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Abstract

:

The main purpose of this investigation is to use quantum calculus approach and obtain the Bohr radius for the class of q-starlike (q-convex) functions of order  α . The Bohr radius is also determined for a generalized class of q-Janowski starlike and q-Janowski convex functions with negative coefficients.
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1. Introduction


Let   D : = { z : ∈ C : | z | < 1 }   be the open unit disc in  C . Suppose  A  denote the class of analytic functions in  D  normalized by   f  ( 0 )  = 0 =  f ′   ( 0 )  − 1  . Also, let  S  be the subclass of  A  consisting of univalent functions in  D .



Suppose   H ( D , Ω )   is the class of analytic functions mapping open unit disc  D  into a domain  Ω . Harald Bohr [1] in 1914 proved that if a function f of the form   f  ( z )  =  ∑  n = 0  ∞   a n   z n    belong to   H ( D , D )  , then    ∑  n = 0  ∞   |  a n   z n  |  ≤ 1   in the disc   | z | ≤ k ,   where   k ≥ 1 / 6  . As reported by Bohr in [1], Riesz, Schur and Wiener discovered that   | z | ≤ k   is actually true for   0 ≤ k ≤ 1 / 3   and that   1 / 3   is the best possible. The number   1 / 3   is commonly called the "Bohr radius" for the class of analytic self-maps f in   D ,   while the inequality    ∑  n = 0  ∞   |  a n   z n  |  ≤ 1   is known as the "Bohr inequality". Later on, extensions of Bohr inequality and their proofs were given in [2,3,4]. Note that Bohr Radius is somewhat whimsical, for physicists consider the Bohr Radius   a 0   of the hydrogen atom to be a fundamental constant, that is,   4 π ϵ  h 2  /  m e   e 2   , or about   0.529  A. The physicists Bohr Radius is named for Niels Bohr, a founder of the Quantum Theory and 1922 recipient of the Nobel Prize for physics.



The Bohr inequality has emerged as an active area of research after Dixon [5] used it to disprove a conjecture in Banach algebra. Using the Euclidean distance, denoted by d, the Bohr inequality    ∑  n = 0  ∞   |  a n   z n  |  ≤ 1   for a function f of the form   f  ( z )  =  ∑  n = 0  ∞   a n   z n    can be written as


       ∑  n = 0  ∞    |  a n   z n  |  ≤ 1    ⇔    ∑  n = 1  ∞    |   a n   z n   | ≤ 1 − |   a 0   |          ⇔  d    ∑  n = 0  ∞    |   a n   z n   | , |   a 0   |   =   ∑  n = 1  ∞    |   a n   z n   | ≤ 1 − |   a 0   | = 1 − | f  ( 0 )  |          ⇔  d    ∑  n = 0  ∞    |   a n   z n   | , |   a 0   |   ≤ d  ( f  ( 0 )  , ∂ D )  .     








where   ∂ D   is the boundary of the disc  D . Thus, the concept of the Bohr inequality for a function   f  ( z )  =  ∑  n = 0  ∞   a n   z n   , defined in  D , can be generalized by


  d   ∑  n = 0  ∞   |   a n   z n   | , | f  ( 0 )  |   =  ∑  n = 1  ∞   |  a n   z n  |  ≤ d  ( f  ( 0 )  , ∂ f  ( D )  )  .  



(1)




Accordingly, the Bohr radius for a class  M  consisting of analytic functions f of the form   f  ( z )  =  ∑  n = 0  ∞   a n   z n    in the disc  D  is the largest    r *  > 0   such that every function   f ∈ M   satisfies the inequality (1) for all    | z |  = r ≤  r *   . In this case, the class  M  is said to satisfy a Bohr phenomenon.



Quantum calculus (or q-calculus) is an approach or a methodology that is centered on the idea of obtaining q-analogues without the use of limits. This approach has a great interest due to its applications in various branches of mathematics and physics, such as, the areas of ordinary fractional calculus, optimal control problems, q-difference, q-integral equations and q-transform analysis. Jackson [6] intoduced the q-derivative (or q-difference, or Jackson derivative) denoted by   D q  ,   q ∈ ( 0 , 1 )  , which is defined in a given subset of  C  by


   (  D q  f )   ( z )  =        f ( z ) − f ( q z )   ( 1 − q ) z   ,      if  z ≠ 0        f ′   ( 0 )  ,      if  z = 0       



(2)




provided    f ′   ( 0 )    exists. If f is a function defined in a subset of the complex plane  C , then (2) yields


   lim  q →  1 −     (  D q  f )   ( z )  =  lim  q →  1 −      f ( z ) − f ( q z )   ( 1 − q ) z   =  f ′   ( z )  .  











