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Abstract: We characterize spheres and the tori, the product of the two plane circles immersed in the
three-dimensional unit sphere, which are associated with the Laplace operator and the Gauss map defined
by the elliptic linear Weingarten metric defined on closed surfaces in the three-dimensional sphere.
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1. Introduction

A three-dimensional sphere has been an interesting geometric model space since Poincaré’s conjecture
was proposed. Furthermore, the complete surfaces of the unit three-sphere S3(1) in the four-dimensional
Euclidean space E4 have unique and special geometric properties. For example, there are no complete
surfaces immersed in S3(1) with constant extrinsic Gaussian curvature KN satisfying KN < −1 and
−1 < KN < 0. Here, the extrinsic Gaussian curvature KN is defined by the determinant of the shape
operator of a surface in S3(1) ([1], p. 138). However, there are infinitely many complete and flat surfaces
in S3(1) such as the tori S1(r1) × S1(r2), the product of two plane circles, where r2

1 + r2
2 = 1. Among

them, the Clifford torus S1(1/
√

2)× S1(1/
√

2) is minimal and flat in S3(1), and its closed geodesics are
mapped onto closed curves of the finite-type in S3(1). There are many papers devoted to characterizing
the Clifford torus with different view points by dealing with minimal surfaces of the three-sphere [2–4].
By means of isometric immersion and the Gauss map of submanifolds, the tori in S3(1) were studied in
[5] in terms of the notion of finite-type immersion, and in [6], they were characterized with the so-called
I I-metric and I I-Gauss map. The framework of finite-type immersion has been introduced and developed
since the 1970s in generalizing the theory of minimal submanifolds in Euclidean space [7]. By definition,
an isometric immersion x : M → Em of a Riemannian manifold M into a Euclidean space Em is said to
be of the finite-type if the immersion x can be represented as a sum of finitely many eigenvectors of the
Laplace operator ∆ of M in the following:

x = x0 + x1 + · · ·+ xk,

where x0 is a constant vector and x1, ..., xk are non-constant vectors satisfying ∆xi = λixi for some λi ∈ R,
i = 1, 2, ..., k. If all of λ1, ..., λk are different, the immersion x is called k-type or the submanifold M is said
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to be of the k-type (cf. [7]). The simplest finite-type is of course the one-type. In this case, the immersion
x satisfies:

∆x = kx + C (1)

for some non-zero constant k and a constant vector C. It is well known that a submanifold M of the
Euclidean space Em is of the one-type if and only if M is a minimal submanifold of Em or a minimal
submanifold of a hypersphere of Em [7]. From this point of view, spherical submanifolds, i.e., submanifolds
lying in a sphere, draw our attention in studying finite-type submanifolds in Euclidean space.

Let Sm−1(1) be the unit hypersphere of Em centered at the origin and x : M → Sm−1 an isometric
immersion of a Riemannian manifold M into Sm−1(1). In this case, if the immersion x identified with the
position vector in the ambient Euclidean space is of the finite-type, we call the spherical submanifold M
finite-type. In particular, a spherical finite-type immersion x : M → Sm−1 of a Riemannian manifold M
into Sm−1(1) is said to be mass-symmetric if x0 is the center of the unit sphere Sm−1(1).

The notion of finite-type immersion can be extended to any smooth map φ : M→ Em of M into the
Euclidean space Em. A smooth map φ is said to be of the finite-type if φ can be expressed as a sum of
finitely many eigenvectors of ∆ such as:

φ = φ0 + φ1 + ... + φk,

where φ0 is a constant vector and φ1, ..., φk are non-constant vectors satisfying ∆φi = λiφi for some λi ∈ R,
i = 1, 2, ..., k. Among such maps, the Gauss map is one of the most typical and meaningful smooth maps
with geometric meaning.

