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Abstract: This paper provides results on the sign of the Green function (and its partial derivatives) of
an n-th order boundary value problem subject to a wide set of homogeneous two-point boundary
conditions. The dependence of the absolute value of the Green function and some of its partial
derivatives with respect to the extremes where the boundary conditions are set is also assessed.
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1. Introduction

Let J be a compact interval in R and let us consider the real disfocal differential operator L:
Cn(J)→ C(J) defined by

Ly = y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a0(x)y(x), x ∈ J, (1)

where aj(x) ∈ C(J), 0 ≤ j ≤ n − 1. Following Eloe and Ridenhour [1], let Ωl be the set whose
members are collections of l different ordered integer indices i such that 0 ≤ i ≤ n− 1, let k ∈ N be
such that 1 ≤ k ≤ n− 1, let α ∈ Ωk be the set {α1, . . . , αk} and β ∈ Ωn−k be the set {β1, . . . , βn−k},
both associated to the homogeneous boundary conditions

y(αi)(a) = 0, i = 1, 2, . . . , k, αi ∈ α, (2)

y(βi)(b) = 0, i = 1, 2, . . . , n− k, βi ∈ β, (3)

where [a, b] ⊂ J. Throughout this paper we will impose the condition that, for any integer m such
that 1 ≤ m ≤ n, at least m terms of the sequence α1, . . . , αk, β1, . . . , βn−k are less than m. Due to
their resemblance with the conditions defined by Butler and Erbe in [2], we will call them admissible
boundary conditions (note that (2) and (3) are not exactly the same boundary conditions defined by
Butler and Erbe since the latter applied to the so-called quasiderivatives of y(x) and not to derivatives).
In particular, if for every integer m such that 1 ≤ m ≤ p + 1, exactly m terms of the sequence α1, . . . , αk,
β1, . . . , βn−k are less than m, we will say that the boundary conditions are p-alternate. In the case
p = n− 1 we will call the boundary conditions strongly admissible. The admissible conditions cover
well known cases like conjugate boundary conditions (α1 = 0, α2 = 1, . . . , αk = k− 1 and β1 = 0, β2 =

1, . . . , βn−k = n− k− 1), focal boundary conditions (right focal with α1 = 0, α2 = 1, . . . , αk = k− 1 and
β1 = k, β2 = k + 1, . . . , βn−k = n− 1 or left focal with α1 = n− k, α2 = n− k + 1, . . . , αk = n− 1 and
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β1 = 0, β2 = 1, . . . , βn−k = n− k− 1) and many other. The focal boundary conditions are also strongly
admissible (or (n− 1)-alternate).

The purpose of this paper will be to provide results on the sign of G(x, t), the Green function
associated to the problem

Ly = 0, x ∈ (a, b),

y(αi)(a) = 0, αi ∈ α; y(βi)(b) = 0, βi ∈ β,
(4)

as well as some of its partial derivatives with regards to x, both in the interval (a, b) and at the extremes
a and b. We will also analyze the dependence of the absolute value of G(x, t) and its derivatives with
respect to the extremes a and b. In this sense, this paper represents an extension of the work by Eloe
and Ridenhour [1] which in turn extended previous results from Peterson [3,4], Elias [5] and Peterson
and Ridenhour [6]. Note that the disfocality of L on [a, b], according to Nehari [7], implies that y(x) ≡ 0
is the only solution of Ly = 0 satisfying y(i)(xi) = 0, i = 0, 1, 2, . . . , n− 1, with xi ∈ [a, b], and also
guarantees the existence of the Green function of (4).

It is well known (see for instance [8], Chapter 3) that problems of the type

Ly = f , x ∈ (a, b),

y(αi)(a) = 0, αi ∈ α; y(βi)(b) = 0, βi ∈ β,
(5)

with f ∈ C[a, b] being an input function, have a solution given by y(x) =
∫ b

a G(x, t) f (t)dt. Therefore,
the knowledge of the sign of G(x, t) and its derivatives can provide information on the sign of the
solution y(x) and these same derivatives, at least when f does not change sign on (a, b). This was
already used by Eloe and Ridenhour in [1] to show that a clamped beam is stiffer that a simply
supported beam. Likewise, the evolution of G(x, t) as a or b vary can also provide insights on the
dependence of the value of y(x) on these extremes and can allow comparing the effect of a longer
separation of the extremes when the same input function f is applied to a system modeled by (5).

The knowledge about the sign of G(x, t) is also useful to find information about the eigenvalues
and eigenfunctions of the general problem

Ly = λ ∑
µ
l=0 cl(x)y(l)(x), x ∈ (a, b),

y(αi)(a) = 0, αi ∈ α; y(βi)(b) = 0, βi ∈ β,
(6)

with µ ≤ n− 1, cl(x) ∈ C(J) for 0 ≤ l ≤ µ. These problems are tackled by converting them in the
equivalent integral problem

My(x) =
1
λ

y(x), x ∈ [a, b], (7)

where M is the operator M: Cµ[a, b]→ Cn[a, b] defined by

My(x) =
∫ b

a
G(x, t)

µ

∑
l=0

cl(t)y(l)(t)dt, x ∈ [a, b]. (8)

If the partial derivative of G(x, t) of the highest order whose sign is constant on (a, b) is not lower
than µ, it is possible to define a cone P associated to that partial derivative such that MP ⊂ P and,
with the help of the cone theory elaborated by Krein and Rutman [9] and Krasnosel’skii [10], prove
that there exists a solution of (7) associated to the smallest eigenvalue λ. Moreover, it is possible to
determine some properties of λ and even compare the values of λ for different boundary conditions.
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Refs. [11–17] are examples that follow this approach. In all these, therefore, the knowledge of the sign
of the derivatives of G(x, t) is critical.

The non-linear version of (6), namely

Ly = λ f (y, x), x ∈ (a, b), (9)

subject to different homogeneous, mixed or integral boundary conditions (see for instance [18,19]), is
also addressed usually by converting it in the integral problem

1
λ

y =
∫ b

a
G(x, t) f (y(t), t)dt, x ∈ (a, b). (10)

In most of these problems, the information about the sign of the Green function is relevant to apply
other tools (fixed-point theorems, upper and lower solutions method, fixed-point index theory, etc.)
to determine the existence of a solution. In some of them, the knowledge of the sign of the partial
derivatives can help to achieve the same goal ([18,20,21]).

As for a physical applicability, problems of the type (5), (6) and (9) appear in many situations, like
the study of the deflections of beams, both straight ones with non-homogeneous cross-sections in free
vibration (which are subject to the fourth-order linear Euler-Bernoulli equation) and curved ones with
different shapes. An account of these and other applications can be found in [22], Chapter IV.

Throughout the paper we will use the terms G(α, β, x, t) and Ga,b(x, t) (and further Ga,b(α, β, x, t))
when we want to highlight the dependence of the Green function of (4) on the boundary conditions
(α, β) and the extremes a, b, respectively. That will be particularly useful when we manipulate Green
functions subject to different boundary conditions or different extremes. We will denote by H(x, t) and
I(x, t) the partial derivatives of G(α, β, x, t) with respect to the extreme b and a, respectively, that is

H(x, t) =
∂G(x, t)

∂b
, I(x, t) =

∂G(x, t)
∂a

, (x, t) ∈ [a, b]× [a, b]. (11)

We will say that a, b are interior to A, B if A ≤ a < b ≤ B and A < a or b < B. We will use the
expression card{D} to denote the number of elements (or cardinal) of the set D.

Likewise, if we assume that y is a function with (n− 1)th derivative in [a, b], we will make use of
the following nomenclature associated to (α, β):

• K(α, β) is the minimum derivative of y(x) for which the boundary conditions (α, β) specify that
y(i)(a) = 0 or y(i)(b) = 0 for i = K(α, β) + 1, . . . , n− 1, with K(α, β) = n− 1 if both y(n−1)(a) 6= 0
and y(n−1)(b) 6= 0.

• m(α, i) is the number of derivatives of y of order equal or higher than i which the boundary
conditions α do not specify to be zero at a.

