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Abstract: If a graph can be embedded in a smooth orientable surface of genus g without edge crossings
and can not be embedded on one of genus g− 1 without edge crossings, then we say that the graph
has genus g. We consider a mapping on the set of graphs with m vertices into itself. The mapping
is called a linear operator if it preserves a union of graphs and it also preserves the empty graph.
On the set of graphs with m vertices, we consider and investigate those linear operators which map
graphs of genus g to graphs of genus g and graphs of genus g + j to graphs of genus g + j for j ≤ g
and m sufficiently large. We show that such linear operators are necessarily vertex permutations.
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1. Introduction

Let Gn denote the set of all simple loopless graphs on n vertices. Determining whether a graph
belongs to some specified set is sometimes difficult. For example, finding the genus of a graph is an
NP-hard problem. A good method of finding families of graphs of a specific genus is to consider
operators on known families of graphs of specific genus.

A mapping T on Gn is called a linear operator if it preserves the unions (that is, T(G1 ∪ G2) =

T(G1) ∪ T(G2) for any graphs G1 and G2), and preserves the edgeless graph, Kn, in Gn.
Such linear operators were studied by Pullman [1] in 1985 and by Hershkowitz [2] in 1987.

Those mappings that preserve the clique covering number were studied in [1] and the mappings that
preserve maximum cycle length were studied in [2]. The mappings that preserve chromatic number
and planarity were studied in [3].

For a graph G, let V(G) denote the vertex set and E(G) denote the edge set so that an edge in E(G)

is represented by an unordered pair of vertices, {u, v}, or simply uv. Isolated vertices does not affect
the properties that we are investigating. So, we may think of nonempty subgraph Ĝ of G, which is
obtained by deleting its isolated vertices from G. We now adopt the convention that “G has a property”
means “Ĝ has that property”. Therefore if we say that “E is an edge” means that Ê = K2 and if we say
that “G is a 3-cycle”, we mean that “Ĝ is a 3-cycle”.

Let the vertex set of the graphs in Gn be {v1, v2, . . . , vn}. If the edge set of a graph E consists only
of the edge vivj, we denote E by Ei,j. A linear operator T : Gn → Gn is called a vertex permutation ([2]) if
there is a permutation, τ, of {1, 2, · · · , n} such that if vivj is an edge of G , i 6= j, then vτ(i)vτ(j) is an
edge of T(G), which is equivalent to

T(Ei,j) = Eτ(i),τ(j), (1)

for all i 6= j.
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We say that a linear operator T preserves a set S if X ∈ S implies that T(X) ∈ S . The linear
operator T strongly preserves the set S if

X ∈ S if and only if T(X) ∈ S . (2)

Thus, “T strongly preserves the set S” means that “T preserves the set S and T preserves the
complement Gn\S”.

If T : Gn → Gn is a linear operator that maps the whole set Gn to a single element, then T preserves
any set that contains that single element. So, for our investigation, additional conditions must be
added to the linear operator as we see in the following example.

Example 1. Let P be the Petersen graph, Then P is a 3-regular graph. Let T : G10 → G10 be defined by
T(A) = P for all A 6= K and T(K) = K. Then T is a linear operator and preserves 3-regular graphs, but T
maps every graph A except K to the 3-regular graph P. Therefore T strongly preserves no set of graphs except P
and K.

Let h be a function on Gn and T : Gn → Gn be a linear operator. The operator T is said to preserve
the function h if T preserves the set {A ∈ Gn|h(A) = k} for each k ∈ h(Gn), the image of h. This is
equivalent that

T preserves h if and only if, for each k ∈ h(Gn),
T strongly preserves h−1(k). (3)

Let ε(G) denote the number of edges in G, i.e., ε(G) = |E(G)|, the cardinality of the set E(G). We
say that a graph G is a k-star ([3]) if G is consisted of k edges sharing a common vertex. Then a 2-star is
a path of two connected edges.

Let G and H be graphs in Gn and E(G) ⊆ E(H). Then we say that G is dominated by H or H
dominates G, and we denote G v H.

We say that the genus of a surface is 0 when the surface is a sphere or a plane. A surface has genus
1 if it is equivalent to a torus or a sphere with 1 “handle”. An orientable smooth surface has genus k if
it is equivalent to a surface with k holes, or a sphere with k “handles”.