It is easy to see that if   f  ( z )  = z +  ∑  n = 2  ∞   a n   z n   , then by using (2) we have


   (  D q  f )   ( z )  = 1 +  ∑  n = 2  ∞    [ n ]  q   a n   z  n − 1   ,  










   D q   ( z  D q  f  ( z )  )  = 1 +  ∑  n = 2  ∞    [ n ]  q 2   a n   z  n − 1   ,  










   D q 2  f  ( z )  =  D q   (  D q  f  ( z )  )  =  ∑  n = 2  ∞    [ n ]  q 2   a n   z  n − 2   ,  








where    [ n ]  q   is given by


    [ n ]  q  =   1 −  q n    1 − q   , q ∈  ( 0 , 1 )  .  











It is a routine to check that


   D q   ( z  D q  f  ( z )  )  =  D q  f  ( z )  + z  D q 2  f  ( z )  .  











In 1869, Thomae introduced the particular q-integral [7] which is defined as


   ∫  0  1  f  ( t )   d q  t =  ( 1 − q )   ∑  n = 0  ∞   q n  f  (  q n  )  ,  








provided the q-series converges. Later on, Jackson [8] defined the general q-integral as follows:


   ∫  a  b  f  ( t )   d q  t =  ∫  0  b  f  ( t )   d q  t −  ∫  0  a  f  ( t )   d q  t ,  








where


   ∫  0  a  f  ( t )   d q  t = a  ( 1 − q )   ∑  n = 0  ∞   q n  f  ( a  q n  )  ,  








provided the q-series converges. Also note that


   D q   ∫  0  x  f  ( t )   d q  t = f  ( x )    and  ∫  0  x   D q  f  ( t )   d q  t = f  ( x )  − f  ( 0 )  ,  








where the second equality holds if f is continuous at   x = 0  .



The q-calculus plays an important role in the investigation of several subclasses of  A . A firm footing of the q-calculus in the context of geometric function theory and its usages involving the basic (or q-) hypergeometric functions in geometric function theory was actually made in a book chapter by Srivastava (see, for details [9]; see also [10]). In 1990, Ismail et al. [11] introduced a connection between starlike (convex) functions and the q-calculus by introducing a q-analog of starlike (convex) functions. They generalized a well-known class of starlike functions, called the class of q-starlike functions denoted by   S q *  , consisting of functions   f ∈ A   satisfying the inequality


     z  (  D q  f )   ( z )    f ( z )   −  1  1 − q    ≤  1  1 − q   , z ∈ D .  











Baricz and Swaminathan [12] introduced a q-analog of convex functions, denoted by   C q  , satisfying the relation


  f ∈  C q   if  and  only  if   z  (  D q  f )  ∈  S q *  .  











Recently Srivastava et al. [13] (see also [14]) successfully combined the concept of Janowski [15] and the above mentioned q-calculus and introduced the class    S q *   [ A , B ]    and    C q   [ A , B ]   ,   − 1 ≤ B < A ≤ 1  ,   q ∈ ( 0 , 1 )  , given by


   S q *   [ A , B ]  : =  f ∈ A :   z  f ′   ( z )    f ( z )   ≺   ( A + 1 ) z + 2 + ( A − 1 ) q z   ( B + 1 ) z + 2 + ( B − 1 ) q z    ,  








and


   C q   [ A , B ]  : =  f ∈ A : 1 +   z  f  ″    ( z )     f ′   ( z )    ≺   ( A + 1 ) z + 2 + ( A − 1 ) q z   ( B + 1 ) z + 2 + ( B − 1 ) q z     








respectively, where ≺ denotes subordination. As   q →  1 −   ,    S q *   [ A , B ]    and    C q   [ A , B ]    yield respectively the classes    S *   [ A , B ]    and   C [ A , B ]   defined by Janowski [15]. For various choices of A and B, these classes reduce to well-known subclasses of q-starlike and q-convex functions. For instance, with   0 ≤ α < 1  ,    S q *   ( α )  : =  S q *   [ 1 − 2 α , − 1 ]    is the class of q-starlike functions of order  α , introduced by Agrawal and Sahoo [16]. Motivated by the authors in [16], Agrawal [17] defined a q-analog of convex functions of order  α ,   0 ≤ α < 1  ,    C q   ( α )  : =  C q   [ 1 − 2 α , − 1 ]   , satisfying


  f ∈  C q   ( α )   if  and  only  if   z  (  D q  f )  ∈  S q *   ( α )  .  



(3)




Note that    S q *   [ 1 , − 1 ]  ≡  S q *    and    C q   [ 1 , − 1 ]  ≡  C q   .