• n(β, i) is the number of derivatives of y of order higher than i which the boundary conditions β

do specify to be zero at b.
• αA ∈ α is the greatest index such that y(j)(a) = 0 for α1 ≤ j ≤ αA and y(j)(b) 6= 0 for α1 ≤ j ≤

αA − 1, and βB ∈ β is the greatest index such that y(j)(b) = 0 for β1 ≤ j ≤ βB and y(j)(a) 6= 0 for
β1 ≤ j ≤ βB − 1. Note that if βB /∈ α then the boundary conditions are p-alternate with p > βB,
whereas if βB ∈ α and βB > 0 then the boundary conditions are (βB − 1)-alternate.

• S(α) is the sum of all indices of α. Likewise, S(β) is the sum of all indices of β.

To make these definitions clear, let us use some examples. Let us assume that n = 8, k = 4,
α = {0, 1, 2, 5} and β = {3, 4, 5, 7}. Then αA = 2 (since 3 /∈ α), βB = 5 (since 6 /∈ β but also 5 ∈ α),
K(α, β) = 6 (since 6 /∈ α ∪ β and 7 ∈ β), S(α) = 0 + 1 + 2 + 5 = 8 and S(β) = 3 + 4 + 5 + 7 = 19.
Likewise, let us assume that n = 7, k = 2, α = {3, 5} and β = {0, 1, 2, 4, 5}. Then αA = 3, βB = 2,
K(α, β) = 6, S(α) = 8 and S(β) = 12.
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As for the organization of the paper, Section 2 will provide the main results of the paper.
Concretely, in the Section 2.1 we will tackle the general case of admissible boundary conditions,
in the Section 2.2 we will prove some additional results associated to p-alternate boundary conditions
and in the Section 2.3 we will cover the strongly admissible boundary conditions. Finally in Section 3
we will elaborate some conclusions.

2. Results

2.1. The Sign of the Green Function and Its Derivatives on the Admissible Case

In this subsection, we will prove some basic results concerning the sign of the Green function of
the problem (4) and its derivatives, as well as comparisons of their absolute values when the extremes
a and b vary. To this end, it is interesting to recall a couple of results from Eloe and Ridenhour, which
we will state (modified slightly using our notations) for completeness.

Theorem 1 (Theorem 3.3 of [1]). 1. If α1 = 0, then for i = 0, . . . , β1,

(−1)n−k ∂iG(x, t)
∂xi > 0, (x, t) ∈ (a, b)× (a, b). (12)

2. If β1 = 0, then for i = 0, . . . , α1,

(−1)n−k+i ∂iG(x, t)
∂xi > 0, (x, t) ∈ (a, b)× (a, b). (13)

Theorem 2 (Theorem 3.4 of [1]). Let us suppose that max(αk, βn−k) < n− 1, and that a1, b1 are extremes
interior to a2, b2, with [a2, b2] ⊂ J.

1. If α1 = 0, then for i = 0, . . . , β1,

(−1)n−k ∂iGa2,b2(x, t)
∂xi > (−1)n−k ∂iGa1,b1(x, t)

∂xi > 0, (x, t) ∈ (a1, b1)× (a1, b1). (14)

2. If β1 = 0, then for i = 0, . . . , α1,

(−1)n−k+i ∂iGa2,b2(x, t)
∂xi > (−1)n−k+i ∂iGa1,b1(x, t)

∂xi > 0, (x, t) ∈ (a1, b1)× (a1, b1). (15)

These theorems, although of considerable scope, unfortunately, do not yield information on the
sign of all the partial derivatives of G(x, t) at the extremes a and b, whose knowledge is necessary
for the application of cone theory to the eigenvalue problem (6) mentioned in the Introduction, as
well as for the analysis of the strongly admissible case (see Section 2.3). Likewise, they do not cover
the dependence of G(x, t) with the extremes a and b when either αk or βn−k are equal to n− 1. These
shortcomings and the lack of explicit proofs of these theorems in [1] (the reader is left to obtain them
following the techniques devised by the authors in previous sections of that paper) lead us to dedicate
this subsection to reproduce what we suppose were the steps used by Eloe and Ridenhour to obtain
Theorems 1 and 2 as well as to prove the missing results (see Remark 2 for some examples of the latter).

We will start with a Lemma that can be considered an extension of [1], Lemma 2.3 to the
problem (4). As Eloe and Ridenhour pointed out, [1], Lemma 2.3 was in essence proved by Peterson
and Ridenhour in [6] for the case (α1, . . . , αk) = (0, ..., k− 1).
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Lemma 1. Let us assume that L is disfocal on [a, b] and that y(x) is a nontrivial solution of Ly = 0 which
satisfies the n− 1 homogeneous boundary conditions

y(αi)(a) = 0, αi ∈ α, α ∈ Ωk−1,
y(βi)(b) = 0, βi ∈ β, β ∈ Ωn−k.

(16)

Let us also assume that

card{i : 0 ≤ i ≤ j− 1, y(i)(a) = 0}+ card{i : 0 ≤ i ≤ j− 1, y(i)(b) = 0} ≥ j, j = 1, . . . , K(α, β). (17)

Then y(x) is essentially unique (to within the norm) and satisfies

1. Neither y(x) nor any of its derivatives vanish at a or b on derivatives lower than K(α, β) + 1 and different
from those of (16), that is

y(i)(a) 6= 0, i = 0, . . . , K(α, β), i /∈ α,

y(i)(b) 6= 0, i = 0, . . . , K(α, β), i /∈ β. (18)

2. y(i)(x) 6= 0, x ∈ (a, b), 0 ≤ i ≤ max(α1, β1). Moreover, if (α, β) are p-alternate, y(i)(x) 6= 0, x ∈
(a, b), 0 ≤ i ≤ p + 1.

3. If y(i)(a) = 0, 0 ≤ i ≤ K(α, β)− 1, there exists an ε > 0 such that y(i)(x)y(i+1)(x) > 0, x ∈ (a, a + ε).
4. If y(i)(a) 6= 0, 0 ≤ i ≤ K(α, β)− 1, there exists an ε > 0 such that y(i)(x)y(i+1)(x) < 0, x ∈ (a, a + ε).
5. If y(i)(b) = 0, 0 ≤ i ≤ K(α, β)− 1, there exists an ε > 0 such that y(i)(x)y(i+1)(x) < 0, x ∈ (b− ε, b).
6. If y(i)(b) 6= 0, 0 ≤ i ≤ K(α, β)− 1, there exists an ε > 0 such that y(i)(x)y(i+1)(x) > 0, x ∈ (b− ε, b).

Proof. Following the argumentation of [6], let us denote by lj, rj the following values

lj = card{i : 0 ≤ i ≤ j− 1, y(i)(a) = 0}, 0 ≤ j ≤ n,

rj = card{i : 0 ≤ i ≤ j− 1, y(i)(b) = 0}, 0 ≤ j ≤ n.

We will show by induction that the number of zeroes of y(j)(x) in the interval (a, b) (let us name it
zj(a, b)) is at least lj + rj − j. For j = 0 it is straightforward, so let us assume that the hypothesis holds
for j− 1, that is,

zj−1(a, b) ≥ lj−1 + rj−1 − j + 1.

If we consider the possible zeroes of y(j−1)(x) at a or b, Rolle’s theorem mandates that

zj(a, b) ≥ zj−1(a, b) + lj − lj−1 + rj − rj−1 − 1

≥ lj−1 + rj−1 − j + 1 + lj − lj−1 + rj − rj−1 − 1 = lj + rj − j.

From the definition of lj, rj, this result also implies that the number of zeroes of y(j)(x) in [a, b] (let
us name it zj[a, b]), satisfies

zj[a, b] ≥ lj+1 + rj+1 − j.

With this in mind it is immediate to see that the condition (17) translates into

zj[a, b] ≥ 1, j = 0, . . . , K(α, β)− 1, (19)

whereas the definition of K(α, β) implies

zj[a, b] ≥ 1, j = K(α, β) + 1, . . . , n− 1. (20)
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The key insight for the rest of the proof is that any additional zero of y(i)(x) on [a, b] for i =

0, . . . , K(α, β) not forced by the homogeneous boundary conditions nor by Rolle’s theorem will imply,
again by Rolle’s theorem, that zK(α,β)[a, b] = 1 which together with (19) and (20) give

zj[a, b] ≥ 1, j = 0, . . . , n− 1.