The genus of a graph is defined as the genus of the simplest surface in which it can be embedded
(drawn) without crossings of edges. There are well known facts such that the genus of a graph is 0
(i.e., the surface is planar) if it is not a subdivision of a K5 or K3,3, where K5 is the complete graph
on 5 vertices, and K3,3 is the complete bipartite graph the vertex bipartition being two sets each of
three members.

For G ∈ Gn, let us denote the genus of G by γ(G). Thus, γ is a function γ : Gn → Z+, the set of
nonnegative integers, which is defined by γ(G) = h if G has genus h.

For a graph G with γ(G) = h, if we add any edge E to G then G ∪ E will have genus at most h + 1,
since at most one “handle” should be attached to the surface to embed the edge. For more known facts
on the genus of a graph and embedding, we refer [4] or the following mathematical web sites:
http://mathworld.wolfram.com/GraphTheory.html.
https://en.wikipedia.org/wiki/Graph_theory.

Now, we define a function ϕ on the set of natural integers N, such that Gn has a graph G with
γ(G) = h. That is, define ϕ : N→ N by ϕ(h) = n if and only if Gn contains a graph G with γ(G) = h
and Gn−1 does not. As an example, ϕ(1) = 5 since complete graph K5 has genus 1 and each graph on
four vertices has genus 0. That is, ϕ(h) gives the minimum n ∈ N such that Gn has a graph G with
γ(G) = h. Also, extending this function ϕ to the nonnegative integers, we define ϕ(Kn) = 0.

In [5] the following theorem was established:

Theorem 1 ([5] Theorem 3.7). For a nonnegative integer h, let n ≥ 6 if h = 0 or 1, and n ≥ 8 + ϕ(h− 1) if
h ≥ 2. If T : Gn → Gn is a linear operator, then, the following are eqivalent:

http://mathworld.wolfram.com/GraphTheory.html
https://en.wikipedia.org/wiki/Graph_theory
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1. T preserves consecutive two genera h and h + 1;
2. T strongly preserves genus h;
3. T preserves genus h and is bijective ;
4. T preserves genus h and T(Kn) = Kn;
5. T maps edges to edges and T preserves genus h for h ≥ 1;
6. T is a vertex permutation.

In this article, we extend these results. The following join of two graphs will be used.

Definition 1. Let u, v, and w be vertices. Let G ∈ Gq, H ∈ Gr, V(G) ∩V(H) = ∅, u ∈ V(G), v ∈ V(H),
and w /∈ V(G) ∪ V(H). Define the (u, v)-append of G and H, G u•v H, to be the graph on r + q − 1
vertices whose vertex set is (V(G) \ {u}) ∪ (V(H) \ {v}) ∪ {w} and let the edge set of G u•v H to be the
set {xy|xy ∈ E(G), x, y 6= u} ∪ {xy|xy ∈ E(H), x, y 6= v} ∪ {xw|xu ∈ E(G)} ∪ {xw|xv ∈ E(H)}. See
Figure 1. If the vertex u in G is not specified, that is the choice of vertex u is arbitrary, we write G •v H or
H v• G, and if neither is specified we write G • H.

v1 v2

v3 v4

u1

Graph G

u2

u3 u4

Graph H

v1

wv3

v4

w

u3

u2

u4

Graph G v2•u1 H

Figure 1. The append of two graphs.

For example, if G is a graph one of whose vertices is v we write K4 •v G since any choice of a
vertex from K4 will give the same graph appended to the vertex v of G. Similarly, if C6 is a 6 cycle,
we write K4 • C6, since for any choices of vertices of K4 and any choice of vertices of C6 give the same
appended graph. Further, when appending more than two graphs, we use a sequence of vertices
w1, w2, · · · so that for v1 ∈ G1, v2, u2 ∈ G2, etc., the graph G1 v1•u2 G2 v2•u3 G3 · · · is well defined.
In Figure 2, we show the appending of two K4’s to the ends of an edge E.
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E

Figure 2. K4 • E • K4.

2. A Construction

We define the box-sum of graphs K5 � F where F is a forest. We assume that the number n of
vertices in Gn is at least four times the number of edges in the forest plus the number of components
of F.

