Almost Sure Convergence for the Maximum and Minimum of Normal Vector Sequences
Abstract
:1. Introduction
2. Results
- (a)
- ;
- (b)
- there exists , such that
- (a)
- and for as ,
- (b)
- there exists with , such that
3. Proofs of the Main Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Galambos, J. Asymptotic Theory of Extreme Order Statistics; John Wiley & Sons: Hoboken, NJ, USA, 1978. [Google Scholar]
- Beirlant, J.; Goegebeur, Y.; Segers, J.; Teugels, J.L. Statistics of Extremes: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Resnick, S.I. Extreme Values, Regular Variation, and Point Processes; Springer: Berlin/Heidelberg, Germany, 1989; Volume 84. [Google Scholar]
- Bremaud, P. Discrete Probability Models and Methods; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Oliveira, P.E. Almost Sure Convergence; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Cheng, S.; Peng, L.; Qi, Y. Almost Sure Convergence in Extreme Value Theory. Math. Nachrichten 2006, 190, 43–50. [Google Scholar] [CrossRef]
- Brosamler, G.A. An almost everywhere central limit theorem. Math. Proc. Camb. Philos. Soc. 1998, 104, 561. [Google Scholar] [CrossRef]
- Hüsler, J.; Schüpbach, M. Limit results for maxima in non-stationary multivariate Gaussian sequences. Stoch. Process. Their Appl. 1988, 28, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Ibragimov, I.; Lifshits, M. On the convergence of generalized moments in almost sure central limit theorem. Stat. Probab. Lett. 1998, 40, 343–351. [Google Scholar] [CrossRef]
- Fahrner, I.; Stadtmüller, U. On almost sure max-limit theorems. Stat. Probab. Lett. 1998, 37, 229–236. [Google Scholar] [CrossRef]
- Berkes, I.; Csáki, E. A universal result in almost sure central limit theory. Stoch. Process. Their Appl. 2001, 94, 105–134. [Google Scholar] [CrossRef] [Green Version]
- Csáki, E.; Gonchigdanzan, K. Almost sure limit theorems for the maximum of stationary Gaussian sequences. Stat. Probab. Lett. 2002, 58, 195–203. [Google Scholar] [CrossRef]
- Chen, S.; Lin, Z. Almost sure max-limits for nonstationary Gaussian sequence. Stat. Probab. Lett. 2006, 76, 1175–1184. [Google Scholar] [CrossRef]
- Chen, Z.; Peng, Z.; Zhang, H. An almost sure limit theorem for the maxima of multivariate stationary gaussian sequences. J. Aust. Math. Soc. 2009, 86, 315. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Peng, Z.; Wu, S. Almost Sure Convergence for the Maximum and the Sum of Nonstationary Guassian Sequences. J. Inequalities Appl. 2010, 2010, 856495. [Google Scholar] [CrossRef] [Green Version]
- Weng, Z.; Peng, Z.; Nadarajah, S. The almost sure limit theorem for the maxima and minima of strongly dependent Gaussian vector sequences. Extremes 2012, 15, 389–406. [Google Scholar] [CrossRef]
- Leadbetter, M.R.; Lindgren, G.; Rootzén, H. Extremes and Related Properties of Random Sequences and Processes; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Gonchigdanzan, K. An almost sure limit theorem for the product of partial sums with stable distribution. Stat. Probab. Lett. 2008, 78, 3170–3175. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Zhang, H.; Liu, X. Almost Sure Convergence for the Maximum and Minimum of Normal Vector Sequences. Mathematics 2020, 8, 618. https://doi.org/10.3390/math8040618
Chen Z, Zhang H, Liu X. Almost Sure Convergence for the Maximum and Minimum of Normal Vector Sequences. Mathematics. 2020; 8(4):618. https://doi.org/10.3390/math8040618
Chicago/Turabian StyleChen, Zhicheng, Hongyun Zhang, and Xinsheng Liu. 2020. "Almost Sure Convergence for the Maximum and Minimum of Normal Vector Sequences" Mathematics 8, no. 4: 618. https://doi.org/10.3390/math8040618
APA StyleChen, Z., Zhang, H., & Liu, X. (2020). Almost Sure Convergence for the Maximum and Minimum of Normal Vector Sequences. Mathematics, 8(4), 618. https://doi.org/10.3390/math8040618