In recent years, there is a great development of geometric function theory because of using quantum calculus approach. In particular, Srivastava et al. [18] found distortion and radius of univalence and starlikenss for several subclasses of q-starlike functions with negative coefficients. They [19] also determined sufficient conditions and containment results for the different types of k-uniformly q-starlike functions. Naeem et al. [20] investigated subfamilies of q-convex functions and q-close to convex functions with respect to the Janowski functions connected with q-conic domain which explored some important geometric properties such as coefficient estimates, sufficiency criteria and convolution properties of these classes. For a survey on the use of quantum calculus approach in mathematical sciences and its role in geometric function theory, one may refer to [21]. In addition, one may refer to a survey-cum-expository article written by Srivastava [22] where he explored the mathematical application of q-calculus, fractional q- calculus and fractional q-differential operators in geometric function theory.



In this paper, we investigate Bohr radius problems for the classes    S q *   ( α )    and    C q   ( α )   , respectively, in Section 2 and Section 3. In Section 4, we define and investigate the Bohr radius problem for a generalized class,    TP q   ( λ , A , B )   , of functions with negative coefficients, where   q ∈ ( 0 , 1 )  ,   λ ∈ [ 0 , 1 ]   and   − 1 ≤ B < A ≤ 1  . In particular, we also define and obtain sharp Bohr radius for the class of the q-Janowski functions with negative coefficients in Section 4.




2. The Bohr Radius for the Class    S q *   ( α )   


To find the Bohr radius for the class    S q *   ( α )   , we first need the following four lemmas.



Lemma 1

([23] (Theorem 2.5, p. 1511)). For   q ∈ ( 0 , 1 )  , suppose   a , b , c   are non-negative real numbers satisfying   0 ≤ 1 − a q ≤ 1 − c q   and   0 < 1 − b ≤ 1 − c  . Then there exists a non-decreasing function   μ : [ 0 , 1 ] → [ 0 , 1 ]   with   μ ( 1 ) − μ ( 0 ) = 1   such that


    w ϕ ( q , q ,  q 2  , q , w )   ϕ (  q 0  , q ,  q 2  , q , w )   =  ∫  0  1   w  1 − t w   d μ  ( t )  ,  








where   ϕ ( a , b ; c ; q , z )   is a hypergeometric function (see [24,25]) given by


  ϕ  ( a , b ; c ; q , z )  =  ∑  n = 0  ∞      ( a ; q )  n    ( b ; q )  n      ( c ; q )  n    ( q ; q )  n     z n   








and     ( a ; q )  0  = 1 ,   ( a ; q )  n  =  ( 1 − a )   ( 1 − a q )   ( 1 − a  q 2  )  ⋯  ( 1 − a  q  n − 1   )   , which is analytic in the cut-plane   C \ [ 1 , ∞ ]   and maps both the unit disc and the half-plane   { z ∈ C : Re z < 1 }   univalently onto domains convex in the direction of the imaginary axis.





Lemma 2

([16] (Theorem 1.1, p. 17)). If   f ∈ A  , then   f ∈  S q *   ( α )    if and only if there exists a probability measure μ supported on the circle such that


    z  f ′   ( z )    f ( z )   = 1 +  ∫  | σ | = 1   σ z  F  q , α  ′   ( σ z )  d μ  ( σ )  ,  








where


   F  q , α    ( z )  =  ∑  n = 1  ∞    − 2   1 −  q n    ln   q  1 − α ( 1 − q )     z n  ,  z ∈ D .  













Lemma 3

(Distortion theorem). Let   f  ( z )  = z +  ∑  n = 2  ∞   a n   z n  = z h  ( z )  ∈  S q *   ( α )   . Then


  exp  (  F  q , α    ( − r )  )  ≤  | h  ( z )  |  ≤ exp  (  F  q , α    ( r )  )  .  













Proof. 

Let   f ∈  S q *   ( α )   . By Lemma 2, there exists a probability measure  μ  supported on the unit circle such that


    z  f ′   ( z )    f ( z )   = 1 +  ∫  | σ | = 1   σ z  F  q , α  ′   ( σ z )  d μ  ( σ )  ,  








where


   F  q , α    ( z )  =  ∑  n = 1  ∞    − 2 ln   q  1 − α ( 1 − q )      1 −  q n     z n  ,  z ∈ D .  











Integrating and then taking exponential on both sides, we have


  f  ( z )  = z exp   ∫  | σ | = 1    F  q , α    ( σ z )  d μ  ( σ )   .  











Since   f  ( z )  = z h  ( z )  ∈  S q *   ( α )   , it follows that


   | h  ( z )  |  = exp  Re  ∫  | σ | = 1    F  q , α    ( σ z )  d μ  ( σ )   .  