Since L is disfocal on [a, b] by hypothesis, such an additional zero will mean y ≡ 0. This
proves properties 1 and 2 (the p-alternate condition grants that only one homogeneous boundary
condition -at either a or b- is set in each derivative up to p-th one, so these boundary conditions cannot
force, at least via Rolle’s theorem, any zeroes in (a, b) in the derivatives up to the (p + 1)-th one) and
also the fact that y is essentially unique to within the norm (if there were two different solutions y1 and
y2 one could create a non trivial linear combination y3 of these two with a zero of y(K(α,β))

3 in [a, b]).
As for property 3, if i + 1 ≤ K(α, β) then the number of zeroes of y(i+1)(x) on (a, b) must be

finite (otherwise from Rolle’s theorem we would end up with a zero of y(K(α,β))(x) on (a, b) and the
disfocality of L on [a, b] would force y ≡ 0) and there must be an ε > 0 such that y(i+1)(x) 6= 0 on
(a, a + ε). Since

y(i)(x) = y(i)(a) +
∫ x

a
y(i+1)(s)ds =

∫ x

a
y(i+1)(s)ds,

it must follow that y(i)(x)y(i+1)(x) > 0 on (a, a + ε).
To prove property 4, let xi ∈ (a, b] be such that y(i)(xi) = 0 and y(i)(x) 6= 0 on [a, xi) (the existence

of xi is granted by (19)). There cannot be any zeroes of y(i+1)(x) on (a, xi) since, by the previous
argumentation, this would imply again a zero of y(K(α,β))(x) on (a, b) and therefore y ≡ 0. As

−y(i)(x) = y(i)(xi)− y(i)(x) =
∫ xi

x
y(i+1)(s)ds,

one gets to y(i)(x)y(i+1)(x) < 0 on (a, xi).
The proof of properties 5 and 6 is similar to that of properties 3 and 4, respectively.

Remark 1. It is important to stress that the results 3–6 of the previous Lemma only apply if i ≤ K(α, β)− 1. If
y(K(α,β))(x) 6= 0 on [a, b] we cannot deduce anything about the zeroes of higher derivatives of y(x) on [a, b],
as the disfocality condition would already not be met in y(K(α,β)).

The next Theorem extends [1], Lemma 2.4 and Theorem 2.1 to the problem (4).

Theorem 3. Let us assume that the boundary conditions (α, β), with α ∈ Ωk and β ∈ Ωn−k, are admissible.
Then one has

(−1)m(α,i) ∂iG(α, β, a, t)
∂xi > 0, 0 ≤ i ≤ n− 1, i /∈ α, (21)

and

(−1)n(β,i) ∂iG(α, β, b, t)
∂xi > 0, 0 ≤ i ≤ n− 1, i /∈ β. (22)

In addition:

1. If α1 = 0 then

(−1)n−k ∂iG(α, β, x, t)
∂xi > 0, 0 ≤ i ≤ β1, x ∈ (a, b). (23)

2. If β1 = 0 then

(−1)n−k+i ∂iG(α, β, x, t)
∂xi > 0, 0 ≤ i ≤ α1, x ∈ (a, b). (24)

Proof. Let us note first that the admissibility of the boundary conditions imposes that α1 = 0 or
β1 = 0.
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We will focus initially on the case α1 = 0, for which we will follow a similar approach as that
used in [1], Lemma 2.4. Thus, as a starting point, let us fix t ∈ [a, b] and let us consider the boundary
conditions (α, β) with α = {0, . . . , k− 1}, which (as it is straightforward to show) are always admissible
regardless of the value of k and β. From [1], Lemma 2.4 one has (22) and from [1], Theorem 2.1 one
gets (23) and

(−1)n−k ∂kG(α, β, a, t)
∂xk > 0. (25)

If k < n− 1, we can pick new boundary conditions (α′, β′) with α′ = {0, . . . , k} and β′ = β\βn−k
(that is β′ = {β1, . . . , βn−k−1}, for which [1], Theorem 2.1 gives again

(−1)n−k−1 ∂k+1G(α′, β′, a, t)
∂xk+1 > 0. (26)

We can build the function g1(x) = G(α′, β′, x, t) − G(α, β, x, t), which is n-times continuously
differentiable (the difference of the Green functions compensate the discontinuity of their (n− 1)-th
partial derivatives with regards to x at x = t) and satisfies

Lg1 = 0, x ∈ (a, b);

g(j)
1 (a) = 0, 0 ≤ j ≤ k− 1; g

(β j)

1 (b) = 0, β j ∈ β\βn−k;

g(k)1 (a) = −∂kG(α, β, a, t)
∂xk ; g(βn−k)

1 (b) =
∂βn−k G(α′, β′, b, t)

∂xβn−k
. (27)

From (25) and (27) it follows
(−1)n−kg(k)1 (a) < 0. (28)

The boundary conditions of g1 are (α, β′). It is straighforward to prove that K(α, β′) = n − 1
and that g1 satisfies the hypothesis (17) of Lemma 1 for 1, . . . , n− 1. In consequence, one can apply
properties 1 and 4 of Lemma 1 to g1 and, taking (28) into account, get to

(−1)n−kg(k+1)
1 (a) > 0.

From here and (26) one has

(−1)n−k−1 ∂k+1G(α, β, a, t)
∂xk+1 = (−1)n−k−1 ∂k+1G(α′, β′, a, t)

∂xk+1 − (−1)n−k−1g(k+1)
1 (a) > 0. (29)

This argument can be repeated recursively to obtain

(−1)n−i ∂iG(α, β, a, t)
∂xi > 0, k ≤ i ≤ n− 1, (30)

which is (21).
Next, we will proceed by induction over S(α). Thus, let us consider admissible (but not strongly

admissible) boundary conditions (α, β) with α ∈ Ωk and β ∈ Ωn−k, and let us define new conditions
(α′, β) by taking α and replacing the homogeneous boundary condition αi by αk + 1 (that is, α′ specifies
y(αk+1)(a) = 0 instead of y(αi)(a) = 0). Let us assume that (α′, β) are also admissible.

The function g2(x) = G(α′, β, x, t) − G(α, β, x, t) is n-times continuously differentiable
and satisfies

Lg2 = 0, x ∈ (a, b);

g
(αj)

2 (a) = 0, αj ∈ α, αj 6= αi; g
(β j)

2 (b) = 0, β j ∈ β;
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g(αi)
2 (a) =

∂αi G(α′, β, a, t)
∂xαi

; g(αk+1)
2 (a) = −∂αk+1G(α, β, a, t)

∂xαk+1 . (31)

Let (α′′, β) be the homogeneous boundary conditions satisfied by g2, with α′′ ∈ Ωk−1. We will
prove now that

K(α′′, β) = max(K(α′, β), αk + 1), (32)

and that g2 complies with the hypotheses of Lemma 1 for K(α′′, β).
If K(α′, β) > αk + 1 then K(α′′, β) = K(α′, β) as the only difference between (α′, β) and (α′′, β) is

precisely αk + 1. In that case

card{βl ∈ β, j < βl ≤ n− 1} ≤ n− 1− j− 1 = n− j− 2

for αk + 1 ≤ j < K(α′′, β), since K(α′′, β) /∈ β as per the definition of K(α′′, β). Following the
nomenclature of Lemma 1 and noting that

ln(α′, β) + rn(α
′, β) = n,

it follows
lj+1(α

′, β) + rj+1(α
′, β) ≥ n− (n− j− 2) = j + 2, αk + 1 ≤ j < K(α′′, β),

which in turn means

lj+1(α
′′, β) + rj+1(α

′′, β) ≥ j + 1, αk + 1 ≤ j < K(α′′, β). (33)

Since
lj+1(α

′′, β) + rj+1(α
′′, β) = lj+1(α

′, β) + rj+1(α
′, β) ≥ j + 1, j ≤ αk, (34)

due to the admissibility of (α′, β), from (33) and (34) it follows that the condition (17) holds for (α′′, β)

and 1, . . . , K(α′′, β).
On the other hand, if K(α′, β) < αk + 1, since (α′, β) are admissible there cannot be an order

above K(α′, β) which belongs to α′ and β at the same time, which implies that the number of boundary
conditions above K(α′, β) is limited by

card{αl ∈ α′, K(α′, β) < αl ≤ n− 1}+ card{βl ∈ β, K(α′, β) < βl ≤ n− 1} = n− 1− K(α′, β),

and therefore

card{αl ∈ α′′, K(α′, β) < αl ≤ n− 1}+ card{βl ∈ β, K(α′, β) < βl ≤ n− 1} = n− 2− K(α′, β).

