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Abstract

:

In this paper, we prove the almost sure convergences for the maximum and minimum of nonstationary and stationary standardized normal vector sequences under some suitable conditions.
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1. Introduction


The extreme phenomena in nature and human society can be explored by the classical extreme value theory [1,2,3]. Almost sure convergence shows a nice behavior of the various ways of convergences [4,5,6]. Brosamler and Schatte firstly put forward the almost sure central limit theorem (ASCLT) on partial sums for independent identically distributed (i.i.d.) random variables [7,8]. Let    X 1  ,  X 2  , …   be i.i.d. random variables with   E  (  X n  )  = 0 , V a r  (  X n  )  = 1   and    T n  =   ∑  k = 1  n    X k   . Under some regularity conditions, we have


   lim  n → ∞    1  log n     ∑  k = 1  n    1 k  I    T k   k   ≤ x  = Φ  ( x )    a . s . ,  



(1)




for any x, where I denote the indicator function and   Φ ( x )   stands for the standard normal distribution function. Later, Ibragimov and Lifshits extend Equation (1) to the functional form [9]. Cheng et al. [10], Fahrnar and Stadtmüller [6] and Berkes and Csáki [11] respectively consider the ASCLT on maximum of i.i.d random variables. Csáki and Gondigdanzan investigate the ASCLT for the maximum of a stationary weakly dependent Gaussian sequences [12]. Chen and Lin extend the ASCLT to nonstationary Gaussian sequences [13]. Chen et al. provide an ASCLT for the maxima of multivariate stationary Gaussian sequences under some mild conditions [14]. Zhao et al. explore the ASCLT for the maxima and sum of a nonstationary Gaussian vector sequence [15]. Weng et al. put forward an ASCLT for the maxima and minima of a strongly dependent stationary Gaussian vector sequence [16].



The purpose of this paper is to extend the result of the ASCLT for the maximum and minimum to multivariate general normal vector sequences, which include the two cases of nonstationary and stationary, under some suitable conditions. Throughout this paper,   {  X 1  ,  X 2  , … }   is a standardized nonstationary Gaussian sequence of d-dimensional random vectors (i.e., each component of the random vectors has a zero mean and a unit standard deviation). The covariance matrix is denoted by


   r  i j    ( p )  = C o v   X i   ( p )  ,  X j   ( p )   ,    r  i j    ( p , q )  = C o v   X i   ( p )  ,  X j   ( q )    








such that    |   r  i j     ( p )  | ≤   ρ  | i − j |    ( p )    and    |   r  i j     ( p , q )  | ≤   ρ  | i − j |    ( p , q )    where


   sup  1 ≤ p ≤ d    ρ n   ( p )  < 1 ,    sup  1 ≤ p ≠ q ≤ d    ρ n   ( p , q )  < 1  








for   n ≥ 1  .



We set


   M  k , n   =   M  k , n    ( 1 )  , … ,  M  k , n    ( d )   ,    M  k , n    ( p )  =  max  k + 1 ≤ i ≤ n    X i   ( p )  ,  








especially


   M n  =  M  0 , n   ,    M n   ( p )  =  M  0 , n    ( p )   








for   p = 1 , … , d .   The level    u n  =   u n   ( 1 )  , … ,  u n   ( d )     and    v n  =   v n   ( 1 )  , … ,  v n   ( d )     are two real vectors. The expression    u n  >  v n    implies    u n   ( p )  >  v n   ( p )    for all   p = 1 , … , d   and   a ≪ b   stands for   a = O ( b )  . Finally, we write    a n  =   ( 2 log n )   1 2     and    b n  =  a n  −  1 2   a n  − 1   log  ( 4 π log n )   .




2. Results


Theorem 1.