Let us consider how the Gauss map plays an important role in this regard. Let Gr(n, m) be the
Grassmann manifold consisting of all oriented n-planes in Em passing through the origin. Let M
be an n-dimensional submanifold of the Euclidean m-space Em. Now, we choose an adapted local
orthonormal frame {e1, e2, · · · , em} in Em such that e1, e2, · · · , en are tangent to M and en+1, en+2, · · · , em

normal to M. An oriented n-plane passing through a point o can be identified with (e1 ∧ e2 ∧ · · · ∧ en)(o).
Then, the Grassmann manifold Gr(n, m) is regarded as a submanifold of the Euclidean space EN ,

where N =
( m

n
)
. We define an inner product� ·, · � on G(n, m) ⊂ EN by:

� ei1 ∧ · · · ∧ ein , ej1 ∧ · · · ∧ ejn �= det(〈eil , ejk 〉),

where l, k run over the range {1, 2, ..., n}. Then, {ei1 ∧ ei2 ∧ · · · ∧ ein |1 ≤ i1 < · · · < in ≤ m} is an
orthonormal basis of EN , and the Grassmann manifold Gr(n, m) is a spherical submanifold contained in
the unit hypersphere SN−1(1). The smooth map carrying a point p in M to an oriented n-plane in Em by
the parallel translation of the tangent space of M at p to an n-plane passing through the origin in Em is
called the Gauss map, which is represented by η : M→ Gr(n, m) ⊂ EN via η(p) = (e1 ∧ e2 ∧ · · · ∧ en)(p).
In this regard, B.-Y.Chen et al. initiated the study of submanifolds of Euclidean space with the finite-type
Gauss map [8].

On the other hand, it is also interesting to consider the case of the Gauss map η satisfying some
differential equations such as ∆η = f η for some smooth function f , which looks similar to an eigenvalue
problem, but is not exactly: for example, the helicoid and the right cone in R3 have the Gauss map η, which
satisfies respectively, ∆η = f η and ∆η = f (η + C) for some non-vanishing function f and a non-zero
constant vector C [9].
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Inspired by this, in [9], one of the authors defined the notion of the pointwise one-type Gauss map.
The Gauss map η of a submanifold M in the Euclidean space Em is said to be of the pointwise one-type if
it satisfies:

∆η = f (η + C)

for some non-zero smooth function f and a constant vector C. In particular, it is said to be of the pointwise
one-type of the first kind if the constant vector C is zero. If C 6= 0, it is said to be of the pointwise one-type
of the second kind.

A surface M in S3(1) is called Weingarten if some relationship between its two principal curvatures
κ1, κ2 is satisfied, namely if there is a smooth function (the Weingarten function) of two variables satisfying
W(κ1, κ2) = 0. Especially, a surface in S3(1) is called linear Weingarten if its mean curvature H and the
external Gaussian curvature KN satisfy:

2aH + bKN = c ≥ 0

for some constants a, b and c, which are not all zero at the same time. In particular, a2 + bc > 0 gives the
ellipticity for the differential equations of the coordinate functions of a parametrization x = x(s, t) relative
to the principal curvatures, and it enables for the symmetric tensor σ = aI + bI I defining a Riemannian
metric on the surface, where I is the induced metric on M and I I the second fundamental form. Briefly
speaking, choose an orthonormal basis {e1, e2} at a point p ∈ M diagonalizing the shape operator S, i.e.,

Sei = −κiei,

where i = 1, 2. Then,
σ(e1, e1)σ(e2, e2)− σ(e1, e2)

2

= (a + bκ1)(a + bκ2)

= a2 + b(2aH + bKN)

= a2 + bc > 0.

If necessary, the unit normal vector can be chosen by taking the opposite direction with a unit normal
vector for σ to be positive definite. We call the surface (M, σ) with the Riemannian metric σ an elliptic
linear Weingarten surface (ELW) and σ an elliptic linear Weingarten metric (ELW) [10,11].

In the present paper, two-spheres and the tori S1(r1)× S1(r2) (r2
1 + r2

2 = 1) in S3(1) are characterized
with the notion of the ELW metric and its Laplace operator.

We assume that a surface of the sphere S3(1) is complete and connected unless stated otherwise.

2. Preliminaries

Let E4 be the four-dimensional Euclidean space with the canonical metric tensor 〈·, ·〉 and S3(1) the
unit hypersphere centered at the origin in E4.

Let M be a surface in S3(1). We denote the Levi–Civita connection by ∇̃ of S3(1) and the induced
connection ∇ of M in S3(1). We use the same notation 〈·, ·〉 as the canonical metric tensors of E4, S3(1)
and M.