This means that there must exist an index l with K(α′, β) + 1 ≤ l ≤ n− 1 such that l /∈ α′′ ∪ β.
That index l must obviously be K(α′′, β). As the only difference between (α′, β) and (α′′, β) is precisely
αk + 1, it follows that K(α′′, β) = αk + 1. The admissibility of (α′, β) grants that (α′′, β) fulfils the
condition (17) of Lemma 1 for 1, . . . , K(α′′, β), also in this case K(α′′, β) = αk + 1.

Moving on, from the induction hypothesis we know that

(−1)m(α,αk+1) ∂αk+1G(α, β, a, t)
∂xαk+1 > 0, (35)

which together with (31) gives
(−1)m(α,αk+1)g(αk+1)

2 (a) < 0. (36)
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Since the number of derivatives of g2 between g(αi)
2 and g(αk+1)

2 which are not specified to be zero
at a is m(α′, αi)−m(α, αk + 1) + 1, applying properties Properties 3 and 4 of Lemma 1 to g2(x) one gets

(−1)m(α′ ,αi)g(αi)
2 (a) > 0, (37)

that is

(−1)m(α′ ,αi)
∂αi G(α′, β, a, t)

∂xαi
> 0. (38)

In a similar manner, for x ∈ (a, a + ε)

(−1)m(α′ ,j)g(j)
2 (x) > 0, j ≤ αi, (39)

and since m(α′, j) = m(α, j) for j < αi from the induction hypothesis one obtains

(−1)m(α′ ,j) ∂jG(α′, β, a, t)
∂xj = (−1)m(α′ ,j)g(j)

2 (a) + (−1)m(α,j) ∂jG(α, β, a, t)
∂xj > 0, j /∈ α, j < αi. (40)

Equations (38) and (40) prove (21) for j ≤ αi.
Before addressing (21) for αi > j, which will require a different function g3, let us focus on (23)

and (22), in this order. Thus, from (39), the definition of m(α′, j) and property property 2 of Lemma 1
it follows

(−1)n−kg(i)2 (x) > 0, 0 ≤ i ≤ β1, x ∈ (a, b). (41)

Since by the induction hypothesis

(−1)n−k ∂iG(α, β, x, t)
∂xi > 0, 0 ≤ i ≤ β1, x ∈ (a, b), (42)

from (41) and (42) one gets to

(−1)n−k ∂iG(α′ ,β,x,t)
∂xi = (−1)n−kg(i)2 (x) + (−1)n−k ∂iG(α,β,x,t)

∂xi > 0, 0 ≤ i ≤ β1, x ∈ (a, b), (43)

which is (23).
On the other hand, (41) also implies (−1)n−kg(β1)

2 (x) = (−1)n(β,β1)+1g(β1)
2 (x) > 0 for x ∈ (b−

ε, b). Applying properties properties 1, 5 and 6 of Lemma 1, one has

(−1)n(β,j)g(j)
2 (b) > 0, 0 ≤ j ≤ K(α′′, β), j /∈ β. (44)

Since the induction hypothesis on b implies

(−1)n(β,j) ∂jG(α, β, b, t)
∂xj > 0, 0 ≤ j ≤ n− 1, j /∈ β, (45)

from (44) and (45) we get to

(−1)n(β,j) ∂jG(α′, β, b, t)
∂xj > 0, 0 ≤ j ≤ K(α′′, β), j /∈ β, (46)

or rather

(−1)n(β,j) ∂jG(α′, β, b, t)
∂xj > 0, 0 ≤ j ≤ max(K(α′, β), αk + 1), j /∈ β, (47)

if we consider (32). The extension of (47) to (22) is straightforward since if max(K(α′, β), αk + 1) < n− 1
then {max(K(α′, β), αk + 1) + 1, . . . , n− 1} ⊂ β.
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Let us move on to prove (21) for j > αi. For that let us consider the boundary conditions (α̂, β̂),
defined by α̂ = α′ ∪ {αi} (or in another way, α̂ = α∪ {αk + 1}), α̂ ∈ Ωk+1 and β̂ = β\βn−k, β̂ ∈ Ωn−k−1.
(α̂, β̂) are admissible since:

1. If βn−k ≥ αi, the property is straightforward as (α′, β) are also admissible.
2. If βn−k < αi, then (reusing the nomenclature of Lemma 1) one has lj+1(α̂, β̂) + rj+1(α̂, β̂) = n for

j = αk + 1, . . . , n− 1 and in particular lαk+2(α̂, β̂) + rαk+2(α̂, β̂) = n which in turn implies (note
αk + 1 < n)

lj+1(α̂, β̂) + rj+1(α̂, β̂) ≥ n− (αk + 1− j) = n− αk + j− 1 ≥ j + 1,

for βn−k ≤ j ≤ αk + 1. As there is no change in the boundary conditions associated to derivatives
of order lower than βn−k, this proves the admissibility of (α̂, β̂).

Thus, let us define the function g3(x) = G(α′, β, x, t)− G(α̂, β̂, x, t), which is n-times continuously
differentiable and satisfies

Lg3 = 0, x ∈ (a, b);

g
(αj)

3 (a) = 0, αj ∈ α, αj 6= αi; g
(β j)

3 (b) = 0, β j ∈ β\βn−k;

g(αi)
3 (a) =

∂αi G(α′, β, a, t)
∂xαi

; g(βn−k)
3 (b) = −∂βn−k G(α̂, β̂, b, t)

∂xβn−k
. (48)

From (38) and (48) it follows
(−1)m(α′ ,αi)g(αi)

3 (a) > 0. (49)

The boundary conditions for g3 are (α′, β̂). We will prove now that

K(α′, β̂) = max(K(α′, β), βn−k), (50)

and that (α′, β̂) satisfy the condition (17) of Lemma 1 for 1, . . . , K(α′, β̂).
If K(α′, β) > βn−k then K(α′, β) = K(α′, β̂) as the only difference between (α′, β̂) and (α′, β) is

precisely βn−k. In that case we can follow a similar reasoning as before to state

card{αl ∈ α′, j < αl ≤ n− 1} ≤ n− 1− j− 1 = n− j− 2,

for βn−k ≤ j < K(α′, β), so, using again the nomenclature of Lemma 1 for (α′, β)

lj+1(α
′, β) + rj+1(α

′, β) ≥ n− (n− j− 2) = j + 2, βn−k ≤ j < K(α′, β) = K(α′, β̂).

That in turn implies

lj+1(α
′, β̂) + rj+1(α

′, β̂) ≥ j + 1, βn−k ≤ j < K(α′, β̂),

or
lj(α

′, β̂) + rj(α
′, β̂) ≥ j, βn−k + 1 ≤ j ≤ K(α′, β̂). (51)

Since
lj(α

′, β̂) + rj(α
′, β̂) = lj(α

′, β) + rj(α
′, β) ≥ j, j ≤ βn−k, (52)

from (51) and (52) it follows that (α′, β̂) satisfy the condition (17) for 1, . . . , K(α′, β̂) when K(α′, β̂) =

K(α′, β).
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On the other hand, if K(α′, β) < βn−k, since (α′, β) are admissible, there cannot be an order above
K(α′, β) which belongs to α′ and β at the same time, which implies that the number of boundary
conditions above K(α′, β) is limited by

card{αl ∈ α′, K(α′, β) + 1 ≤ αl ≤ n− 1}+ card{βl ∈ β, K(α′, β) + 1 ≤ βl ≤ n− 1} = n− 1− K(α′, β),

and therefore

card{αl ∈ α′, K(α′, β) + 1 ≤ αl ≤ n− 1}+ card{βl ∈ β̂, K(α′, β) + 1 ≤ βl ≤ n− 1} = n− 2− K(α′, β).