We begin defining K5 � H where H is a tree as follows: Let H be a tree with nonisolated vertex set
{v1, v2, · · · , vq+1} and with q edges, Ei = {u

(i)
1 u(i)

2 }, i = 1, · · · , q, where u(i)
1 , u(i)

2 ∈ {v1, v2, · · · , vq+1}.
To each edge Ei = u(i)

1 u(i)
2 , of H assign the vertices w(i)

1 , w(i)
2 , w(i)

3 ∈ {vq+2, vq+3, · · · , vn} and such
that for i 6= j,

{w(i)
1 , w(i)

2 , w(i)
3 } ∩ {w

(j)
1 , w(j)

2 , w(j)
3 } = ∅.

Let K(i)
5 be the complete graph induced by the set of vertices

{u(i)
1 u(i)

2 , w(i)
1 , w(i)

2 , w(i)
3 }.

Let K5 � H =
⋃q

i=1 K(i)
5 . Then, K5 � H is a graph on 4ε(H) + 1 vertices such that

1. H is a subgraph of K5 � H;
2. K5 � H contains q blocks;
3. each block is isomorphic to K5; and
4. exactly one edge of H is dominated by each block of K5 � H .

Let F = H1 ∪ · · · ∪ H` be a forest with disjoint trees H1, · · · , H`. Let {v1, v2, · · · , vs} be the set
of nonisolated vertices of F, and let F have a total of r edges, Ei = {u(i)

1 u(i)
2 }, i = 1, · · · , r, where

u(i)
1 , u(i)

2 ∈ {v1, v2, · · · , vs}.
Let {w(i)

1 , w(i)
2 , w(i)

3 |i = 1, · · · , r} be a set of vertices in {vs+1, · · · , vn} such that

{w(i)
1 , w(i)

2 , w(i)
3 } ∩ {w

(j)
1 , w(j)

2 , w(j)
3 } = ∅.

Let K(i)
5 be the complete graph induced by the set of vertices

{u(i)
1 u(i)

2 , w(i)
1 , w(i)

2 , w(i)
3 }.

Let

K5 � F1 =
r⋃

i=1

K(i)
5 =

l⋃
i=1

K5 � Hi.
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Then K5 � F is a graph such that

1. F is a subgraph of K5 � F;
2. K5 � F contains ` components and a total of ε(H1) + ε(H2) + · · ·+ ε(H`) (= s) blocks;
3. the ith component of K5 � F is K5 � Hi;
4. exactly one edge of F is dominated by each block of each component of K5 � F;
5. The genus of K5 � F is s, the number of edges in F.

Note that K5 � F is not unique, it depends on the choice of vertices w(1), w(2), · · · , w(`−1) and
v(2), v(3), · · · , v(`).

Example 2. In Figure 3 we see a tree H and in Figure 4 we see the graph K5 � H with the bold edges indicating
the original tree H.

v1

v2

v3

v4

v5

Figure 3. The tree H.

v1

v2

v3

v4

v5

w(1)
1

w(1)
2

w(1)
3

w(2)
1

w(2)
2

w(2)
3

w(3)
1

w(3)
2

w(3)
3

w(4)
1

w(4)
2

w(4)
3

Figure 4. The graph K5 � H.
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3. Linear Operators That Preserve Two Genera of a Graph

Let X be a subset of Gn and let
⋃X = ∪X∈XX. So that

⋃
ker(T) is the largest graph in ker(T).

Let ε(G) = |E(G)|, the number of edges in the graph G and let E be the set of all edge graphs in Gn.
Let T : Gn → Gn be a linear operator.

• Let N (T) = ker(T) ∩ E . Let N(T) =
⋃

ker(T) and let FN(T) be a spanning forest of N(T).
• Let W(T) = {E ∈ E|∃F ∈ E 3 E v T(F)}, W(T) =

⋃W and FW(T) be a spanning forest of
W(T).

• Let U (T) = N (T) ∪W(T), U(T) = N(T) ∪W(T) and FU(T) be a spanning forest of U(T).

In the following lemma we shall use the function ϕ : N→ N defined above Theorem 1 such that
ϕ(h) gives the minimum n ∈ N such that Gn has a graph G with γ(G) = h. Further recall that an
idempotent operator, L, is one for which L2 = L.