Thus


     ln | h ( z ) |     = Re  ∫  | σ | = 1    F  q , α    ( σ z )  d μ  ( σ )           = − 2 ln   q  1 − α ( 1 − q )    Re  ∫  | σ | = 1     ∑  n = 1  ∞      ( σ z )  n   1 −  q n    d μ  ( σ )           =   − 2   1 − q   ln   q  1 − α ( 1 − q )    Re  ∫  | σ | = 1    ( σ z ϕ  ( q , q ,  q 2  , q , σ z )  )  d μ  ( σ )           =   − 2   1 − q   ln   q  1 − α ( 1 − q )    Re  ∫ 0  2 π    (  (  e  i θ   z )  ϕ  ( q , q ,  q 2  , q ,  e  i θ   z )  )  d μ  ( θ )           =   − 2   1 − q   ln   q  1 − α ( 1 − q )    Re  ∫ 0  2 π    ( w ϕ  ( q , q ,  q 2  , q , w )  )  d μ  ( θ )  ,  w =  e  i θ   z ∈ D          =   − 2   1 − q   ln   q  1 − α ( 1 − q )    Re  ∫ 0  2 π     w ϕ ( q , q ,  q 2  , q , w )   ϕ (  q 0  , q ,  q 2  , q , w )   d μ  ( θ )  ,     



(4)




where   ϕ ( a , b ; c ; q , z )   is the hypergeometric function defined in Lemma 1. By Lemma 1, we have


    w ϕ ( q , q ,  q 2  , q , w )   ϕ (  q 0  , q ,  q 2  , q , w )   =  ∫  0  1   w  1 − t w   d μ  ( t )  .  



(5)







Let


     g ( r  e  i ψ   )     = Re  w  1 − t w   , w = r  e  i ψ            = Re   r ( cos ψ + i sin ψ )   1 − t r ( cos ψ + i sin ψ )            =   r cos ψ  ( 1 − t r cos ψ )  − t  r 2   sin 2  ψ   1 +  r 2   t 2  − 2 t r cos ψ   .     











A routine calculation shows that


   min ψ  g  ( r  e  i ψ   )  = g  ( − r )   and   max ψ  g  ( r  e  i ψ   )  = g  ( r )  .  











Thus


   min  | w | ≤ r   Re  w  1 − t w   =   − r   1 + r t    and   max  | w | ≤ r   Re  w  1 − t w   =  r  1 − r t   .  



(6)







By (4)–(6), it follows that


     ln | h ( z ) |     ≥   − 2   1 − q   ln   q  1 − α ( 1 − q )     ∫  | σ | = 1    ( − r ϕ  ( q , q ,  q 2  , q , − r )  )  d μ  ( σ )           ≥   − 2   1 − q   ln   q  1 − α ( 1 − q )     ( − r ϕ  ( q , q ,  q 2  , q , − r )  )           =  F  q , α    ( − r )      



(7)




and


     ln | h ( z ) |     ≤  ∫  | σ | = 1    F  q , α    ( r )  d μ  ( σ )           =  F  q , α    ( r )  .     



(8)







By (7) and (8), we have   exp  (  F  q , α    ( − r )  )  ≤  | h  ( z )  |  ≤ exp  (  F  q , α    ( r )  )  .   □





Remark 1.

As   q →  1 −   , Lemma 3 yields the corresponding distortion theorem [26] (Theorem 8, p. 117) for the class    S *   ( α )   .





Lemma 4

([16] (Theorem 1.3, p. 8)). Let


   G  q , α    ( z )  = z exp  (  F  q , α    ( z )  )  = z +  ∑  n = 2  ∞   c n   z n  .  











Then    G  q , α    ( z )  ∈  S q *   ( α )   . However, if   f  ( z )  = z +  ∑  n = 2  ∞   a n   z n  ∈  S q *   ( α )   , then    |   a n   | ≤   c n    with equality holding for all n if and only if f is a rotation of   G  q , α   .





Theorem 1.

Let   ϕ  ( z )  =  ∑  n = 1  ∞   ϕ n   z n    and   f  ( z )  = z +  ∑  n = 2  ∞   a n   z n  = z exp  ( ϕ  ( z )  )  ∈  S q *   ( α )   . Then


    | z |  +  ∑  n = 2  ∞   |   a n    | | z |  n  ≤ d  ( 0 , ∂ f  ( D )  )    








for    | z |  ≤  r *   , where    r *  ∈  ( 0 , 1 )    is the unique root of the equation


   r exp  (  F  q , α    ( r )  )  = exp  (  F  q , α    ( − 1 )  )  .   











The radius is sharp.





Proof. 

Let   f ∈  S q *   ( α )   . Proceeding as in proof of [16] (Theorem 1.3, p. 8), it is easy to see that coefficients bound for the function   ϕ  ( z )  =  ∑  n = 1  ∞   ϕ n   z n    are given by


   |   ϕ n   | ≤    − 2 ln   q  1 − α ( 1 − q )      1 −  q n    .  