This means that there must exist an index l with K(α′, β) + 1 ≤ l ≤ n− 1 such that l /∈ α′ ∪ β̂. That
index l must obviously be K(α′, β̂). As the only difference between (α′, β) and (α′, β̂) is precisely βn−k,
it follows that K(α′, β̂) = βn−k. The admissibility of (α′, β) grants that (α′, β̂) fulfils the condition (17)
of Lemma 1 for 1, . . . , K(α′, β̂), also in this case K(α′, β̂) = βn−k.

Since K(α′, β̂) ≥ βn−k, in all cases where K(α′, β̂) ≤ αi,
∂jG(α′ ,β,a,t)

∂xj = 0 for j = αi + 1, . . . , n− 1,
eliminating the need for proving (21) in these scenarios. In the rest of the cases we can apply properties
3 and 4 of Lemma 1 to g3 and (49) to yield

(−1)m(α′ ,j)g(j)
3 (a) > 0, αi < j ≤ K(α′, β̂), j /∈ α. (53)

Due to the definition of β̂, we can apply in this case induction over S(β) and assume

(−1)m(α̂,j) ∂jG(α̂, β̂, a, t)
∂xj > 0, αi < j ≤ n− 1, j /∈ α. (54)

From (53) and (54), and the fact that m(α̂, j) = m(α′, j) for αi < j ≤ n− 1, one finally gets to

(−1)m(α′ ,j) ∂jG(α′, β, a, t)
∂xj = (−1)m(α′ ,j)g(j)

3 (a) + (−1)m(α′ ,j) ∂jG(α̂, β̂, a, t)
∂xj

= (−1)m(α′ ,j)g(j)
3 (a) + (−1)m(α̂,j) ∂jG(α̂, β̂, a, t)

∂xj > 0, αi < j ≤ K(α′, β̂), j /∈ α, (55)

or, taking (50) into account

(−1)m(α′ ,j) ∂jG(α′, β, a, t)
∂xj > 0, αi < j ≤ max(K(α′, β), βn−k), j /∈ α. (56)

The extension of (56) to (21) is straightforward as if max(K(α′, β), βn−k) < n− 1 then ∂jG(α′ ,β,a,t)
∂xj =

0 for j = max(K(α′, β), βn−k) + 1, . . . , n− 1. This completes the proof of the case α1 = 0.
Let us focus now on the case α1 > 0, β1 = 0. For that we will consider the function

G′(β, α, x, t) = (−1)nG(α, β, b + a− x, b + a− t), (57)

which as one can readily show (see e.g., [8], Chapter 3, page 105) is the Green function of the problem

L′G′ = 0, (x, t) ∈ {(a, t) ∪ (t, b)} × (a, b),

∂β j G′(β, α, a, t)
∂xβ j

= 0, j = 1, . . . , n− k;
∂αj G′(β, α, b, t)

∂xαj
= 0, j = 1, . . . , k; (58)

with L′ defined as

L′y = y(n)(x)− an−1(b + a− x)y(n−1)(x) + · · ·+ (−1)na0(b + a− x)y(x). (59)
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Since β1 = 0 is a boundary condition applied at a, G′ satisfies the hypotheses of the first part of
this theorem. Thus, from (21), (22) and (23) one gets to

(−1)m(β,i) ∂iG′(β, α, a, t)
∂xi > 0, 0 ≤ i ≤ n− 1, i /∈ β, (60)

(−1)n(α,i) ∂iG′(β, α, b, t)
∂xi > 0, 0 ≤ i ≤ n− 1, i /∈ α, (61)

and

(−1)k ∂iG′(β, α, x, t)
∂xi > 0, 0 ≤ i ≤ α1, x ∈ (a, b). (62)

(60), (61), (62) and the relationship

(−1)n−j ∂jG′(β, α, b + a− x, b + a− t)
∂xj =

∂jG(α, β, x, t)
∂xj , 0 ≤ j ≤ n− 1, (63)

finally yield

(−1)n(α,i)+n−i ∂iG(α, β, a, t)
∂xi > 0, 0 ≤ i ≤ n− 1, i /∈ α, (64)

(−1)m(β,i)+n−i ∂iG(α, β, b, t)
∂xi > 0, 0 ≤ i ≤ n− 1, i /∈ β, (65)

(−1)n−k+i ∂iG(α, β, x, t)
∂xi > 0, 0 ≤ i ≤ α1, x ∈ (a, b). (66)

As n− i− n(α, i) = m(α, i) for i /∈ α and n− i−m(β, i) = n(β, i) for i /∈ β, from (64) and (65) one
readily gets (21) and (22), respectively.

Remark 2. Inequalities (21) and (22) are results new with respect to Theorems 3.3 and 3.4 of [1]. Likewise,
(30) is also new with respect to Theorem 2.1 of [1].

Next, we will assess the dependence of G(x, t) and some of its partial derivatives with regards to
the extremes a and b.

Lemma 2. Fixed t ∈ [a, b], H(x, t) is the solution of the problem

LH = 0, x ∈ (a, b);

∂αj H(a, t)
∂xαj

= 0, αj ∈ α;
∂β j H(b, t)

∂xβ j
= −∂β j+1G(α, β, b, t)

∂xβ j+1 , β j ∈ β. (67)

Likewise, I(x, t) is the solution of the problem

LI = 0, x ∈ (a, b);

∂αj I(a, t)
∂xαj

= −∂αj+1G(α, β, a, t)
∂xαj+1 , αj ∈ α;

∂β j I(b, t)
∂xβ j

= 0, β j ∈ β. (68)

Proof. The proof of (67) follows the same steps as that of [13], Lemma 3.3 with x1 = a and k = 1 and
will not be repeated. The proof of (68) is also similar.

Theorem 4. Let us assume that (α, β) are admissible boundary conditions. If α1 = 0 and either

βn−k < n− 1
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or
βn−k = n− 1 and (−1)n(β,j)aj(b) ≤ 0, 0 ≤ j ≤ n− 1, j /∈ β, (69)

with at least one l /∈ β such that 0 ≤ l ≤ n− 1 and

(−1)n(β,l)al(b) < 0, (70)

then

(−1)n(β,j) ∂j H(x, t)
∂xj < 0, (x, t) ∈ (a, b)× (a, b), β1 ≤ j ≤ βB, (71)

and

(−1)n−k ∂jH(x, t)
∂xj > 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j < β1. (72)

If α1 > 0 and either
βn−k < n− 1

or
βn−k = n− 1 and (−1)n(β,j)aj(b) ≤ 0, 0 ≤ j ≤ n− 1, j /∈ β, (73)

then

(−1)n−k−j ∂j H(x, t)
∂xj > 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j ≤ βB. (74)

Proof. Let us suppose that α1 = 0. Fixed t ∈ [a, b], from Lemma 2 we know that H(x, t) =

∑n−k
i=1 hβi (x, t), where hβi (x, t) is the solution of

Lhβi = 0, x ∈ (a, b);
∂αj hβi (a, t)

∂xαj
= 0, αj ∈ α;

∂β j hβi (b, t)

∂xβ j
= 0, β j ∈ β\βi;

∂βi hβi (b, t)
∂xβi

= −∂βi+1G(b, t)
∂xβi+1 . (75)

Note that if βi + 1 ∈ β then hβi (x, t) ≡ 0 due to the disfocality of L on [a, b]. That implies that we
only need to take into account those βi such that βi + 1 /∈ β.

