Turabian StyleMorvan, Mathieu, and Xavier Carton. 2020. "Sub-Mesoscale Frontal Instabilities in the Omani Coastal Current" Mathematics 8, no. 4: 562. https://doi.org/10.3390/math8040562
APA StyleMorvan, M., & Carton, X. (2020). Sub-Mesoscale Frontal Instabilities in the Omani Coastal Current. Mathematics, 8(4), 562. https://doi.org/10.3390/math8040562