(9)







For    | z |  = r ≤  r *   , using Lemma 3 and inequality (9), it follows that


     d  ( 0 , ∂ f  ( D )  )  =   lim   | z |  →  1 −     inf  | f  ( z )  − f  ( 0 )  |      =   lim   | z |  →  1 −     inf   | f ( z ) |   | z |   ≥ exp  F  q , α    ( − 1 )           ≥ r exp  F  q , α    ( r )           = r exp    ∑  n = 1  ∞     − 2 ln   q  1 − α ( 1 − q )      1 −  q n     r n            ≥  | z |  +   ∑  n = 2  ∞    |   a n    | | z |  n      








if and only if


  r exp  (  F  q , α    ( r )  )  ≤ exp  F  q , α    ( − 1 )  .  











In order to prove that the radius is sharp, let


   G  q , α    ( z )  : = z exp  (  F  q , α    ( z )  )  ,  








where


   F  q , α    ( z )  =  ∑  n = 1  ∞    − 2   1 −  q n    ln   q  1 − α ( 1 − q )     z n  ,  z ∈ D .  











By Lemma 4, it follows that    G  q , α   ∈  S q *   ( α )   . For    | z |  =  r *   , we obtain


      | z |  +   ∑  n = 2  ∞    |   a n    | | z |  n      =  r *  exp    ∑  n = 1  ∞     − 2   1 −  q n    ln   q  1 − α ( 1 − q )      (  r *  )  n            =  r *  exp  F  q , α    (  r *  )           = exp  F  q , α    ( − 1 )           =   lim   | z |  →  1 −     inf    |   G  q , α     ( z )  |    | z |            =   lim   | z |  →  1 −     inf  |  G  q , α    ( z )  − f  ( 0 )  |           = d ( 0 ,  G  q , α    ( D )  ) .     








 □





Remark 2.

For   α = 0  , Theorem 1 yields the corresponding results found in [27] for the class   S q *  .





Remark 3.

Theorem 1 with letting   q →  1 −    leads to the Bohr radius for the class of starlike functions of order α,   0 ≤ α < 1  . Bhowmik and Das [28] (Theorem 3, p. 1093) found the Bohr radius for    S *   ( α )    with   α ∈ [ 0 , 1 / 2 ]  .






3. The Bohr Radius for the Class    C q   ( α )   


In the present section, we obtain the sharp Bohr radius for the class of q-convex functions of order  α ,   0 ≤ α < 1  .



Lemma 5

([17] (Theorem 2.9, p. 5)). Let


   E q   ( z )  : =  ∫  0  z   exp  (  F  q , α    ( t )  )   d q  t  = z +  ∑  n = 2  ∞     1 − q   1 −  q n     c n   z n   ,  








where   c n   is the nth coefficient of the function   z exp (  F  q , α    ( z )  )  . Then    E q  ∈  C q   ( α )    for   0 ≤ α < 1  . Moreover, if   f  ( z )  = z +  ∑  n = 2  ∞   a n   z n  ∈  C q   ( α )   , then    |   a n   | ≤   (  ( 1 − q )  /  ( 1 −  q n  )  )   c n   , with equality holding for all n if and only if f is a rotation of   E q  .





Theorem 2.

The Bohr radius for the class    C q   ( α )    is   r *  , where    r *  ∈  ( 0 , 1 ]    is the unique root of the equation


    ∫  0  r   exp  (  F  q , α    ( t )  )   d q  t  =  ∫  0  1   exp  (  F  q , α    ( − t )  )   d q  t  .   











The radius is sharp.





Proof. 

Let   f ∈  C q   ( α )   . Then, by (3),   z  (  D q  f )   ( z )  ∈  S q *   ( α )  .   It follows from Lemma 3 that


  exp  (  F  q , α    ( − r )  )  ≤  |  (  D q  f )   ( z )  |  ≤ exp  (  F  q , α    ( r )  )  .  











Taking q-integral of all the inequalities, we have


   ∫  0  r   exp  (  F  q , α    ( − t )  )   d q  t  ≤  | f  ( z )  |  ≤  ∫  0  r   exp  (  F  q , α    ( t )  )   d q  t  .  



(10)







Since   f  ( z )  = z +  ∑  n = 2  ∞   a n   z n  ∈  C q   ( α )   , Lemma 5 yields the coefficients bound for the function f given by


   |   a n   | ≤    1 − q   1 −  q n     c n  ,  



(11)




where inequality holds for all n if and only if f is a rotation of


   E q   ( z )  =  ∫  0  z   exp  (  F  q , α    ( t )  )   d q  t  = z +  ∑  n = 2  ∞     1 − q   1 −  q n      c n   z n   








and where   c n   is the   n t h   coefficient of   z exp (  F  q , α    ( z )  )  .



By (10) and (11), we have


     r +   ∑  n = 2  ∞    |  a n  |   r n      ≤ r +   ∑  n = 2  ∞     1 − q   1 −  q n     c n   r n           =  ∫  0  r   exp  (  F  q , α    ( t )  )   d q  t  ≤  ∫  0  1   exp  (  F  q , α    ( − t )  )   d q  t  ≤ d  ( 0 , ∂ f  ( D )  )      








if and only if


   ∫  0  r   exp  (  F  q , α    ( t )  )   d q  t  ≤  ∫  0  1   exp  (  F  q , α    ( − t )  )   d q  t  .  