Let    {  X n  }   n = 1  ∞   be a standardized nonstationary normal d-dimensional vector sequence satisfying




	(a) 

	
  δ =  max  p ≠ q     sup  n ≥ 1     |    r n   ( p )    | , |    r n   ( p , q )    |    < 1  ;




	(b) 

	
there exists   γ ≥   2 ( 1 + δ )   1 − δ    , such that


    1  n 2     ∑  p = 1  d    ∑  1 ≤ i < j ≤ n    |  r  i j    ( p )  |  exp   γ |   r  i j     ( p )  | log  ( j − i )    ≪   ( log log n )   − ( 1 + ε )   ,   



(2)






    1  n 2     ∑  1 ≤ p ≠ q ≤ n  d    ∑  1 ≤ i < j ≤ n    |  r  i j    ( p , q )  |  exp   γ |   r  i j     ( p , q )  | log  ( j − i )    ≪   ( log log n )   − ( 1 + ε )     



(3)




where   ε > 0  .









Suppose that the levels    u n   ( p )    and    v n   ( p )    satisfy   n   1 − Φ (  u n   ( p )  )   →  τ p   ,   n Φ  (  v n   ( p )  )  →  η p    for   0 ≤  τ p  ,  η p  < ∞   and   p = 1 , 2 , … , d  , then


    lim  n → ∞    1  log n     ∑  k = 1  n    1 k  I  (   v k  <  m k  ≤  M k  ≤  u k   )  =   ∏  p = 1  d   exp  ( −  (  τ p  +  η p  )  )     a . s .   



(4)







Especially, let    u n   ( p )  =  a n  − 1    x p  +  b n    and    v n   ( p )  = −  a n  − 1    y p  −  b n   , where   x p   and   y p   are real numbers for   p = 1 , 2 , … , d  , then


    lim  n → ∞    1  log n     ∑  k = 1  n    1 k  I  (  v k  <  m k  ≤  M k  ≤  u k  )  =   ∏  p = 1  d   exp  − (  e  −  x p    +  e  −  y p    )     a . s .   



(5)









Corollary 1.

Under the conditions of Theorem 1, if the levels    u n   ( p )    satisfies   n   1 − Φ (  u n   ( p )  )   →  τ p    as   n → ∞  , then


    lim  n → ∞    1  log n     ∑  k = 1  n    1 k  I     M k   ≤  u k    =   ∏  p = 1  d   exp  ( − 2  τ p  )  .   



(6)







Especially, the level    u n   ( p )    satisfies    u n   ( p )  =  a n  − 1    x p  +  b n    for   p = 1 , 2 , … , d  , then


    lim  n → ∞    1  log n     ∑  k = 1  n    1 k  I     M k   ≤  u k    =   ∏  p = 1  d   exp  ( − 2  e  −  x p    )  .   



(7)









Theorem 2.

Let    {  X n  }   n = 1  ∞   be a standardized nonstationary normal d-dimensional vector sequence satisfying


    ρ n   ( p )  log n   ( log log n )   − ( 1 + ε )   = O  ( 1 )  ,   ρ n   ( p , q )  log n   ( log log n )   − ( 1 + ε )   = O  ( 1 )  .   



(8)







If   n   1 − Φ (  u n   ( p )  )   →  τ p    and   n Φ   v n   ( p )   →  η p    as   n → ∞   for   0 ≤  τ p  ,  η p  < ∞   and   ε > 0  , then (4) holds.



Especially, set    u n   ( p )  =  a n  − 1    x p  +  b n    and    v n   ( p )  = −  a n  − 1    y p  −  b n   , where   x p   and   y p   are real numbers for   p = 1 , 2 , … , d  , then (5) holds.





Theorem 3.

Let    Z 1  ,  Z 2  , …   be a standardized stationary normal sequence of d-dimensional random vectors satisfying




	(a) 

	
   r n   ( p , q )  → 0   and    r n   ( p )  → 0   for   1 ≤ p ≠ q ≤ d   as   n → ∞  ,




	(b) 

	
there exists   γ ≥   2 ( 1 + δ )   1 − δ     with   δ =  max  p ≠ q     sup  n ≥ 1     |    r n   ( p )    | , |    r n   ( p , q )    |    < 1  , such that


    1 n    ∑  p = 1  d     ∑  k = 1  n     r k   ( p )   log k exp   γ |   r k    ( p )  | log k   ≪   ( log log n )   − ( 1 + ε )   ,   



(9)






    1 n   ∑  1 ≤ p ≠ q ≤ d     ∑  k = 1  n     r k   ( p , q )   log k exp   γ |   r k    ( p , q )  | log k   ≪   ( log log n )   − ( 1 + ε )   .   



