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Abstract: In this paper, we will study a refinement of the Cauchy–Buniakowski–Schwarz inequality
and a refinement of the Aczél inequality by the technique of the monotony of a sequence. In the final
part, we present some properties of bounds of several statistical indicators of variation.
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1. Introduction

Many mathematicians have studied in their papers the inequality Cauchy–Buniakowski–Schwarz
and Aczél’s inequality (see [1–3]). We find the first inequality in numerical and complex analysis,
Hilbert spaces theory, probability and statistics and it is defined as follows:

Let (a1, a2, . . . , an) and (b1, b2, . . . , bn) be two sequences of real numbers, then(
n

∑
i=1

a2
i

)
·
(

n

∑
i=1

b2
i

)
≥
(

n

∑
i=1

aibi

)2

, (1)

with equality if and only if the sequences (a1, a2, . . . , an) and (b1, b2, . . . , bn) are proportional.
Mărghidanu, Díaz-Barrero and Rădulescu in [4], proved a refinement of the inequality

Cauchy–Buniakowski–Schwarz, given by the following: for arbitrary real sequences a = (a1, a2, . . . , an)

and b = (b1, b2, . . . , bn), bi 6= 0, i = 1, n, we have:

n

∑
i=1

a2
i ·

n

∑
i=1

b2
i −

(
n

∑
i=1

aibi

)2

≥ max
i,j∈{1,...,n}

(
aibj − ajbi

)2

b2
i + b2

j
·

n

∑
i=1

b2
i , (2)

for any n ≥ 2, with equality if and only if the sequences a and b are proportional. In [5], Pop showed
an improvement of inequality (2).

Two consequences can be obtained from above inequality, namely: for arbitrary sequence
a = (a1, a2, . . . , an), n ≥ 2, we have:

n
n

∑
i=1

a2
i −

(
n

∑
i=1

ai

)2

≥ n · max
i,j∈{1,...,n}

(ai − aj)
2, (3)

and

n
n

∑
i=1

a2
i −

(
n

∑
i=1

ai

)2

≥ max
i,j∈{1,...,n}

(ai − aj)
2

a2
i + a2

j

n

∑
i=1

a2
i , (4)
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with ai 6= 0, i = 1, n.
In 1956, Aczél studied in [6], several methods in the theory of functional equations in one variable

and showed the following inequality:
Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two sequences of positive real numbers

such that:
A2 − a2

1 − . . .− a2
n > 0 and B2 − b2

1 − . . .− b2
n > 0,

where A and B are positive real numbers. Then(
A2 − a2

1 − . . .− a2
n

) (
B2 − b2

1 − . . .− b2
n

)
≤ (AB− a1b1 − . . .− anbn)

2 , (5)

with equality if and only if the sequences a and b are proportional, known as Aczél’s inequality.
This has many applications in the theory of functional equations in non-Euclidean geometry.
Popoviciu [7], presented a generalized form of the inequality of Aczél:

Let p, q > 1 be such that 1
p + 1

q = 1 and a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) be two sequences
of positive real numbers such that:

Ap − ap
1 − . . .− ap

n > 0 and Bq − bq
1 − . . .− bq

n > 0,

where A and B are positive real numbers. Then(
Ap − ap

1 − . . .− ap
n

)1/p (
Bq − bq

1 − . . .− bq
n

)1/q
≤ AB− a1b1 − . . .− anbn, (6)

with equality if and only if the sequences a and b are proportional.
In the special case p = q = 2, we deduce the classical Aczél inequality.
In Section 2, we study a refinement of the Cauchy–Buniakowski–Schwarz inequality

and a refinement of the Aczél inequality by the technique of the monotony of a sequence. In Section 3,
there are presented new bounds for the statistical indicators related to variance, standard deviation
and coefficient of variation.

2. Refinements of the Cauchy–Buniakowski–Schwarz Inequality and of the Aczél Inequality

Next, we present a refinement of Cauchy–Buniakowski–Schwarz inequality, thus:

Theorem 1. For arbitrary real sequences a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn), a, b 6= 0, we have:√
n

∑
i=1

a2
i ·

n

∑
i=1

b2
i −

n

∑
i=1

aibi ≥
1
2

min{A, B}
n

∑
i=1

(ai − bi)(
ai
A
− bi

B
) ≥ 0, (7)

where A =
√

∑n
i=1 a2

i and B =
√

∑n
i=1 b2

i with equality if and only if the sequences a and b are proportional.