Now, consider the function


   E q   ( z )  : =  ∫  0  z   exp  (  F  q , α    ( t )  )   d q  t  = z +  ∑  n = 2  ∞     1 − q   1 −  q n      c n   z n  .  











It follows from Lemma 5 that the function    E q   ( z )  ∈  C q   ( α )   . At    | z |  =  r *   , we have


      r *  +   ∑  n = 2  ∞    |  a n  |    (  r *  )  n      =  r *  +   ∑  n = 2  ∞     1 − q   1 −  q n     c n    (  r *  )  n           =  ∫  0   r *    exp  (  F  q , α    ( t )  )   d q  t  =  ∫  0  1   exp  (  F  q , α    ( − t )  )   d q  t  = d  ( 0 , ∂  E q   ( D )  )      








which shows that the Bohr radius   r *   is sharp for the class    C q   ( α )   . □





Putting   α = 0   in Theorem 2, we obtain the Bohr radius for the class   C q   of q-convex functions.



Corollary 1

([27] (Theorem 2, p. 111)). The Bohr radius for the class   C q   is   r *  , where    r *  ∈  ( 0 , 1 ]    is the unique root of


   ∫  0  r   exp  (  F  q , 0    ( t )  )   d q  t  =  ∫  0  1   exp  (  F  q , 0    ( − t )  )   d q  t  .  











The radius is sharp.





If   q →  1 −   , then Corollary 1 yields the Bohr radius for the class  C  of convex functions, that is,    r *  = 1 / 3  . The same Bohr radius for general convex functions had been earlier obtained by Aizenberg in [29] (Thoerem 2.1).




4. The Bohr Radius Problems for the Class    TP q   ( λ , A , B )   


In 1975, Silverman [30] investigated two new subclasses of the family  T , where


  T = { f ∈ S : f  ( z )  = z −  ∑  n = 2  ∞  |  a n  |  z n  , z ∈ D } .  











Recently, Altıntaş and Mustafa [31] introduced a generalized class,    TP q   ( λ , A , B )  , q ∈  ( 0 , 1 )  , λ ∈  [ 0 , 1 ]  , − 1 ≤ B < A ≤ 1  , given by


   TP q   ( λ , A , B )  =  f ∈ T :   z  D q  f  ( z )  + λ  z 2   D q 2  f  ( z )    λ z  D q  f  ( z )  +  ( 1 − λ )  f  ( z )    ≺   1 + A z   1 + B z   , z ∈ D  .  











For   λ = 0  , this class reduces to the class    TS q *   [ A , B ]    of q-Janowski starlike functions with negative coefficients defined by


   TS q *   [ A , B ]  =  f ∈ T :   z  D q  f  ( z )    f ( z )   ≺   1 + A z   1 + B z   , z ∈ D  .  











On the other hand, the case   λ = 1   yields the class    TC q   [ A , B ]    of q-Janowski convex functions, defined by


   TC q   [ A , B ]  =  f ∈ T : 1 +   z  D q 2  f  ( z )     D q  f  ( z )    ≺   1 + A z   1 + B z   , z ∈ D  .  











As   q →  1 −   ,    TS q *   [ A , B ]    and    TC q   [ A , B ]    reduce respectively to    TS *   [ A , B ]    and   TC [ A , B ]   studied initially in [32]. Note that the classes    TS *   ( α )  ≡  lim  q →  1 −     TS q *   [ 1 − 2 α , − 1 ]    and   TC  ( α )  ≡  lim  q →  1 −     TC q   [ 1 − 2 α , − 1 ]    were defined and studied by Silverman [30] in 1975.



In the present section, we will first investigate the sharp Bohr radius for the class    TP q   ( λ , A , B )   ,   q ∈ ( 0 , 1 ) , λ ∈ [ 0 , 1 ]   which in particular gives the Bohr radius for the classes    TS q *   [ A , B ]    and    TC q   [ A , B ]   . However, in order to obtain Bohr radius, we first need some results given here in two lemmas.



Note that there is a typing error in the statement of [31] (Theorem 3.1, p. 993) (replace  α  by  β ). The correct statement in Lemma 6 is as follows:



Lemma 6

([31] (Theorem 3.1, p. 993)). If   f ∈  TP q   ( λ , A , B )   ,   q ∈ ( 0 , 1 )  ,   λ ∈ [ 0 , 1 ]  , then


  r −   1 − β    (   [ 2 ]  q  − β )   [ 1 +  (   [ 2 ]  q  − 1 )  λ ]     r 2  ≤  | f  ( z )  |  ≤ r +   1 − β    (   [ 2 ]  q  − β )   [ 1 +  (   [ 2 ]  q  − 1 )  λ ]     r 2   








where   β = ( 1 − A ) / ( 1 − B ) , − 1 ≤ B < A ≤ 1  , with equality for the function


  f  ( z )  = z −   1 − β    (   [ 2 ]  q  − β )   [ 1 +  (   [ 2 ]  q  − 1 )  λ ]     z 2  ,  | z |  = r .  