The Gauss and Weingarten formulas of M in S3(1) are respectively given by:

∇̃XY = ∇XY + 〈SX, Y〉N, ∇̃X N = −SX.

for vector fields X, Y, and Z tangent to M, where N is the unit normal vector field associated with the
orientation of M in S3(1) and S : TM→ TM is the shape operator (or Weingarten map), where TM is the
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tangent bundle of M. Let H and KN be the mean curvature and the extrinsic Gaussian curvature of M in
S3(1) defined by H = 1

2 trS and KN = det S of M, respectively. M is said to be flat if its Gaussian curvature
K = 1 + KN in E4 vanishes and M is said to be minimal in S3(1) if the mean curvature H vanishes.
In particular, the Clifford torus S1(1/

√
2)× S1(1/

√
2) is minimal in S3(1) and flat in E4, which is of the

one-type in E4 [5,7].
Let M be a linear Weingarten surface of S3(1). Then, a linear combination of its mean curvature H

and its extrinsic Gaussian curvature KN is constant on M, that is there exist three real numbers a, b, c with
(a, b, c) 6= (0, 0, 0) such that:

2aH + bKN = c. (2)

For convenience, we may assume that c ≥ 0. It requires a2 + bc > 0 for (2) to be elliptic for the
differential equations of the coordinate functions of a parametrization x = x(s, t) for M relative to the
principal curvatures.

Let x : M→ S3(1) be an isometric immersion induced from E4 in a natural manner, and we assume
that {s, t} is a local coordinate system of M. We may regard x as the position vector of the point of M
in E4.

We put:

E1 = 〈xs, xs〉, F1 = 〈xs, xt〉, G1 = 〈xt, xt〉, E2 = 〈xss, N〉, F2 = 〈xst, N〉, G2 = 〈xtt, N〉.

Then, we have the first and second fundamental forms, respectively,

I = E1ds2 + 2F1dsdt + G1dt2,

I I = E2ds2 + 2F2dsdt + G2dt2.

Together with the first fundamental form I and the second fundamental form I I of M, the first and
second fundamental forms I and I I define a Riemannian metric σ = aI + bI I on M as shown briefly in the
Introduction [10,11].

3. The Gauss Map of the ELW Surface of S3(1) in E4

Let M = (M, σ) be an ELW surface of S3(1) with the Riemannian metric σ. For a two-dimensional
surface (M, σ), we can adopt an isothermal coordinate system. Let u, v be the isothermal coordinates for
the metric σ. Then, we have:

σ = (aE1 + bE2)du2 + 2(aF1 + bF2)dudv + (aG1 + bG2)dv2 = λ(du2 + dv2) (3)

for some positive valued function λ. Using the first and second fundamental forms I and I I, we have the
shape operator S of the form:

S =

(
S11 S12

S21 S22

)
, (4)

where:
S11 =

1
E1G1 − F2

1
(G1E2 − F1F2), S12 =

1
E1G1 − F2

1
(G1F2 − F1G2),

S21 =
1

E1G1 − F2
1
(−E2F1 + E1F2), S22 =

1
E1G1 − F2

1
(E1G2 − F1F2).
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Equation (3) gives:

λ = aE1 + bE2 = aG1 + bG2 and aF1 + bF2 = 0

and the Laplacian ∆σ with respect to the Riemannian metric σ by:

∆σ =− 1√
det σ

(
∂2

∂u2 +
∂2

∂v2 )

= − 1
λ
(

∂2

∂u2 +
∂2

∂v2 ).

(5)

In turn, we get:
λ2 = (aE1 + bE2)(aG1 + bG2)− (aF1 + bF2)

2,

from which,
λ2 = {a2 + b(2aH + bKN)}(E1G1 − F2

1 ).

Since 2aH + bKN = c ≥ 0, we get

λ2 = (a2 + bc)(E1G1 − F2
1 ).

Without loss of generality, we may assume that a2 + bc = 1. Then, we get:

λ =
√

E1G1 − F2
1 .

We then have the Gauss map η : M→ Λ2E4 = E6 of M by:

η =
xu ∧ xv

||xu ∧ xv||
=

xu ∧ xv

λ
.