If βn−k < n− 1 then βi < n− 1 for 1 ≤ i ≤ n− k and we can apply (22) and (75) to obtain

(−1)n(β,βi+1) ∂βi hβi (b, t)
∂xβi

< 0, (76)

which combined with the properties properties 2 (as commented at the end of the Introduction the
homogeneous boundary conditions in (75) are at least (βB − 1)-alternate), 5 and 6 of Lemma 1, and the
fact that n(β, βi + 1) = n(β, βi) when βi + 1 /∈ β, yields

(−1)n(β,j) ∂jhβi (x, t)
∂xj < 0, (x, t) ∈ (a, b)× (a, b), j ∈ β, j ≤ βB, (77)

and

(−1)n(β,j) ∂jhβi (x, t)
∂xj > 0, (x, t) ∈ (a, b)× (a, b), j /∈ β, j ≤ βB. (78)

As
∂jhβi

(b,t)

∂xj = 0 for β1 ≤ j ≤ βB and
∂jhβi

(b,t)

∂xj 6= 0 for 0 ≤ j < β1, from (77) and (78), the facts that
βB ≤ βi and n(β, j) = n− k for j < β1, and the decomposition of H(x, t) in hβi (x, t), one gets to (71)
and (72).
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On the contrary, if βn−k = n− 1 then (77) and (78) hold for all hβi but for hβn−k , since in that case

the sign of
∂βn−k hβn−k

(b,t)

∂xβn−k
is the opposite of that of ∂nG(b,t)

∂xn , which Theorem 3 does not yield. In that case
we need to revert to the definition of L. Thus, from (1) and (4) one has

∂nG(b, t)
∂xn = −

n−1

∑
l=0

al(b)
∂lG(b, t)

∂xl = −
n−1

∑
l=0,l /∈β

al(b)
∂lG(b, t)

∂xl . (79)

From (22), (69), (70), (75) and (79) one gets to ∂nG(b,t)
∂xn > 0 and

∂n−1hβn−k
(b,t)

∂xn−1 < 0. Applying
properties Properties 2, 5 and 6 of Lemma 1 one obtains again (77) and (78), and taking into account
the decomposition of H(x, t) in hβi (x, t) one finally gets (71) and (72).

The proof of (74) in the case α1 > 0 can be done following the same reasoning.

Remark 3. Condition (70) can be removed if β 6= {k, k + 1, . . . , n− 1}. Such a condition is needed in the case

β = {k, k + 1, . . . , n− 1} to grant
∂n−1hβn−k

(b,t)

∂xn−1 < 0, since
∂n−1hβn−k

(b,t)

∂xn−1 = 0 implies H(x, t) = hβn−k (x, t) ≡
0 by the disfocality of L on [a, b]. However, if β 6= {k, k + 1, . . . , n − 1}) then there are other non-trivial
hβi (x, t) which guarantee the non-triviality of H(x, t).

Corollary 1. Let b1 < b2. Under the conditions of Theorem 4, if α1 = 0 then

(−1)n(β,j) ∂jGa,b2(x, t)
∂xj < (−1)n(β,j) ∂jGa,b1(x, t)

∂xj , (x, t) ∈ (a, b)× (a, b), β1 ≤ j ≤ βB, (80)

and

(−1)n−k ∂jGa,b2(x, t)
∂xj > (−1)n−k ∂jGa,b1(x, t)

∂xj > 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j ≤ β1. (81)

If α1 > 0 then

(−1)n−k−j ∂jGa,b2(x, t)
∂xj > (−1)n−k−j ∂jGa,b1(x, t)

∂xj > 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j ≤ βB. (82)

Proof. The proof is immediate from Theorem 4.

Theorem 5. Let us assume that (α, β) are admissible boundary conditions.
If α1 = 0 and either

αk < n− 1

or
αk = n− 1 and (−1)m(α,j)aj(a) ≤ 0, 0 ≤ j ≤ n− 1, j /∈ α, (83)

then

(−1)n−k ∂j I(x, t)
∂xj < 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j ≤ αA. (84)

If α1 > 0 and either
αk < n− 1

or
αk = n− 1 and (−1)m(α,j)aj(a) ≤ 0, 0 ≤ j ≤ n− 1, j /∈ α, (85)

with at least one l /∈ α such that 0 ≤ l ≤ n− 1 and

(−1)m(α,l)al(a) < 0, (86)
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then

(−1)m(α,j) ∂j I(x, t)
∂xj < 0, (x, t) ∈ (a, b)× (a, b), α1 ≤ j ≤ αA. (87)

and

(−1)n−k−j ∂j I(x, t)
∂xj < 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j < α1. (88)

Proof. The proof is similar to that of Theorem 4.

Remark 4. As before, condition (86) can be removed if α 6= {n− k, n− k + 1, . . . , n− 1}.

Corollary 2. Let a2 < a1. Under the conditions of Theorem 5, if α1 = 0 then

(−1)n−k ∂jGa2,b(x, t)
∂xj > (−1)n−k ∂jGa1,b(x, t)

∂xj > 0, (x, t) ∈ (a1, b)× (a1, b), 0 ≤ j ≤ αA. (89)

If α1 > 0 then

(−1)m(α,j) ∂jGa2,b(x, t)
∂xj > (−1)m(α,j) ∂jGa1,b(x, t)

∂xj , (x, t) ∈ (a1, b)× (a1, b), α1 ≤ j ≤ αA. (90)

and

(−1)n−k−j ∂jGa2,b(x, t)
∂xj > (−1)n−k−j ∂jGa1,b(x, t)

∂xj > 0, (x, t) ∈ (a1, b)× (a1, b), 0 ≤ j < α1. (91)

Remark 5. If α1 = 0, it can happen that αA 6= β1 (more concretely αA = β1 − 1). In that case the statement
(i) of [1], Theorem 3.4 (see (14)) does not seem to be valid for l = β1 and b1 = b2, unless an approach not based
on the sign of I and its derivatives was used by the authors to prove that assertion. The lack of an explicit proof
of that theorem complicates any further analysis, but one cannot help having the impression that the statement is
incorrect. The same comment is applicable to the statement (ii) of [1], Theorem 3.4 in the case α1 > 0, a1 = a2

(see (15)), which seems only valid for l = 0, . . . , βB and not for l = α1 when βB 6= α1.

2.2. The Case of p-Alternate Boundary Conditions

When the boundary conditions are p-alternate, the lack of simultaneous boundary conditions at
a and b for any derivative lower than p suggests no need for the immediately higher derivative to
change the sign on (a, b), at least as a consequence of Rolle’s theorem. The following theorem shows
that this is to some extent the case under certain hypotheses.

Theorem 6. Let us assume that (α, β) are p-alternate admissible boundary conditions.
If α1 = 0 and either

βn−k < n− 1

or
βn−k = n− 1 and (−1)n(β,j)aj(x) ≤ 0, x ∈ [a, b], 0 ≤ j ≤ n− 1, j /∈ β, (92)

with at least one l /∈ β such that 0 ≤ l ≤ n− 1 and

(−1)n(β,l)al(x) < 0, x ∈ [a, b], (93)

then

(−1)n−k ∂jG(α, β, x, t)
∂xj > 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j ≤ β1, (94)

(−1)n(β,j) ∂jG(α, β, x, t)
∂xj < 0, (x, t) ∈ (a, b)× (a, b), β1 ≤ j ≤ βB, (95)
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and, if βn−k, p > βB,

(−1)n(β,βB+1) ∂βB+1G(α, β, x, t)
∂xβB+1 > 0, (x, t) ∈ (a, b)× (a, b). (96)

If α1 > 0 and either
αk < n− 1

or
αk = n− 1 and (−1)m(α,j)aj(x) ≤ 0, x ∈ [a, b], 0 ≤ j ≤ n− 1, j /∈ α, (97)

with at least one l /∈ α such that 0 ≤ l ≤ n− 1 and

(−1)m(α,l)al(x) < 0, x ∈ [a, b], (98)

then

(−1)n+k−j ∂jG(α, β, x, t)
∂xj > 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j ≤ α1, (99)

(−1)m(α,j) ∂jG(α, β, x, t)
∂xj > 0, (x, t) ∈ (a, b)× (a, b), α1 ≤ j ≤ αA, (100)

and, if αk, p > αA,

(−1)m(α,αA+1) ∂αA+1G(α, β, x, t)
∂xαA+1 > 0, (x, t) ∈ (a, b)× (a, b). (101)

Proof. Let us tackle the case α1 = 0 first. From Theorem 3, concretely (23), we already know that (94)
holds for 0 ≤ j ≤ β1 (note that n(β, β1) = n− k− 1).