Lemma 7

([31] (Theorem 2.8, p. 991)). If   f ∈  TP q   ( λ , A , B )   ,   q ∈ ( 0 , 1 )  ,   λ ∈ [ 0 , 1 ]  , then the following conditions are satisfied:


   ∑  n = 2  ∞   |  a n  |  ≤   1 − β    (   [ n ]  q  − β )   ( 1 +  (   [ n ]  q  − 1 )  λ )     










   ∑  n = 2  ∞    [ n ]  q   |  a n  |  ≤    ( 1 − β )    [ n ]  q     (   [ n ]  q  − β )   ( 1 +  (   [ n ]  q  − 1 )  λ )    , n = 2 , 3 , ⋯ ,  








where   β = ( 1 − A ) / ( 1 − B ) , − 1 ≤ B < A ≤ 1  . The results obtained here are sharp.





Theorem 3.

If   f  ( z )  = z −  ∑  n = 2  ∞   |  a n  |   z n  ∈  TP q   ( λ , A , B )    where   q ∈ ( 0 , 1 )  ,   λ ∈ [ 0 , 1 ]  ,   β = ( 1 − A ) / ( 1 − B )   and   c = q ( λ + 1 + q λ − β λ )  , then


    | z |  +  ∑  n = 2  ∞   |  a n   z n  |  ≤ d  ( 0 , ∂ f  ( D )  )    








for    | z | <   r *   , where


    r *  =   2 c   1 − β + c +   4  ( 1 − β )  c +   ( 1 − β + c )  2      .   











The radius   r *   is the sharp Bohr radius for class    TP q   ( λ , A , B )   .





Proof. 

It follows from Lemma 6 that the distance between the origin and the boundary of   f ( D )   satisfies the inequality


  d  ( 0 , ∂ f  ( D )  )  ≥ 1 −   1 − β   ( 1 + q − β ) ( 1 + q λ )   .  



(12)







The given   r *   is the root of the equation


   r *  +    ( 1 − β )    (  r *  )  2    ( 1 + q − β ) ( 1 + q λ )   = 1 −   1 − β   ( 1 + q − β ) ( 1 + q λ )   .  











For   0 < r ≤  r *   , we have


  r +    ( 1 − β )   r 2    ( 1 + q − β ) ( 1 + q λ )   ≤  r *  +    ( 1 − β )    (  r *  )  2    ( 1 + q − β ) ( 1 + q λ )   = 1 −   1 − β   ( 1 + q − β ) ( 1 + q λ )   .  











Using Lemma 7, it is easy to show that


   ∑  n = 2  ∞   |  a n  |  ≤   1 − β   ( 1 + q − β ) ( 1 + q λ )   .  











The above inequality together with inequality (12) yield


   | z |  +  ∑  n = 2  ∞   |  a n   z n  |  ≤ r +   1 − β   ( 1 + q − β ) ( 1 + q λ )    r 2  ≤ 1 −   1 − β   ( 1 + q − β ) ( 1 + q λ )   ≤ d  ( 0 , ∂ f  ( D )  )  .  











For sharpness, consider the function   f : D → C   defined by


  f  ( z )  = z −   1 − β   ( 1 + q − β ) ( 1 + q λ )    z 2  .  











This function clearly belongs to    TP q   ( λ , A , B )   . For    | z |  =  r *   , we find


   | z |  +  ∑  n = 2  ∞   |  a n   z n  |  =  r *  +   1 − β   ( 1 + q − β ) ( 1 + q λ )     (  r *  )  2  = 1 −   1 − β   ( 1 + q − β ) ( 1 + q λ )   = d  ( 0 , ∂ f  ( D )  )  .  








 □





Putting   λ = 0   in Theorem 3, we get the sharp Bohr radius for the class    TS q *   [ A , B ]   .



Theorem 4.

If   f  ( z )  = z −  ∑  n = 2  ∞   |  a n  |   z n  ∈  TS q *   [ A , B ]   ,   β = ( 1 − A ) / ( 1 − B )   and   − 1 ≤ B < A ≤ 1  , then


    | z |  +  ∑  n = 2  ∞   |  a n   z n  |  ≤ d  ( 0 , ∂ f  ( D )  )    








for    | z | <   r *   , where


    r *  =   2 q   1 + q − β +   1 + 6 q +  q 2  − 2 β − 6 q β +  β 2      .   











The radius   r *   is sharp.





Letting   A = 1 − 2 α   and   B = − 1   in Theorem 4, we obtain the sharp Bohr radius for the class of q-starlike functions of order  α ,   0 ≤ α < 1  , with negative coefficients.