(10)













If   n   1 − Φ (  u n   ( p )  )   →  τ p    and   n Φ  (  v n   ( p )  )  →  η p    as   n → ∞   for   0 ≤  τ p  ,  η p  < ∞   and   ε > 0  , then (4) holds.



Especially, set    u n   ( p )  =  a n  − 1    x p  +  b n    and    v n   ( p )  = −  a n  − 1    y p  −  b n   , where   x p   and   y p   are real numbers for   p = 1 , … , d  , then (5) holds.





Theorem 4.

Let    Z 1  ,  Z 2  , …   be a standardized stationary normal sequence d-dimensional random vectors satisfying


    r n   ( p )  log n   ( log log n )   1 + ε   = O  ( 1 )  ,    r n   ( p , q )  log n   ( log log n )   1 + ε   = O  ( 1 )  ,   1 ≤ p ≠ q ≤ d .   



(11)







If   n   1 − Φ (  u n   ( p )  )   →  τ p    and   n Φ   v n   ( p )   →  η p    as   n → ∞   for   0 ≤  τ p  ,  η p  < ∞   and   ε > 0  , then (4) holds.



Especially, set    u n   ( p )  =  a n  − 1    x p  +  b n    and    v n   ( p )  = −  a n  − 1    y p  −  b n   , where   x p   and   y p   are real numbers for   p = 1 , … , d  , then (5) holds.





Notice: We replace the nonstationary sequence    {  X n  }   n = 1  ∞   with the stationary sequence    {  Z n  }   n = 1  ∞   in Theorem 3 and 4. The symbols of    {  X n  }   n = 1  ∞   are used to denote the random vector sequence    {  Z n  }   n = 1  ∞   in the two theorems without ambiguities.




3. Proofs of the Main Results


In the section, we present and prove some lemmas which are useful in the proofs of the main results.



Lemma 1.

Let    {  ξ n  }   n = 1  ∞   and    {  η n  }   n = 1  ∞   be standardized nonstationary normal sequences of d-dimensional random vectors with    r  i j  0   ( p )  = C o v   ξ i   ( p )  ,  ξ j   ( p )    ,    r  i j  0   ( p , q )  = C o v   ξ i   ( p )  ,  ξ j   ( q )     and    r  i j  *   ( p )  = C o v   η i   ( p )  ,  η j   ( p )    ,    r  i j  *   ( p , q )  = C o v   η i   ( p )  ,  η j   ( q )    . Denote    ρ  i j    ( p )  = max   |   r  i j  0    ( p )  | , |   r  i j  *    ( p )  |    ,    ρ  i j    ( p , q )  = max   |   r  i j  0    ( p , q )  | , |   r  i j  *    ( p , q )  |     and let    {  u n  }  ,  {  v n  }    be real vectors. If    max  p ≠ q    sup  n ≥ 1     |    r n   ( p )    | , |   r n    ( p , q )  |   = δ < 1   and    ω  n i     ( p )  = min ( |   u  n i     ( p )  | , |   v  n i    ( p )   | )   , then


      P    ⋂  j = 1  n    ( −  v  n j   <  ξ j  ≤  u  n j   )   − P    ⋂  j = 1  n    ( −  v  n j   <  η j  ≤  u  n j   )          ≤  K 1    ∑  p = 1  d     ∑  1 ≤ i < j ≤ n     r  i j  0   ( p )  −  r  i j  *   ( p )   exp  −    ω  n i  2   ( p )  +  ω  n j  2   ( p )    2  1 +  ρ  i j    ( p )              +  K 2   ∑  1 ≤ p ≠ q ≤ d     ∑  1 ≤ i < j ≤ n     r  i j  0   ( p , q )  −  r  i j  *   ( p , q )   exp  −    ω  n i  2   ( p )  +  ω  n j  2   ( q )    2  1 +  ρ  i j    ( p , q )           








with the positive constants    K 1  ,  K 2    which depend on δ.





Proof. 

It follows from Theorem 11.1.2 in Leadbetter et al. [17]. □





Lemma 2.