Proof. We have the following:

n

∑
i=1

(ai − bi)(
ai
A
− bi

B
) =

n

∑
i=1

(
a2

i
A
− aibi

B
− aibi

A
+

b2
i

B

)

= A + B− A + B
AB

n

∑
i=1

aibi =
A + B

AB

(
AB−

n

∑
i=1

aibi

)
≥ 0.

Therefore, we obtain:

AB−
n

∑
i=1

aibi =
AB

A + B

n

∑
i=1

(ai − bi)(
ai
A
− bi

B
). (8)
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But, we have the inequality AB
A+B ≥

1
2 min{A, B}, and using the equality (8), we deduce the inequality

of the statement.

Corollary 1. For arbitrary sequence a = (a1, a2, . . . , an), n ≥ 2, and b > 0, we have:√
n

n

∑
i=1

a2
i −

n

∑
i=1

ai ≥
1

2A
√

n
min{A, b

√
n}

n

∑
i=1

(
ai
b
− 1)(ai

√
n− A) ≥ 0, (9)

where A =
√

∑n
i=1 a2

i .

Proof. If we take in inequality (7), b1 = b2 = . . . = bn = b > 0, then we obtain:

b

√
n

n

∑
i=1

a2
i − b

n

∑
i=1

ai ≥
1
2

min{A, b
√

n}
n

∑
i=1

(ai − b)
(

ai
A
− b

b
√

n

)
≥ 0.

We divide with b above relation and we obtain:√
n

n

∑
i=1

a2
i −

n

∑
i=1

ai ≥
1
2

min{A, b
√

n}
n

∑
i=1

(
ai
b
− 1)

(
ai
√

n− A
A
√

n

)
≥ 0,

which implies the inequality of the statement.

Theorem 2. For arbitrary sequences of positive real numbers a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)

such that:

A2 − a2
1 − . . .− a2

n > 0 and B2 − b2
1 − . . .− b2

n > 0, n ≥ 1,

where A and B are positive real numbers, we have:(
AB−

n
∑

i=1
aibi

)2
−
(

A2 −
n
∑

i=1
a2

i

)(
B2 −

n
∑

i=1
b2

i

)

≥ maxi∈{1,...,n}
(Abi − Bai)

2

B2 − b2
i

(
B2 −

n
∑

i=1
b2

i

)
≥ 0,

(10)

with equality if and only if the sequences a and b are proportional.

Proof. We use the technique of the monotony, as in [8] and [9], to the sequence Gn(a, b), which
is defined as follows:

Gn(a, b) =

(
AB−

n
∑

i=1
aibi

)2

B2 −
n
∑

i=1
b2

i

− A2 +
n

∑
i=1

a2
i , n ≥ 1.

for k ≤ n, we have:

Gk+1(a, b)− Gk(a, b) =

(
AB−

k
∑

i=1
aibi − ak+1bk+1

)2

B2 −
k
∑

i=1
b2

i − b2
k+1

+ a2
k+1 −

(
AB−

k
∑

i=1
aibi

)2

B2 −
k
∑

i=1
b2

i

.
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Using Bergström’s inequality for two terms, we have:

(
AB−

k
∑

i=1
aibi − ak+1bk+1

)2

B2 −
k
∑

i=1
b2

i − b2
k+1

+
(ak+1bk+1)

2

b2
k+1

≥

(
AB−

k
∑

i=1
aibi

)2

B2 −
k
∑

i=1
b2

i

.

This means that Gk+1(a, b)−Gk(a, b) ≥ 0, so the sequence Gk(a, b) is increasing. Therefore, we obtain
Gn(a, b) ≥ Gn−1(a, b) ≥ . . . ≥ G2(a, b) ≥ G1(a, b). But,

G1(a, b) =
(AB− a1b1)

2

B2 − b2
1
− A2 + a2

1 =
(Ab1 − Ba1)

2

B2 − b2
1

,

and taking into account that we can rearrange the terms of the two sequences, we have the inequality:

Gn(a, b) ≥ max
i∈{1,...,n}

(Abi − Bai)
2

B2 − b2
i

.

Multiplying by B2 −
n
∑

i=1
b2

i > 0, we deduce the inequality of the statement.

Remark 1. In paper [10], F. Qi, P. Cerone, S. Dragomir and H.M. Srivastava have developed alternative proofs
for the monotony.