Lemma 1. Let k and j be positive integers and let n ≥ 4j + ϕ(k). Let L : Gn → Gn be an idempotent linear
operator that preserves the set of graphs of genus k and the set of graphs of genus k + j. Then, ε(FU(L)) < j.

Proof. Suppose that ε(FU(L)) ≥ j. Let FU(L) = E1 ∪ E2 ∪ · · · ∪ Eε(Fu(L)) where each Ei is an edge, and
label the edges so that E1 ∪ · · · ∪ E` vW(L) and E`+1 ∪ · · · ∪ Eε(FU(L)) v N(L). Further, for E ∈W(L),
since L is idempotent and E v L(F), L(E) v L2(F) = L(F).

Let F̃ = E1 ∪ E2 ∪ · · · ∪ Ej, and consider K5 � F̃. Then, K5 � F̃ has genus j, and meets 4j+ 1 vertices.
Let Q be a graph of genus k on n− 4j vertices and let G = (K5 � F̃) • Q. G meets all the vertices of
K5 � F̃ (4j + 1 vertices) and all the vertices of Q (n− 4j vertices). Since in G, (K5 � F̃) and Q share one
vertex, G meets n vertices. Then γ(G) = k + j and γ(G \ (E1 ∪ E2 ∪ · · · ∪ Ej)) = k since the deletion
of each edge in F̃ reduces the genus of (K5 � F̃) by one and hence reduces the genus of G by one.
Let Fi, i = 1, · · · , ` be edges dominated by G such that Ei v L(Fi).

Now, G = [G \ (E1 ∪ E2 ∪ · · · ∪ Ej)]∪ (E1 ∪ E2 ∪ · · · ∪ Ej) = [G \ (E1 ∪ E2 ∪ · · · ∪ Ej)]∪ (E1 ∪ E2 ∪
· · · ∪Ej)∪ (F1∪ · · · ∪ F`), since G \ (E1∪E2∪ · · · ∪Ej) w (F1∪ · · · ∪ F`). Thus G \ (E1∪E2∪ · · · ∪Ej) =

[G \ (E1 ∪ E2 ∪ · · · ∪ Ej)] ∪ (F1 ∪ · · · ∪ F`). So

L(G) = L([G \ (E1 ∪ E2 ∪ · · · ∪ Ej)] ∪ (E1 ∪ E2 ∪ · · · ∪ Ej))

= L([G \ (E1 ∪ E2 ∪ · · · ∪ Ej)] ∪ (E1 ∪ E2 · · · ∪ Ej) ∪ (F1 ∪ · · · ∪ F`))
= L(G \ (E1 ∪ E2 ∪ · · · ∪ Ej)) ∪ L(E`+1 ∪ · · · ∪ Ej)

= L(G \ (E1 ∪ E2 ∪ · · · ∪ Ej))

since L(E`+1 ∪ · · · ∪ Ej) = K. We now have that k + j = γ(G) = γ(L(G)) = γ(L(G \ (E1 ∪ E2 ∪
· · · ∪ Ej))) and k = γ(G \ (E1 ∪ E2 ∪ · · · ∪ Ej)) = γ(L(G \ (E1 ∪ E2 ∪ · · · ∪ Ej))), a contradiction since
L(G) = L(G \ (E1 ∪ E2 ∪ · · · ∪ Ej)). Thus, ε(FU(L)) < j.

Lemma 2. Let 1 ≤ j ≤ 5 and let n ≥ 4j + ϕ(k). If L : Gn → Gn is an idempotent linear operator that
preserves graphs of genus k and graphs of genus k + j then L is the identity mapping.

Proof. Consider FU(L). By Lemma 1 ε(FU(L)) < j. Note, if FU(L) = K then L is the identity, so we
assume that 1 ≤ ε(FU(L)) ≤ j− 1 ≤ 4. Thus, the vertices incident with a tree dominated by FU(L)
induces a subgraph of a K5, by permuting vertices, we may suppose that the K5 = K(1)

5 is induced by

vertices {v1, v2, v3, v4, v5}. Further, if F is any edge, L(F) v F ∪ K(1)
5 . Let K(i)

5 , i = 2, · · · j be appended

so that for H a graph of genus k on n− 4j vertices, G = K(1)
5 • K(2)

5 • · · · • K(j)
5 • H dominates edges

whose images dominate FW(L).
Let F2, · · · , Fj be edges dominated by K(2)

5 , · · ·K(j)
5 respectively such that L(F2.∪, · · · .∪, Fj) w FW(L).