Let    {  X n  }   n = 1  ∞   be a standardized nonstationary normal d-dimensional vector sequence satisfying the conditions (a) and (b) of Theorem 1, then


    ∑  1 ≤ p ≠ q ≤ d     ∑  1 ≤ i < j ≤ n     r  i j    ( p , q )   exp  −    ω  n i  2   ( p )  +  ω  n j  2   ( q )    2 ( 1 +  r  i j    ( p , q )  )    ≪   ( log log n )   − ( 1 + ε )   ,   



(12)






     ∑  p = 1  d     ∑  1 ≤ i < j ≤ n     r  i j    ( p )   exp  −    ω  n i  2   ( p )  +  ω  n j  2   ( p )    2 ( 1 +  r  i j    ( p )  )    ≪   ( log log n )   − ( 1 + ε )   .   



(13)









Proof. 

Firstly, we peove Equation (12). This sum can be divided into two terms   T 1   and   T 2  ,


       ∑  1 ≤ p ≠ q ≤ d     ∑  1 ≤ i < j ≤ n     r  i j    ( p , q )   exp  −    ω  n i  2   ( p )  +  ω  n j  2   ( q )    2 ( 1 + |  r  i j    ( p , q )  | )         =     ∑  1 ≤ p ≠ q ≤ d    ∑   1 ≤ i < j ≤ n   j − i ≤  n  2 γ        r  i j    ( p , q )   exp  −    ω  n i  2   ( p )  +  ω  n j  2   ( q )    2 ( 1 + |  r  i j    ( p , q )  | )            +  ∑  1 ≤ p ≠ q ≤ d     ∑   1 ≤ i < j ≤ n   j − i >  n  2 γ        r  i j    ( p , q )   exp  −    ω  n i  2   ( p )  +  ω  n j  2   ( q )    2 ( 1 + |  r  i j    ( p , q )  | )         ≜     T 1  +  T 2  .     











Since   exp     u n 2   ( p )   2   ∼    log n   n   , we have    ω  n i     ( p )  = min ( |   u  n i     ( p )  | , |   v  n i    ( p )   | )  ∼    log n   n   . Let   β =  2 γ   , that is



  0 < β <   1 − δ   1 + δ    , then the first term   T 1  


     T 1    ≤     ∑  1 ≤ p ≠ q ≤ d    ∑   1 ≤ i < j ≤ n   j − i ≤  n β       r  i j    ( p , q )   exp  −    ω  n i  2   ( p )  +  ω  n j  2   ( q )    2 ( 1 + δ )          ≪     n  1 + β      n  − 2   log n   1  1 + δ          =     n  1 + β −  2  1 + δ       ( log n )   1  1 + δ    .     











As   1 + β −  2  1 + δ   < 0  , we get


   T 1  ≪   ( log log n )   − ( 1 + ε )   .  



(14)







Note that   j − i >  n β   , we have   log n < log ( j − i ) / β  . Then, we consider the second part   T 2  ,


     T 2    ≤     ∑  1 ≤ p ≠ q ≤ d    ∑   1 ≤ i < j ≤ n   j − i >  n β       r  i j    ( p , q )   exp  −    ω  n i  2   ( p )  +  ω  n j  2   ( q )    2 ( 1 + |  r  i j    ( p , q )  | )          ≪     ∑  1 ≤ p ≠ q ≤ d    ∑   1 ≤ i < j ≤ n   j − i >  n β       r  i j    ( p , q )      n  − 2   log n   1   1 + |   r  i j     ( p , q )  |           =     n  − 2    ∑  1 ≤ p ≠ q ≤ d    ∑   1 ≤ i < j ≤ n   j − i >  n β       r  i j    ( p , q )    n    2 |   r  i j     ( p , q )  |     1 + |   r  i j     ( p , q )  |     log  n  1   1 + |   r  i j     ( p , q )  |           ≤     n  − 2    ∑  1 ≤ p ≠ q ≤ d    ∑   1 ≤ i < j ≤ n   j − i >  n β       r  i j    ( p , q )     ( j − i )     2 |   r  i j     ( p , q )  |   β   log  ( j − i )        ≤     n  − 2    ∑  1 ≤ p ≠ q ≤ d    ∑   1 ≤ i < j ≤ n   j − i >  n β       r  i j    ( p , q )   exp   γ |   r  i j     ( p , q )  | log  ( j − i )    log  ( j − i )  .     