Theorem 3. Let p, q > 1 be such that 1
p + 1

q = 1 and a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) be two
sequences of positive real numbers such that:

Ap − ap
1 − . . .− ap

n > 0 and Bq − bq
1 − . . .− bq

n > 0, n ≥ 1,

where A and B are positive real numbers. Then, we have:

AB− a1b1 − . . .− anbn −
(

Ap − ap
1 − . . .− ap

n

)1/p (
Bq − bq

1 − . . .− bq
n

)1/q

≥ maxi∈{1,...,n}{AB− aibi −
(

Ap − ap
i

)1/p (
Bq − bq

i

)1/q
} ≥ 0,

(11)

with equality if and only if the sequences a and b are proportional.

Proof. We consider the sequence:

Hn(a, b) = AB− a1b1 − . . .− anbn −
(

Ap − ap
1 − . . .− ap

n

)1/p (
Bq − bq

1 − . . .− bq
n

)1/q
.

We study the monotony of the sequence Hk(a, b), k ≤ n. Since

Hk+1(a, b)− Hk(a, b) =
(

Ap − ap
1 − . . .− ap

k

)1/p (
Bq − bq

1 − . . .− bq
k

)1/q

−ak+1bk+1 −
(

Ap − ap
1 − . . .− ap

k+1

)1/p (
Bq − bq

1 − . . .− bq
k+1

)1/q
.

which involves,

Hk+1(a, b)− Hk(a, b) = MN − ak+1bk+1 −
(

Mp − ap
k+1

)1/p (
Nq − bq

k+1

)1/q
,



Mathematics 2020, 8, 574 5 of 12

where we have Mp = Ap − ap
1 − . . .− ap

k and Nq = Bq − bq
1 − . . .− bq

k . But using inequality (6) for two
terms, we deduce: (

Mp − ap
k+1

)1/p (
Nq − bq

k+1

)1/q
≤ MN − ak+1bk+1,

which involves the inequality Hn+1(a, b)− Hn(a, b) ≥ 0. Therefore the sequence Hn is increasing, so,
we obtain:

Hn(a, b) ≥ Hn−1(a, b) ≥ . . . ≥ H2(a, b) ≥ H1(a, b)

= AB− a1b1 −
(

Ap − ap
1

)1/p (
Bq − bq

1

)1/q
.

Consequently, we deduce the statement.

Remark 2. In the particular case p = q = 2, we deduce another refinement of the classical Aczél inequality,
given by:

AB− a1b1 − . . .− anbn −
(

A2 − a2
1 − . . .− a2

n
)1/2 (B2 − b2

1 − . . .− b2
n
)1/2

≥ maxi∈{1,...,n}{AB− aibi −
(

A2 − a2
i
)1/2 (B2 − b2

i
)1/2} ≥ 0,

(12)

with equality if and only if the sequences a and b are proportional.

Extending Popoviciu’s result to three sequences of positive real numbers, we obtain
the following refinement:

Theorem 4. Let p, q, r > 1 be such that 1
p + 1

q + 1
r = 1 and a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn),

c = (c1, c2, . . . , cn) three sequences of positive real numbers such that Ap − ap
1 − . . . − ap

n > 0,
Bq − bq

1− . . .− bq
n > 0,and Cr − cr

1− . . .− cr
n > 0, n ≥ 1, where A, B and C are positive real numbers.

Then, we have:

ABC− a1b1c1 − . . .− anbncn −
(

Ap − ap
1 − . . .− ap

n

)1/p (
Bq − bq

1 − . . .− bq
n

)1/q (
Cr − cr

1 − . . .− cr
n
)1/r

≥ maxi∈{1,...,n}{ABC− aibici −
(
(AB)

r
r−1 − (aibi)

r
r−1

) r−1
r (Cr − cr

i
)1/r} ≥ 0.