Next, let us assume that x > t. From the definition of H one has

∂jGa,b(α, β, x, t)
∂xj =

∂jGa,x(α, β, x, t)
∂xj +

∫ b

x

∂

∂s
∂jGa,s(α, β, x, t)

∂xj ds

=
∂jGa,x(α, β, x, t)

∂xj +
∫ b

x

∂jHa,s(α, β, x, t)
∂xj ds, (x, t) ∈ (a, b)× (a, b). (102)

Ga,x(α, β, x, t) is the Green function of the problem (4) when b = x, so it satisfies the boundary
conditions related to β at x, that is

∂jGa,x(α, β, x, t)
∂xj = 0, t ∈ (a, x), j ∈ β. (103)

On the other hand, from the hypotheses and Theorem 4 it follows that

(−1)n(β,j) ∂jHa,s(α, β, x, t)
∂xj < 0, (x, t) ∈ (a, s)× (a, s), t < x ≤ s ≤ b, β1 ≤ j ≤ βB. (104)

From (102), (103) and (104) one finally gets (95) for x > t and β1 ≤ j ≤ βB.
Let us focus now on the case x ≤ t. As before one has

∂jGa,b(α, β, x, t)
∂xj =

∂jGa,t(α, β, x, t)
∂xj +

∫ b

t

∂j Ha,s(α, β, x, t)
∂xj ds, (x, t) ∈ (a, b)× (a, b). (105)

Ga,t(α, β, x, t) is the Green function of the problem (4) when b = t, so it satisfies the boundary
conditions related to β at t, that is

∂jGa,t(α, β, t, t)
∂xj = 0, t ∈ (a, b), j ∈ β. (106)
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If n− 1 /∈ β, Ga,t(α, β, x, t) is n-times continuously differentiable in (a, t), satisfies LGa,t(α, β, x, t) =
0 for x ∈ (a, t) and n homogeneous boundary conditions at a and b. Since L is disfocal on [a, b], it is also
disfocal on [a, t) and therefore Ga,t(α, β, x, t) ≡ 0 for x ∈ [a, t). From here, (104) and (105) one gets (95).
On the contrary, if n− 1 ∈ β, from the properties of the Green function (see [8], Chapter 3, page 105,
property (ii))) it is straightforward to show that Ga,t(α, β, x, t) is n-times continuously differentiable on
(a, t), satisfies LGa,t(α, β, x, t) = 0 for x ∈ (a, t), n− 1 homogeneous boundary conditions at a and b
and the boundary condition

lim
x→t−

∂n−1Ga,t(α, β, x, t)
∂xn−1 = −1, t ∈ (a, b). (107)

As noted in the Introduction, p ≥ βB − 1. We can apply Properties 2, 5 and 6 of Lemma 1 to (107),
as well as the definition of n(β, j), to yield

(−1)n(β,j) ∂jGa,t(α, β, x, t)
∂xj < 0, x ∈ (a, t), t ∈ (a, b), j ∈ β, j ≤ p + 1, (108)

and

(−1)n(β,j) ∂jGa,t(α, β, x, t)
∂xj > 0, x ∈ (a, t), t ∈ (a, b), j /∈ β, j ≤ p + 1. (109)

From (104), (105) and (108) one gets (95) for the case x ≤ t.
To address (96), let us note that if both βn−k, p > βB then βB /∈ α, βB + 1 ∈ α and βB + 1 /∈ β due

to the definition of βB and the p-alternate property of the boundary conditions (α, β). In that case
we can define the boundary conditions (α, β̌) by adding βB + 1 and removing βn−k to/from β, that
is β̌ = {β\βn−k} ∪ (βB + 1). Then, fixed t ∈ [a, b], the function g4(x) = G(α, β̌, x, t)− G(α, β, x, t) is n
times continuously differentiable on [a, b] and satisfies

Lg4 = 0, x ∈ (a, b);

g
(αj)

4 (a) = 0, αj ∈ α; g
(β j)

4 (b) = 0, β j ∈ β\βn−k;

g(βB+1)
4 (b) = −∂βB+1G(α, β, b, t)

∂xβB+1 . (110)

From (22) and (110) it follows that

(−1)n(β,βB+1)g(βB+1)
4 (b) < 0. (111)

Applying property 2 of Lemma 1 to (111) (note that p ≥ βB + 1) one has

(−1)n(β,βB+1)g(βB+1)
4 (x) < 0, x ∈ (a, b). (112)

Likewise, applying (95) to G(α, β̌, x, t) (note that β̌n−k < n− 1) one has

(−1)n(β̌,βB+1) ∂βB+1G(α, β̌, x, t)
∂xβB+1 < 0, x ∈ (a, b), (113)

which is also

(−1)n(β,βB+1) ∂βB+1G(α, β̌, x, t)
∂xβB+1 > 0, x ∈ (a, b). (114)

Combining (112) and (114) one finally gets to

(−1)n(β,βB+1) ∂βB+1G(α, β, x, t)
∂xβB+1
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= (−1)n(β,βB+1) ∂βB+1G(α, β̌, x, t)
∂xβB+1 − (−1)n(β,βB+1)g(βB+1)

4 (x) > 0, x ∈ (a, b), (115)

which is (96).
The proof of (99)–(101) can be done using the same auxiliar Green function G′(β, α, x, t) of (57),

applying (63) to (94)–(96) and taking into account that n(α, j) + m(α, j) = n− j− 1 when j ∈ α.

2.3. The Strongly Admissible Case

Last, but not least, we will prove a result on the strongly admissible case, extending the order of
the partial derivatives of G(x, t) for which the sign is constant in (a, b) up to the (n− 1)-th order.

Theorem 7. Let us assume that (α, β) are strongly admissible boundary conditions and that

(−1)m(α,j)aj(x) ≤ 0, x ∈ [a, b], 0 ≤ j ≤ n− 1. (116)

If n− 1 ∈ α let us assume that there exists at least one lα /∈ α such that

(−1)m(α,lα)alα(a) < 0. (117)

If n− 1 ∈ β let us assume that there exists at least one lβ /∈ β such that

(−1)m(α,lβ)alβ
(b) < 0. (118)

If either of the following two conditions holds

1. α1 = 0 and either {βB + 1, . . . n− 1} ⊂ α or {βB + 2, . . . n− 1} ⊂ β,
2. α1 > 0 and either {αA + 2, . . . n− 1} ⊂ α or {αA + 1, . . . n− 1} ⊂ β,

then

(−1)m(α,j) ∂jG(x, t)
∂xj > 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j ≤ n− 1. (119)

Proof. The key of this theorem is to prove that, fixed t ∈ [a, b], ∂nG(x,t)
∂xn ≥ 0 for x ∈ (a, b). This, added

to the property of the Green functions (see [8], Chapter 3, page 105) that states that

lim
x→t+

∂n−1G(x, t)
∂xn−1 = 1 + lim

x→t−

∂n−1G(x, t)
∂xn−1 , (120)

and the presence of one homogeneous boundary condition in ∂n−1G(x,t)
∂xn−1 at either a or b, guarantees that

∂n−1G(x,t)
∂xn−1 does not change sign on x ∈ (a, b). The same absence of change of the sign of the partial

derivatives of G(x, t) of lower orders follows immediately from this fact and the strong admissibility
of the homogeneous boundary conditions.

To prove the non-negative sign of ∂nG(x,t)
∂xn on (a, b) for fixed t ∈ [a, b], let us focus first on its value

at the extremes a and b. Thus, from the definition of L one has

∂nG(a, t)
∂xn = −

n−1

∑
l=0

al(a)
∂lG(a, t)

∂xl = −
n−1

∑
l=0,l /∈α

al(a)
∂lG(a, t)

∂xl , (121)

and
∂nG(b, t)

∂xn = −
n−1

∑
l=0

al(b)
∂lG(b, t)

∂xl = −
n−1

∑
l=0,l /∈β

al(b)
∂lG(b, t)

∂xl . (122)

From Theorem 3 and the hypotheses (116), (117), it is straightforward to show that ∂nG(a,t)
∂xn > 0 if

n− 1 ∈ α and ∂nG(a,t)
∂xn ≥ 0 else. As for ∂nG(b,t)

∂xn , if l /∈ β, then l ∈ α and the strong admissibility forces
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that m(α, l) = n(β, l). From here, Theorem 3 and the hypotheses (116), (118), again, one gets that
∂nG(b,t)

∂xn > 0 if n− 1 ∈ β and ∂nG(b,t)
∂xn ≥ 0 otherwise.