By the condition (a) of Theorem 1, we get


   T 2  ≪   ( log log n )   − ( 1 + ε )   .  



(15)







Combining Equation (14) and Equation (15) induces that Equation (12) holds. Equation (13) can be proved in the similar way. □





Lemma 3.

Let    {  X n  }   n = 1  ∞   be a standardized nonstationary normal sequence of d-dimensional random vectors satisfying (a) of Theorem 1 and



(c) there exists   γ ≥   2 ( 1 + δ )   1 − δ    , as   n → ∞  


    1  n 2     ∑  p = 1  d    ∑  1 ≤ i < j ≤ n    |  r  i j    ( p )  |  exp   γ |   r  i j     ( p )  | log  ( j − i )    → 0 ,   



(16)






    1  n 2     ∑  1 ≤ p ≠ q ≤ n  d    ∑  1 ≤ i < j ≤ n    |  r  i j    ( p , q )  |  exp   γ |   r  i j     ( p , q )  | log  ( j − i )    → 0 .   



(17)







We have


     ∑  p = 1  d    ∑  1 ≤ i < j ≤ n    |  r  i j    ( p )  |  exp  −    ω  n i  2   ( p )  +  ω  n j  2   ( p )    2 ( 1 + |  r  i j    ( p )  | )     ⟶  n → ∞   0 ,   



(18)






     ∑  1 ≤ p ≠ q ≤ n  d    ∑  1 ≤ i < j ≤ n    |  r  i j    ( p , q )  |  exp  −    ω  n i  2   ( p )  +  ω  n j  2   ( q )    2 ( 1 + |  r  i j    ( p , q )  ) |     ⟶  n → ∞   0 .   



(19)









Proof. 

The proof of Lemma 3 is similar to Lemma 2. □





Lemma 4.

Suppose that    {  X n  }   n = 1  ∞   is a standardized nonstationary normal sequence of d-dimensional random vectors satisfying the conditions (a) and (b) of Theorem 1.



Let    u n   ( p )    and    v n   ( p )    be such that   n   1 − Φ (  u n   ( p )  )   →  τ p    and   n Φ  (  v n   ( p )  )  →  η p    as   n → ∞   for all   p = 1 , 2 , … , d  , then


   P  (   v k  <  m k  ≤  M k  ≤  u k   )  →   ∏  p = 1  d   exp  ( −  (  τ p  +  η p  )  )  .   



(20)







Especially, let    u n   ( p )  =  1  a n    x p  +  b n    and    v n   ( p )  = −  1  a n    y p  −  b n    with    x p  ,  y p  ∈ R   for all   p = 1 , 2 , … , d  , then


   P  (   v k  <  m k  ≤  M k  ≤  u k   )  →   ∏  p = 1  d   exp  ( −  (  e  −  x p    +  e  −  y p    )  )  .   



(21)









Proof. 

We consider the joint distribution of the maximum   M n   and the minimum   m n   of    {  X n  }   n = 1  ∞  


     P   v n  <  m n  ≤  M n  ≤  u n   −   ∏  p = 1  d   exp  − (  τ p  +  η p  )         ≤  P   v n  <  m n  ≤  M n  ≤  u n   −   ∏  p = 1  d     Φ  (  u p  )  − Φ  (  v p  )   n           +    ∏  p = 1  d     Φ  (  u p  )  − Φ  (  v p  )   n  −   ∏  p = 1  d   exp  − (  τ p  +  η p  )             =  Δ   L 1  +  L 2  .     











By Lemmas 1 and 3, we have


     L 1     =  P   v n  <  m n  ≤  M n  ≤  u n   −   ∏  p = 1  d     Φ  (  u p  )  − Φ  (  v p  )   n            ≤  K 1    ∑  p = 1  d     ∑  1 ≤ i < j ≤ n     r  i j  0   ( p )  −  r  i j  *   ( p )   exp  −    ω  n i  2   ( p )  +  ω  n j  2   ( p )    2 ( 1 +  ρ  i j    ( p )  )             +  K 2   ∑  1 ≤ p ≠ q ≤ d     ∑  1 ≤ i < j ≤ n     r  i j  0   ( p , q )  −  r  i j  *   ( p , q )   exp  −    ω  n i  2   ( p )  +  ω  n j  2   ( q )    2 ( 1 +  ρ  i j    ( p , q )  )              ⟶  n → ∞   0 .     