(13)

Proof. From hypothesis, we have 1
p + 1

q + 1
r = 1, which becomes 1

p + 1
q = r−1

r , so, we deduce
1

p(r−1)
r

+ 1
q(r−1)

r

= 1. Using Popoviciu’s inequality for two sequences, we have:

[(
Ap − ap

1 − . . .− ap
n

)1/p (
Bq − bq

1 − . . .− bq
n

)1/q
]r/(r−1)

=

(
Ap − ap

1 − . . .− ap
n

)r/p(r−1) (
Bq − bq

1 − . . .− bq
n

)r/q(r−1)
=[((

Ar/(r−1)
)p(r−1)/r

−
(

ar/(r−1)
1

)p(r−1)/r
− . . .−

(
ar/(r−1)

n

)p(r−1)/r
)r/p(r−1)

]r/p(r−1)

[((
Br/(r−1)

)q(r−1)/r
−
(

br/(r−1)
1

)q(r−1)/r
− . . .−

(
br/(r−1)

n

)q(r−1)/r
)r/q(r−1)

]r/q(r−1)

≤ (AB)r/(r−1) − (a1b1)
r/(r−1) − . . .− (anbn)

r/(r−1) ,

which is equivalent to: (
Ap − ap

1 − . . .− ap
n

)1/p (
Bq − bq

1 − . . .− bq
n

)1/q

≤
[
(AB)r/(r−1) − (a1b1)

r/(r−1) − . . .− (anbn)
r/(r−1)

](r−1)/r
.

(14)
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But, using above relation and Theorem 3, we have:(
Ap − ap

1 − . . .− ap
n

)1/p (
Bq − bq

1 − . . .− bq
n

)1/q
(Cr − cr

1 − . . .− cr
n)

1/r

≤
[
(AB)r/(r−1) − (a1b1)

r/(r−1) − . . .− (anbn)
r/(r−1)

]1−1/r
(Cr − cr

1 − . . .− cr
n)

1/r

≤ ABC− a1b1c1 − . . .− anbncn − max
i∈{1,...,n}

{ABC− aibici −
(
(AB)

r
r−1 − (aibi)

r
r−1

) r−1
r
(Cr − cr

i )
1/r}.

Consequently, we deduce the inequality of the statement.

3. Applications to Several Statistical Indicators

Analysis of social-economic phenomena with the statistical indicators help us to characterize
the evolution of these phenomena, (see [11]). Therefore, below we present some of the statistical
indicators that characterize a data series.

The mean of individual values of a data series is the expression level synthesis into a single
representative of everything is essential, typical and objective in appearance, manifestation
and its development.

The arithmetic mean (X) is used when the phenomenon under investigation register changes
approximately constant in arithmetic progression.

Let X =

(
xi
pi

)
1≤i≤n

be a discrete random variable with probabilities P(X = xi) = pi =
1
n

for any

i = 1, n, then expression of simple arithmetic mean is: X = x1+x2+...+xn
n =

n
∑

i=1
xi

n .
The geometric mean (Xg) is that value which shows that if you replace each individual value,

their product would not change and we have the formula: Xg = n
√

x1 · x2 · . . . · xn.
In statistics, by general notion of scattering (variance or dispersion) refer to the individual values

of measurable deviations from the central value (typical).
Among the main indicators characterizing the scattering one can include: dispersion, standard

deviation and coefficient of variation.
The dispersion (or variance) (Var(X)) represents the simple arithmetic or weighted mean

of individual deviations squared from their central tendency. is the parameter that characterizes

the normal distribution and we have the formula: Var(X) =
(x1−X)

2
+(x2−X)

2
+...+(xn−X)

2

n .
The standard deviation

(
σX
)

has a similar role with average linear deviation, but keeping
the dispersion characteristics; statistics used this indicator which is calculated as mean of individual
deviations squared from their central tendency, and the interval

(
X− σX ; X + σX

)
is the medium

interval of variation and we have the following formula: σX =
√

Var(X).
The coefficient of variation (CV) is a relative measure of the scattering, which describes

the percentage standard deviation from the arithmetic mean, CV =
σX
X

. The covariance is a measure
of how much two random variables X and Y change together at the same time and is defined as
Cov(X, Y) = E[(X − E[X])(Y − E[Y])], and is equivalent to the form Cov(X, Y) = E[XY]− E[X][Y].
we find the inequality of Cauchy–Schwarz for discrete random variables given by: |Cov(X, Y)| ≤√

Var(X)Var(Y).
In 1935, Popoviciu, shows the following inequality:(

x1 − X
)2

+
(

x2 − X
)2

+ . . . +
(

xn − X
)2

n
≤ 1

4
(Q− q)2, (15)
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where Q = max{x1, x2, . . . , xn} and q = min{x1, x2, . . . , xn}. This inequality suggests an upper bound
for indicators: dispersion, standard deviation and coefficient of variation, thus:

Var(X) ≤ 1
4
(Q− q)2, σX ≤

1
2
(Q− q) and CV ≤

Q− q
2X.