Corollary 2.

Let   f  ( z )  = z −  ∑  n = 2  ∞   |  a n  |   z n  ∈  TS q *   ( α )   . Then


    | z |  +  ∑  n = 2  ∞   |  a n   z n  |  ≤ d  ( 0 , ∂ f  ( D )  )    








for    | z | <   r *   , where


    r *  =   2 q   1 + q − α +    q 2  + 6 q  ( 1 − α )  +   ( 1 − α )  2      .   













When   q →  1 −    in Corollary 2, we obtain the following sharp Bohr radius for the class of starlike functions of order  α ,   0 ≤ α < 1  , with negative coefficients obtained by Ali et al. [33].



Corollary 3

([33] (Theorem 2.3)). If   f  ( z )  = z −  ∑  n = 2  ∞   |  a n  |   z n  ∈  TS *   ( α )   , then


   | z |  +  ∑  n = 2  ∞   |  a n   z n  |  ≤ d  ( 0 , ∂ f  ( D )  )   








for    | z | <   r *   , where


   r *  =  2  2 − α +   8 − 8 α +  α 2      .  











The radius   r *   is the Bohr radius for    TS *   ( α )   .





When   A = 1   and   B = − 1  , Theorem 4 gives the following sharp Bohr radius for the class of q-starlike functions with negative coefficients.



Corollary 4.

If   f  ( z )  = z −  ∑  n = 2  ∞   |  a n  |   z n  ∈  TS q *   , then


    | z |  +  ∑  n = 2  ∞   |  a n   z n  |  ≤ d  ( 0 , ∂ f  ( D )  )    








for    | z | <   r *   , where


    r *  =   2 q   1 + q +   1 + 6 q +  q 2      .   













When   A = 1  ,   B = − 1   and   q →  1 −   , Theorem 4 gives the following sharp Bohr radius for the class of starlike functions with negative coefficients obtained by Ali et al. [33].



Corollary 5

([33]). The sharp Bohr radius for the class   TS *   is    2  − 1 ≃ 0.414214  .





When   λ = 1  , Theorem 3 gives the following sharp Bohr radius for the class of    TC q   [ A , B ]   .



Theorem 5.

If   f  ( z )  = z −  ∑  n = 2  ∞   |  a n  |   z n  ∈  TC q   [ A , B ]   ,   β = ( 1 − A ) / ( 1 − B )   and   − 1 ≤ B < A ≤ 1  , then


    | z |  +  ∑  n = 2  ∞   |  a n   z n  |  ≤ d  ( 0 , ∂ f  ( D )  )    








for    | z | <   r *   , where


    r *  =   2 q ( 2 + q − β )   1 + 2 q +  q 2  − β − q β +   4  ( 1 − β )   2 q +  q 2  − q β  +   q β − 1 − 2 q −  q 2  + β  2      .   











The result is sharp for the function


   f  ( z )  = z −   1 − β   ( 1 + q − β ) ( 1 + q )    z 2  .   













When   A = 1 − 2 α   and   B = − 1  , Theorem 5 gives the sharp Bohr radius for the class of q-convex functions with negative coefficients.



Corollary 6.

The sharp Bohr radius for the class    TC q   ( α )    is


     2 q ( 2 + q − α )   1 + 2 q +  q 2  − α − q α +     ( 1 + q )  2    ( 1 + q − α )  2  + 4 q  ( 2 + q − α )   ( 1 − α )      .   













Letting   q →  1 −    in Corollary 6, we get the following sharp Bohr radius for the class of convex functions of order  α ,   0 ≤ α < 1  , with negative coefficients obtained by Ali et al. [33].



Corollary 7

([33] (Theorem 2.4)). If   f  ( z )  = z −  ∑  n = 2  ∞   |  a n  |   z n  ∈ TC  ( α )   , then


   | z |  +  ∑  n = 2  ∞   |  a n   z n  |  ≤ d  ( 0 , ∂ f  ( D )  )   








for    | z | <   r *   , where


    3 − α   2 − α +   7 − 8 α + 2  α 2      .  











The radius   r *   is the Bohr radius for   TC ( α )  .





For   A = 1   and   B = − 1  , Theorem 5 yields the sharp Bohr radius for the class of q-convex functions with negative coefficients.



Corollary 8.

The sharp Bohr radius for the class   TC q   is


     2 q ( 2 + q )   1 + 2 q +  q 2  +   1 + 12 q + 10  q 2  + 4  q 3  +  q 4      .   













Letting   q →  1 −   ,   A = 1   and   B = − 1  , Theorem 5 gives the sharp Bohr radius for the class of convex functions with negative coefficients by Ali et al. [33].



Corollary 9

([33]). The sharp Bohr radius for the class  TC  is    7  − 2 ≃ 0.645751  .
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