(22)







Based on the definition of   u n   and   v n  , we get


     L 2     =    ∏  p = 1  d     Φ  (  u p  )  − Φ  (  v p  )   n  −   ∏  p = 1  d   exp  − (  τ p  +  η p  )            =    ∏  p = 1  d     1 −  1 − Φ (  u p  )  − Φ  (  v p  )   n  −   ∏  p = 1  d   exp  ( −  (  τ p  +  η p  )  )            =    ∏  p = 1  d     1 −   η p  n  −   τ p  n  + o  (   1 n   )   n  −   ∏  p = 1  d   exp  − (  τ p  +  η p  )             ⟶  n → ∞      ∏  p = 1  d   exp  − (  τ p  +  η p  )  −   ∏  p = 1  d   exp  − (  τ p  +  η p  )            = 0 .     



(23)







Combining Equation (22) and Equation (23) induces that Equation (20) hold. Equation (21) is a special case of Equation (20). Then Lemma 4 holds. □





Lemma 5.

Let    {  X n  }   n = 1  ∞   be a standardized nonstationary normal d-dimensional vector sequence satisfying the conditions (a) and (b) of Theorem 1, then


   E  I  {  M n  ≤  u n  }  − I  {  M  k , n   ≤  u n  }   ≪  k n  +   ( log log n )   − ( 1 + ε )   ,   



(24)






   E  I  {  m n  >  v n  }  − I  {  m  k , n   >  v n  }   ≪  k n  +   ( log log n )   − ( 1 + ε )   .   



(25)









Proof. 

We firstly consider Equation (24),


     E  I  {  M n  ≤  u n  }  − I  {  M  k , n   ≤  u n  }      =    E  I  (  X 1  ≤  u  n 1   , … ,  X n  ≤  u  n n   )  − I  (  X  k + 1   ≤  u  n ( k + 1 )   , … ,  X n  ≤  u  n n   )         =    P  (  X  k + 1   ≤  u  n ( k + 1 )   , … ,  X n  ≤  u  n n   )  − P  (  X 1  ≤  u  n 1   , … ,  X n  ≤  u  n n   )        ≤    P  (  X  k + 1   ≤  u  n ( k + 1 )   , … ,  X n  ≤  u  n n   )  −   ∏  p = 1  d      ∏  j = k + 1  n   Φ   u  n j    ( p )           +  P  (  X 1  ≤  u  n 1   , … ,  X n  ≤  u  n n   )  −   ∏  p = 1  d      ∏  j = 1  n   Φ   u  n j    ( p )            +    ∏  p = 1  d      ∏  j = k + 1  n   Φ   u  n j    ( p )   −   ∏  p = 1  d      ∏  j = 1  n   Φ   u  n j    ( p )          ≜    A + B + C .     











By Theorem 4.2.1 in Leadbetter et al. [17] and Lemma 2, we obtain


  A ≪   ( log log n )   − ( 1 + ε )   ,  



(26)






  B ≪   ( log log n )   − ( 1 + ε )   .  



(27)







As    λ n   ( p )  =  min  1 ≤ i ≤ n    u  n i    ( p )  ≥ c   ( log n )   1 2    , then    u  n i    ( p )  ≥ c   ( log n )   1 2     for   p = 1 , 2 , … , d .   Define   u n   by   1 − Φ  (  u n  )  =  1 n   , then we have    u  n i    ( p )  ≥  u n    for some c as   p = 1 , 2 , … , d  . The third part C can be controled as below,


    C    =   ∏  j = k + 1  n      ∏  p = 1  d   Φ   u  n j    ( p )   −   ∏  j = 1  n      ∏  p = 1  d   Φ   u  n j    ( p )            ≤ 1 −   ∏  j = 1  k      ∏  p = 1  d    Φ   u  n j    ( p )            ≤   ∑  p = 1  d    1 −   ∏  j = 1  k   Φ   u  n j    ( p )             ≤   ∑  p = 1  d    1 −  Φ k   (  u n  )            ≤   ∑  p = 1  d    1 −   1 −  1 n   k            ≪  k n  .     