(16)

In 2000, Bhatia and Davis, show in [12] that the dispersion is less or equal than the product
differences between maximum and mean value, respectively mean and minimum value, thus,

Var(X) ≤
(
Q− X

) (
X− q

)
, (17)

which is equivalent with the inequality:(
x1 − X

)2
+
(

x2 − X
)2

+ . . . +
(
xn − X

)2

n
≤
(
Q− X

) (
X− q

)
. (18)

Because the term
(
Q− X

) (
X− q

)
is less or equal than the term 1

4 (Q − q)2, we obtain that
the inequality (18) is better than inequality (15). Thus, we obtain upper bounds better than in
the relation (16):

Var(X) ≤
(
Q− X

) (
X− q

)
,

σX ≤
√(

Q− X
) (

X− q
)
,

CV ≤
√
(Q−X)(X−q)

X
.

(19)

It has been shown in [13] by Mercer that for a sample of real numbers,

Var(X) ≤ 2Q
(
X− Xh

)
, (20)

where Xh is the harmonic mean of the sample, i.e., Xh =
n

∑n
i=1

1
xi

.

Next, we will present several improvements of the above inequalities related to variance.

Theorem 5. For a sample of real number X there is the following inequality:

2q
(
X− Xg

)
≤ Var(X) ≤ 2Q

(
X− Xg

)
. (21)

Proof. In the paper [14], Cartwright and Field, proved the following inequality:

1
2Q ∑n

i=1 αi (xi −∑n
i=1 αixi)

2 ≤ ∑n
i=1 αixi −

n
∏
i=1

xαi
i

≤ 1
2q ∑n

i=1 αi (xi −∑n
i=1 αixi)

2 ,
(22)

where αi > 0, ∀i = 1, . . . , n and ∑n
i=1 αi = 1.

For αi =
1
n

, for all i = 1, . . . , n, in inequality (22), we will obtain:

1
2Q
·
(

x1 − X
)2

+
(

x2 − X
)2

+ . . . +
(
xn − X

)2

n
≤

X− Xg ≤
1
2q
·
(

x1 − X
)2

+
(

x2 − X
)2

+ . . . +
(
xn − X

)2

n
,

thus, 2q
(
X− Xg

)
≤ Var(X) ≤ 2Q

(
X− Xg

)
.
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Remark 3. It is easy to see that inequality (21) is a refinement of inequality (20). Thus, we have situations
when a bound is better then the other. This inequality provide another upper bound for the dispersion Var(X),
which makes us to compare the terms 2Q

(
X− Xg

)
and

(
Q− X

) (
X− q

)
, to see which of them is less.

We consider, the real number a > 1 and choose the values x1 = a − 1, x2 = a, x3 = a + 1, to compare
the bounds M1 =

(
Q− X

) (
X− q

)
and M2 = 2Q

(
X− Xg

)
. For respective values we have q = a − 1,

x = a, Q = a + 1, which means that M1 = 1 and M2 = 2(a + 1)
(

a− 3
√

a3 − a
)

. We consider the function

f : (0,+∞)→ R, f (x) = 2(x + 1)
(

x− 3
√

x3 − x
)
− 1.

Studying this function, we found that exists c = 2, 428 . . . , where f ′(c) = 0, thus for x ∈ (1, c), we have
M1 < M2 and for x ∈ (c, ∞), we have M1 > M2. When the arithmetical mean of three consecutive numbers
is greater than c, we have M1 > M2, and when the arithmetical mean of three consecutive numbers is between 1
and c, then M1 < M2. Thus, we have situations when a bound is better then the other.

Combining the above inequalities and taking into account Remark 3, we found other bounds
for dispersion Var(X), standard deviation and coefficient of variation:

2q
(
X− Xg

)
≤ Var(X) ≤ min{2Q

(
X− Xg

)
,
(
Q− X

) (
X− q

)
}, (23)√

2q
(
X− Xg

)
≤ σX ≤

√
min{2Q

(
X− Xg

)
,
(
Q− X

) (
X− q

)
}, (24)

and √
2q
(
X− Xg

)
X

≤ CV ≤ min{2Q
(
X− Xg

)
,
(
Q− X

) (
X− q

)
}. (25)

Now, we want to find an upper bound, better than the Bhatia and Davis, for the above indicators.
For the beginning, we establish:

Theorem 6. For a sample of real number X there is the following equality:

(
Q− X

) (
X− q

)
−Var(X) =

1
n

n

∑
i=1

(Q− xi) (xi − q) . (26)

Proof. We observe that:

1
n ∑n

i=1 (Q− xi) (xi − q) = 1
n
[
(Q + q)∑n

i=1 xi −∑n
i=1 x2

i −Qq
]

= (Q + q)X− 1
n ∑n

i=1 x2
i −Qq

= (Q + q)X−Var(X)− X2 −Qq =
(
Q− X

) (
X− q

)
−Var(X).