Next, let us do a similar comparison for the partial derivatives of lower order. If n − 1 ∈ α,
from Taylor’s theorem there must be a δ > 0 such that

∂n−1G(x, t)
∂xn−1 > 0, x ∈ (a, a + δ). (123)

Applying Taylor’s theorem recursively and taking into account (21) one proves that there exists a
δ1 > 0 such that

(−1)m(α,i) ∂iG(α, β, x, t)
∂xi > 0, x ∈ (a, a + δ1), 0 ≤ i ≤ n− 1. (124)

As for b, (22) already gives

(−1)n(β,n−1) ∂n−1G(b, t)
∂xn−1 =

∂n−1G(b, t)
∂xn−1 > 0. (125)

Applying again Taylor’s theorem recursively and taking into account (22) one has that there must
be a δ2 > 0 such that

(−1)n(β,i) ∂iG(α, β, x, t)
∂xi > 0, x ∈ (b− δ2, b], i /∈ β, 0 ≤ i ≤ n− 1, (126)

and

(−1)n(β,i) ∂iG(α, β, x, t)
∂xi < 0, x ∈ (b− δ2, b), i ∈ β, 0 ≤ i ≤ n− 1. (127)

From (123) and (125) it is clear that ∂n−1G(x,t)
∂xn−1 has the same (positive, in this case) sign on x ∈

(a, a + δ1) ∪ (b− δ2, b]. We can prove by induction that this same sign property is valid for all partial
derivatives of lower order, namely, that the signs given by (124), (126) and (127) are the same for each
partial derivative. Thus, let us suppose that the sign of the partial derivative of order l + 1 is the
same in the neighborhoods of a and b, and is given by (124). If l ∈ β, then by Taylor’s theorem, the
sign of the derivative of order l must be the opposite of the sign of the derivative of order l + 1 in
the neighborhood of b. Likewise, m(α, l) = m(α, l + 1) + 1, so from (124) the sign of the derivative of
order l must also be the opposite of the sign of the derivative of order l + 1 in the neighborhood of
a. Therefore, the sign of the partial derivatives of order l must coincide at the proximity of a and b.
Likewise, if l ∈ α then by Taylor’s theorem the sign of the derivative of order l must be the same as
the sign of the derivative of order l + 1 in the neighborhood of a, whereas the sign of the derivative of
order l at b is given by (−1)n(β,l). If l + 1 /∈ β then from (126) and since n(β, l) = n(β, l + 1) the sign
of the derivative of order l + 1 at b must also coincide with that of the derivative of order l at b. If
l + 1 ∈ β then n(β, l) = n(β, l + 1) + 1, so from (127) the sign of the derivative of order l + 1 at b must
also coincide with that of the derivative of order l at b. That means, again, that the signs of the partial
derivatives of G(x, t) of order l must also coincide at the neighborhoods of a and b.

A similar reasoning can be done for the case n− 1 ∈ β, leading to the same conclusions.
Once we have that the signs of the partial derivatives of G(x, t) on the vicinity of a and b are the

same, regardless of the order, and knowing already from Theorem 6 (note that the strongly admissible

conditions are (n − 1)-alternate) that the sign of ∂iG(x,t)
∂xi is constant on (a, b) for 0 ≤ i ≤ βB (case

α1 = 0, βn−k = βB), 0 ≤ i ≤ βB + 1 (case α1 = 0, βn−k > βB), 0 ≤ i ≤ αA (case α1 > 0, αk = αA) or
0 ≤ i ≤ αA + 1 (case α1 > 0, αk > αA), and determined by (124) in all cases (it is straightforward to

check), it remains to prove that the sign of ∂iG(x,t)
∂xi is constant on (a, b) for the rest of values of i up to

n− 1. We will do it by reduction to the absurd. Thus, let us suppose that there is an order l for which
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∂l G(x,t)
∂xl changes sign on (a, b). Since the sign at the vicinity of the extremes is the same, there must be

at least an even number of sign changes on (a, b). Let us call x1,l the minimum of these points and

x2,l the maximum of these points. Clearly the sign of ∂l G(x,t)
∂xl must be the same for x ∈ (a, x1,l) and

x ∈ (x2,l , b), and be given by (124).
Let us assume that {l, . . . , n− 1} ⊂ α. Then by Rolle’s Theorem we can obtain a sequence of

zeroes x1,j, j = l, . . . , n− 1, such that x1,l > x1,l+1 > . . . > x1,n−2 > a, for which the sign of ∂jG(x,t)
∂xj is

constant on (a, x1,j), and again given by (124). Since ∂n−1G(x,t)
∂xn−1 has a discontinuity at x = t, there must

be a smallest point x1,n−1 < x1,n−2 where there is a change of sign of ∂n−1G(x,t)
∂xn−1 from positive (see (124))

to negative, but from (120) it is clear that such a point cannot be x1,n−1 = t, so it must be a zero of
∂n−1G(x,t)

∂xn−1 . From the mean value theorem there must exist an x∗ ∈ (a, x1,n−1) such that ∂nG(x∗ ,t)
∂xn < 0.

However, the above reasoning implies that the sign of all partial derivatives of orders from l to n− 1
is given by (124) for x ∈ (a, x1,n−1), and from (116), that also means that the sign of ∂nG(x,t)

∂xn must be
non-negative for all x ∈ (a, x1,n−1), which is a contradiction.

A similar argument can be used if {l, . . . , n− 1} ⊂ β and if α1 > 0, which completes the proof.

Remark 6. If al(a) = 0 for all j /∈ α, then the hypothesis (117) of the Theorem 7 can be replaced by any
combination of al(x) that grants ∂nG(x,t)

∂xn > 0 for x ∈ (a, a + δ). Likewise, if al(b) = 0 for all j /∈ β, then the

hypothesis (118) of the Theorem 7 can be replaced by any combination of al(x) that grants ∂nG(x,t)
∂xn > 0 for

x ∈ (b− δ, b).

Remark 7. One cannot help wondering if, with the right combinations of signs of al(x) in [a, b], it is possible
to guarantee the conservation of sign of each partial derivative of G with respect to x in [a, b] regardless of how
αj and β j alternate in the case of strongly admissible conditions (that is, without imposing Conditions 1 and 2 in
Theorem 7). Even though that assertion looks quite plausible, its proof has been elusive to the authors so far.

3. Discussion

The results presented in this paper provide information about the sign and dependence on the
extremes a and b of the Green function of the problem (4) and its derivatives when the two-point
boundary conditions are admissible, property which encompasses many types of boundary conditions
usually covered in the literature (for instance, conjugate or focal boundary conditions). By doing so,
this paper extends (and to a small degree corrects, as discussed in the Remark 5) the results of Eloe
and Ridenhour in [1], a fine piece of Green function theory that is considered a reference in the subject.
The paper goes beyond to address the p-alternate and strongly admissible cases, for which results on
the signs of higher derivatives on the interval are provided. Thus, whilst both [1] and the Section 2.1
yield sign results only for derivatives up to max(α1, β1)-th order, in the case of p-alternate they are
supplied for derivatives up to αA + 1 (if α1 > 0) and βB + 1 (if α1 = 0) orders, and in the case of
strongly admissible conditions, for derivatives up to (n− 1)-th order. As stated in the Introduction,
this is relevant since the maximum value of the integer µ of the problem (6) which allows a cone-based
approach is limited by the order of the highest derivative of G(x, t) with constant sign, so that finding
results for higher derivatives of G(x, t) permits increasing the applicability of the cone theory to
such problems.

One question that is left open is whether it is possible to find conditions on the sign of the
coefficients of L which grant a constant sign of every derivative of G(x, t) on (a, b) up to the (n− 1)-th
order, for any strongly admissible boundary conditions. We hypothesize an affirmative response, but a
proper proof is still pending.

To conclude, other areas that can benefit from an extension of these sign findings are those of
boundary conditions mixing different derivatives or those with integral conditions. The determination
of the sign of the Green function of fractional boundary value problems is also a topic that has raised
interest recently, as part of more sophisticated mechanisms to find solutions of other related non-linear
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fractional boundary value problems (see for instance [23–26]). However, there is a lot to do in this
area, since most of these cases require the explicit calculation of the associated Green function, and this
calculation is only possible in the simplest ones. A more generic approach that provided signs without
having to solve fractional differential equations, similar to that presented here, would, therefore, be
very welcome.
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