(28)







Using Equations (26)–(28), Equation (24) can be proved.



Next, we prove Equation (25). As    m  k , n   =  min  k + 1 ≤ i ≤ n    X i   , then   −  m  k , n   =  max  k + 1 ≤ i ≤ n    ( −  X i  )   .


     E  I  {  m n  >  v n  }  − I  {  m  k , n   >  v n  }          = P  (  m  k , n   >  v n  )  − P  (  m n  >  v n  )         = P  ( −  m  k , n   < −  v n  )  − P  ( −  m n  < −  v n  )         ≤  P  ( −  m  k , n   < −  v n  )  −   ∏  p = 1  d    Φ  n − k    −  v n    ( p )  )            +  P  ( −  m n  < −  v n  )  −   ∏  p = 1  d    Φ n   ( −  v n   ( p )  )   )           +    ∏  p = 1  d    Φ  n − k    −  v n    ( p )  )   −   ∏  p = 1  d    Φ n   −  v n    ( p )  )           ≜  A 1  +  A 2  +  A 3  .     











Since


   x  n − k   −  x n  ≤  k n  ,   0 ≤ x ≤ 1 ,  








we have


   A 3  ≤  k n  .  



(29)







By Theorem 4.2.1 in Leadbetter et al. [17] and Lemma 2, we get


   A k  ≪   ( log log n )   − ( 1 + ε )   ,   k = 1 , 2 .  



(30)







Using Equations (29) and (30), Equation (25) can be obtained. Then Lemma 5 holds. □





Lemma 6.

Let    {  X n  }   n = 1  ∞   be a standardized nonstationary normal d-dimensional vector sequence satisfying the conditions (a) and (b) of Theorem 1, then


    C o v  I  {  M k  ≤  u k  ,  m k  >  v k  }  , I  {  M  k , n   ≤  u n  ,  m  k , n   >  v n  }    ≪   ( log log n )   − ( 1 + ε )   .   



(31)









Proof. 

By Lemmas 1 and 2, we have


     C o v  I  (  M k  ≤  u k  ,  m k  >  v k  )  , I  (  M  k , n   ≤  u n  ,  m  k , n   >  v n  )          = P   v k  <  m k  ≤  M k  ≤  u k  ,  v n  <  m  k , n   ≤  M  k , n   ≤  u n           − P   v k  <  m k  ≤  M k  ≤  u k   P   v n  <  m  k , n   ≤  M  k , n   ≤  u n          ≪   ∑  p = 1  d      ∑  i = 1  k      ∑  j = k + 1  n     r  i j    ( p )   exp  −     w ´  2   ( p )    1 +  r  i j    ( p )             +  ∑  1 ≤ p ≠ q ≤ d      ∑  i = 1  k     ∑  j = k + 1  n     r  i j    ( p , q )   exp  −     w ´  2   ( p )  +   w ´  2   ( q )    2 ( 1 +  r  i j    ( p , q )  )           ≪   ( log log n )   − ( 1 + ε )   ,     








where    w ´   ( p )  = m i n   |   v k    ( p )  | , |   v n    ( p )  | , |   u k    ( p )  | , |   u n    ( p )  |   , p = 1 , 2 , … , d .   □





Lemma 7.

Let    Υ 1  ,  Υ 2  …   be a sequence of bounded random variables. If


   V a r    ∑  k = 1  n    1 k   Υ k   ≪   ( log n )  2    ( log log n )   − ( 1 + ϵ )   ,   



(32)




for some   ε > 0  , then


    lim  n → ∞    1  log n     ∑  k = 1  n    1 k   (  Υ k  − E  Υ k  )  = 0    a . s .   



(33)









Proof. 

The proof can be found in Lemma 3.1 [18]. □





Proof Theorem 1 .