Theorem 7. For a sample of real number X if Q = max{x1, x2, . . . , xn}, q = min{x1, x2, . . . , xn}, Q′ =
max{xi|xi 6= Q} and q′ = min{xi|xi 6= q}, then there is the following inequality:

Var(X) ≤
(
Q− X

) (
X− q

)
−max

{
(q′ − q)

(
Q− X

)
,
(
Q−Q′

) (
X− q

)}
. (27)

Proof. for Q = max{x1, x2, . . . , xn} and q = min{x1, x2, . . . , xn}, we have:Q ≥ xi, and q ≤ xi,
thus,(Q− xi) (xi − q) ≥ 0.

Consequently, the proof of inequality (17) is obvious.
For Q′ = max{xi|xi 6= Q} and q′ = min{xi|xi 6= q}, if we replace the term Q− xi with Q−Q′ in

relation (26), we obtain:

(
Q− X

) (
X− q

)
−Var(X) ≥ 1

n

n

∑
i=1

(
Q−Q′

)
(xi − q) =

(
Q−Q′

) (
X− q

)
,
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and if we replace xi − q with q′ − q, we have:(
Q− X

) (
X− q

)
−Var(X) ≥ (q′ − q)

(
Q− X

)
,

which means that inequality (17) has been improved by the inequality of the statement.

Remark 4. We obtain the next bounds for variance, standard deviation and coefficient of variation:

2q
(
X− Xg

)
≤ Var(X)

≤
(
Q− X

) (
X− q

)
−

−max
{
(q′ − q)

(
Q− X

)
, (Q−Q′)

(
X− q

)}
,

(28)

√
2q
(
X− Xg

)
≤ σX

≤

√√√√(Q− X
) (

X− q
)
−max

{
(q′ − q)

(
Q− X

)
,

(Q−Q′)
(
X− q

) } ,
(29)

and √
2q(X−Xg)

X
≤ CV

≤
√
(Q−X)(X−q)−max{(q′−q)(Q−X), (Q−Q′)(X−q)}

X
.

(30)

For a discrete random variableX =

(
xi
pi

)
1≤i≤n

, we take Q ≥ max{x1, x2, . . . , xn} and q ≤

min{x1, x2, . . . , xn}. we have xi 6= xj, ∀i 6= j, i, j = 1, n.

We consider the following discrete random variables:Q− X =

(
Q− xi

1
n

)
1≤i≤n

, and X− q =(
xi − q

1
n

)
1≤i≤n

.

It is easy to see that Var(Q−X) = Var X and Var(X− q) = Var X , if ai = Q− xi and bi = xi − q,
then we obtain:

n

∑
i=1

aibi = n
((

Q− X
) (

X− q
)
−Var (X)

)
.

Next, we calculate
n
∑

i=1
a2

i and
n
∑

i=1
b2

i , for ai and bi given above. Thus, we deduce:

n
∑

i=1
a2

i =
n
∑

i=1
(Q− xi)

2 = n
(
Var(Q− X) + (Q− X)2)

= n
(
Var(X) + (Q− X)2) ,

and
n
∑

i=1
b2

i =
n
∑

i=1
(xi − q)2 = n

(
Var(X− q) + (X− q)2)

= n
(
Var(X) + (X− q)2) .

Therefore, we have:

n
∑

i=1
a2

i ·
n
∑

i=1
b2

i −
(

n
∑

i=1
aibi

)2

= n2 ((Var(X) + (Q− X)2) (Var(X) + (X− q)2)

−((Q− X)(X− q)−Var(X))2)

= n2Var(X) · (Q− q)2.
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However, the second term of inequality (2) becomes

maxi,j∈{1,...,n}
(aibj − ajbi)

2

b2
i + b2

j

n
∑

i=1
b2

i

= n · (Q− q)2 maxi,j∈{1,...,n}
(xi − xj)

2

(xi − q)2 + (xj − q)2 ·
(
Var(X) + (X− q)2) , n ≥ 2.