Then γ(G) = k + j and γ(G \ (FU(L) ∪ F2 ∪ · · · ∪ Fj)) = k, so that γ(L(G)) = k + j and γ(L(G \
(FU(L) ∪ F2 ∪ · · · ∪ Fj))) = k. But,
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L(G) = L([G \ (FU(L) ∪ F2 ∪ · · · ∪ Fj)] ∪ [FU(L) ∪ F2 ∪ · · · ∪ Fj])

= L([G \ (FU(L) ∪ F2 ∪ · · · ∪ Fj)]) ∪ L([FU(L) ∪ F2 ∪ · · · ∪ Fj])

= L([G \ (FU(L) ∪ F2 ∪ · · · ∪ Fj)]) ∪ L(F2 ∪ · · · ∪ Fj).

But L(F2 ∪ · · · ∪ Fj) adds at most j − 1 to the genus of L(G \ (FU(L) ∪ F2 ∪ · · · ∪ Fj)). That is
γ(L(G \ (FU(L) ∪ F2 ∪ · · · ∪ Fj))) ≤ k + j− 1.

That is L(G) = L(G \ (FU(L) ∪ F2 ∪ · · · ∪ Fj)), so k + j = γ(L(G)) = γ(L(G \ (FU(L) ∪ F2 ∪ · · · ∪
Fj))) ≤ k + j− 1, a contradiction.

We have shown that ε(FU(L)) = 0 and hence L is the identity.

The following lemma was obtained in [6], but we include the proof for completeness.

Lemma 3 ([6] Lemma 2.5). Let K be a finite set and φ : K → K be arbitrary mapping. Then there is some
natural number r such that φr (the r-th power of φ) is idempotent.

Proof. Since K is finite, and φ can be considered a subset of K×K, the set {φ, φ2, φ3, . . . , φ`, . . .} is a
finite set. Thus there exist two nonnegative integers a, b with 1 ≤ a < b such that φa = φb. Let d = b− a.
Since φa = φb = φ(a+d), if k is a nonnegative integer, then φ(a+kd) = φ(a+d)+(k−1)d = φ(a+(k−1)d), etc.
So that for any nonnegative integer k, φ(a+kd) = φa.

Suppose that c is a nonnegative integer with c ≥ a. Then c = a + z for some nonnegative integer
z. Thus, φc+kd = φ(a+z+kd) = φ(a+kd)+z = φ(a+z) = φc. That is, for any nonnegative integers c, k with
c ≥ a, φc+kd = φc.

Now, let d = b− a, then d ≥ 1 since b > a. Thus, ad ≥ a. Hence it follows that φ(ad+kd) = φad. For
k = a we have (φad)2 = φ2ad = φ(ad+ad) = φad. That is φad is idempotent.

Theorem 2. Let 1 ≤ j ≤ 5 and j ≤ h be positive integers and let n ≥ 4j + 4 + ϕ(h). If T : Gn → Gn is a
linear operator that preserves graphs of genus h and graphs of genus h + j then T is a vertex permutation.

Proof. Let L be a power of T that is idempotent as guaranteed by Lemma 3. By Lemma 2, L is the
identity. It follows that T must be bijective since L is a power of T. Since 4j + 4 + ϕ(h) ≥ 8 + ϕ(h− 1) ,
by Theorem 1 the theorem follows.

4. Conclusions

In this article, we continue our investigation on the linear operators that preserve the genera
of a graph. Now we showed that those linear operators are the form of vertex permutations. And
we added some equivalent conditions of the linear operators on the set of graphs that preserve the
genera of a graph, say, the linear operator that preserves two genera h and h + j of a graph. For further
investigation, we give a conjecture:

Conjecture. If T : Gn → Gn is a linear operator that preserves any two genera h and k of a graph,
then T is a vertex permutation.
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