Let    χ k  = I  (  v k  <  m k  ≤  M k  ≤  u k  )   , then


     V a r    ∑  k = 1  n    1 k   χ k      =      ∑  k = 1  n    1  k 2   V a r  (  χ k  )  + 2  ∑  1 ≤ k < l ≤ n     c o v (  χ k  ,  χ l  )   k l         ≤      ∑  k = 1  n    1  k 2   + 2  ∑  1 ≤ k < l ≤ n     c o v (  χ k  ,  χ l  )   k l         ≜    A + B .     











Note that for   k < l  , the absolute value of the numerator of the second term B can be expressed as below,


     c o v (  χ k  ,  χ l  )    =    c o v  I  (  v k  <  m k  ≤  M k  ≤  u k  )  , I  (  v l  <  m l  ≤  M l  ≤  u l  )         ≤    | c o v ( I  (  v k  <  m k  ≤  M k  ≤  u k  )  , I  (  v l  <  m l  ≤  M l  ≤  u l  )          − I  (  v l  <  m l  ≤  M  k , l   ≤  u l  )  ) | + | c o v ( I  (  v k  <  m k  ≤  M k  ≤  u k  )  ,         I  (  v l  <  m l  ≤  M  k , l   ≤  u l  )  − I  (  v l  <  m  k , l   ≤  M  k , l   ≤  u l  )  ) |         +  c o v  I  (  v l  <  m l  ≤  M  k , l   ≤  u l  )  , I  (  v l  <  m  k , l   ≤  M  k , l   ≤  u l  )            ≜  B 1  +  B 2  +  B 3  .     











By Lemma 5, we get


     B 1     ≤ 2 E  I  (  v l  <  m l  ≤  M l  ≤  u l  )  − I  (  v l  <  m l  ≤  M  k , l   ≤  u l  )            ≤ 2 E  I  (  M l  ≤  u l  )  − I  (  M  k , l   ≤  u l  )            ≪  k l  +   ( log log n )   − ( 1 + ε )   ,     



(34)




and


     B 2     ≤ 2 E  I  (  v l  <  m l  ≤  M  k , l   ≤  u l  )  − I  (  v l  <  m  k , l   ≤  M  k , l   ≤  u l  )            ≤ 2 E  I  (  m l  >  v l  )  − I  (  m  k , l   >  v l  )            ≪  k l  +   ( log log n )   − ( 1 + ε )   .     



(35)







By Lemma 6, we obtain


      B 3  ≤   ( log log l )   − ( 1 + ε )   .     



(36)







Combining Equations (34)–(36), we can estimate B,


    B   ≪     ∑  1 ≤ k < l ≤ n    1  k l     k l  +   ( log log n )   − ( 1 + ε )          ≪     ∑  1 ≤ k < l ≤ n    1  l 2   +  ∑  1 ≤ k < l ≤ n    1  k l     ( log log n )   − ( 1 + ε )         ≪    log n +   ( log n )  2    ( log log n )   − ( 1 + ε )   .     











Lastly, we can draw the conclusion


  V a r    ∑  k = 1  n    1 k   χ k   ≪   ( log n )  2    ( log log n )   − ( 1 + ε )   .  











By Lemma 7, Theorem 1 is proved. □





Proof Theorem 2. 

If we use Equation (8) instead of the conditions (a) and (b) of Theorem 1, Lemma 2, Lemma 3, Lemma 5 and Lemma 6 still hold. Theorem 2 can be proved. □





Proof Theorem 3. 

Replace (a) and (b) of Theorem 1 with (a) and (b) of Theorem 3, then Equations (4) and (5) still hold. □





Proof Theorem 4. 

If we use Equation (11) instead of Equation (8), Theorem 4 can be completed. □






4. Conclusions


The almost sure central limit theorems for the maxima and minimum of general normal vector sequences under suitable conditions are put forward. We note that    lim  n → ∞    1  log n     ∑  k = 1  n    1 k    is greater than 1 and converges to 1 as   N → ∞  . The convergence rate is mainly decided by the   log n   and the rate is not so fast. The extreme value theory deals with extreme phenomena which are less likely to occur, but more harmful [1,2,3]. The maximum and minimum can be used to depict the extreme risk in the economy and natural disaster (such as floods, hurricane, stock market crash, megaseism and so on), and then their joint limiting distribution computes the probability of the controllable risk in an interval.
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