Thus, we obtain:

n ·Var(X) ≥ (Var(X) + (X− q)2) max
i,j∈{1,...,n}

(xi − xj)
2

(xi − q)2 + (xj − q)2 .

For n ≥ 2, taking into account that Var(X) ≥ 0, we proved that inequality:

Var(X) ≥ (X− q)2

n
max

i,j∈{1,...,n}

(xi − xj)
2

(xi − q)2 + (xj − q)2 . (31)

Similarly, we deduce:

Var(X) ≥ (Q− X)2

n
max

i,j∈{1,...,n}

(xi − xj)
2

(Q− xi)2 + (Q− xj)2 . (32)

We study, two cases:

(I) for A = B =
√

n(Var(X) + (Q− q)2), we have:

AB−
n

∑
i=1

aibi = n(2Var(X) + (Q− q)2 − (Q− X)(X− q)) > 0,

A2 −
n

∑
i=1

a2
i = n(X− q)(2Q− q− X) > 0, for every n ≥ 2,

B2 −
n

∑
i=1

b2
i = n(Q− X)(Q + X− 2q) > 0, for every n ≥ 2.

Therefore, applying the Aczél inequality, we proved:

(2Var(X) + (Q− q)2 − (Q− X)(X− q))2

≥ (Q− X)(X− q)(Q + X− 2q)(2Q− q− X),

which means that:

Var(X) ≥ 1
2

(√
(Q− X)(X− q)(Q + X− 2q)(2Q− q− X)

+ (Q− X)(X− q)− (Q− q)2) .
(33)

But, using the improvement of Aczél inequality, from inequality (12), we obtain:

Var(X) ≥ 1
2

(√
(Q− X)(X− q)(Q + X− 2q)(2Q− q− X)

+ (Q− X)(X− q)− (Q− q)2)+ P,
(34)

where
P =

1
2n

max
i∈{1,...,n}

{AB− aibi −
(

A2 − a2
i

)1/2 (
B2 − b2

i

)1/2
},
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and A = B =
√

n(Var(X) + (Q− q)2).

(II) For

A =
√

n((Q− X)(X− q) + (Q− X)2)

=
√

n(Q− X)(Q− q),

and
B =

√
n((Q− X)(X− q) + (X− q)2)

=
√

n(X− q)(Q− q),

we deduce:
AB−

n
∑

i=1
aibi = n(Q− q)

√
(Q− X)(X− q)

−(Q− X)(X− q) + Var(X) > 0.

A2 −
n
∑

i=1
a2

i = n
((

Q− X
)
(Q− q)−Var (X)−

(
Q− X

)2
)

= n
((

Q− X
) (

X− q
)
−Var (X)

)
> 0

and

B2 −
n
∑

i=1
b2

i = n
((

X− q
)
(Q− q)−Var (X)−

(
X− q

)2
)

= n
((

Q− X
) (

X− q
)
−Var (X)

)
> 0.

Consequently, if we use the Aczél inequality, we find:(
(Q− q)

√
(Q− X)(X− q)−

(
Q− X

) (
X− q

)
+ Var (X)

)2

≥
((

Q− X
) (

X− q
)
−Var (X)

)2 ,

Var (X) ≥
(
Q− X

) (
X− q

)
− Q− q

2

√
(Q− X)(X− q). (35)

But, using the Aczél inequality refinement, from inequality (12), we find:

Var(X) ≥ (Q− X)(X− q)− Q− q
2

√
(Q− X)(X− q) + P′, (36)

where
P′ =

1
2n

max
i∈{1,...,n}

{AB− aibi −
(

A2 − a2
i

)1/2 (
B2 − b2

i

)1/2
},

and A =
√

n(Q− X)(Q− q) and B =
√

n(X− q)(Q− q).

4. Conclusions

Based on the results obtained in this paper regarding the new refinements for the main indicators
characterizing the scattering, we will try in the future to find other applications of Aczél inequality
respectively Popoviciu’s inequality to other statistical indicators. For example, we will extend
the inequality from Theorem 4 to m sequences of positive real numbers. In the future we will look
for other applications demonstrated in the article and in other fields. we will also study what variants
from these results can be extended in the inner product spaces.
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