For later use, we compute the Laplacian ∆σ of η associated with the Riemannian metric σ. After a
long and straightforward computation by applying the Christoffel symbols and using the Gauss and
Weingarten formulas on M as an immersed surface in S3(1) ⊂ E4 several times, we have:

Lemma 1. Let M be an ELW surface of S3(1) with the Riemannian metric σ. In terms of the isothermal coordinates
u, v with respect to the metric σ, we have:

−∆ση =
1
λ
(

∂2

∂u2 +
∂2

∂v2 )η

= λ( f1 + g1)η + ( f2 + g2)N ∧ xu + ( f3 + g3)N ∧ xv

+ ( f4 + g4)N ∧ x + ( f5 + g5)x ∧ xu + ( f6 + g6)x ∧ xv,

(6)

where:

f1 = −
G1E2

2
λ3 −

E1

λ
−

E1F2
2

λ3 +
2E2F1F2

λ3 , (7)

f2 =
E2

2λ3 (G1(E1)v − F1(G1)u)− (
F2

λ
)u −

F2

2λ3 (G1(E1)u − 2F1(F1)u + F1(E1)v), (8)

f3 = (
E2

λ
)u +

E2

2λ3 (−F1(E1)v + E1(G1)u)−
F2

2λ3 (−F1(E1)u − E1(E1)v + 2E1(F1)u),
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f4 =
2E1F2

λ
− 2E2F1

λ
,

f5 = (
F1

λ
)u −

E1

2λ3 ((E1)vG1 − F1(G1)u) +
F1

2λ3 (G1(E1)u − 2F1(F1)u + F1(E1)v),

f6 = −(E1

λ
)u −

E1

2λ3 (E1(G1)u)−
F1

2λ3 (F1(E1)u − 2E1(F1)u),

g1 = −
G1F2

2
λ3 −

G1

λ
−

E1G2
2

λ3 +
2F1F2G2

λ3 ,

g2 =
F2

2λ3 (2G1(F1)v − G1(G1)u − F1(G1)v)− (
G2

λ
)v −

G2

2λ3 (G1(E1)v − F1(G1)u),

g3 = (
F2

λ
)v +

F2

2λ3 (−2F1(F1)v + F1(G1)u + E1(G1)v)−
G2

2λ3 (−F1(E1)v + E1(G1)u),

g4 =
2F1G2

λ
− 2F2G1

λ
,

g5 = (
G1

λ
)v −

F1

2λ3 (2G1(F1)v − G1(G1)u − F1(G1)v) +
G1

2λ3 (G1(E1)v − F1(G1)u),

g6 = −( F1

λ
)v +

F1

2λ3 (2F1(F1)v − F1(G1)u − E1(G1)v) +
G1

2λ3 (−F1(E1)v + E1(G1)u).

4. Closed ELW Surfaces in S3(1) with the Pointwise One-Type Gauss Map

Let M = (M, σ) be a closed and ELW surface of S3(1) with the ELW metric σ. Here, a closed
surface means a compact surface without a boundary. In this section, we assume that a2 + bc = 1 unless
otherwise stated.

Let x : M→ S3(1) ⊂ E4 be an isometric immersion of M into S3(1). M is said to be of the σ-finite-type
if x admits a finite sum of eigenvectors of the Laplace operator ∆σ defined by the metric σ satisfying:

x = x0 +
k

∑
i=1

xi, (9)

where x0 is a constant vector and xi are non-constant E4-valued maps satisfying ∆σxi = λixi with
λ1, λ2, · · · , λk, and λi ∈ R (i = 1, 2, ..., k). It is said to be of the σ-infinite-type otherwise. When such λi are
different, i.e., λ1 < λ2 < · · · < λk, we call it the σ-k-type. Just as is given by (1), if M is of the σ-one-type,
we have:

∆σx = kx + C

for some non-zero k and a constant vector C.
We need the following lemma for later use.

Lemma 2. Let M be a surface of S3(1) with the ELW metric σ = aI + bI I. If M has the pointwise one-type Gauss
map of the first kind with respect to the metric σ, then E1 − G1 and F1 satisfy:

(E1)u + 2(F1)v − (G1)u = 0 and (E1)v − 2(F1)u − (G1)v = 0. (10)

Proof. Suppose that the Gauss map is of the pointwise one-type of the first kind with respect to the metric
σ, that is,

∆ση ∧ η = 0.
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Since the vectors xs ∧ xt, N ∧ xt, x ∧ xt, N ∧ xs and x ∧ xs are linearly independent, we have from (6):

fi + gi = 0

for every 2 ≤ i ≤ 6. In particular, f4 + g4 = 0 implies:

F2(G1 − E1) + (E2 − G2)F1 = 0. (11)

Furthermore, f6 + g6 = 0 gives:
(E1)u + 2(F1)v − (G1)u = 0

since λ2 = E1G1 − F2
1 > 0. Similarly, f5 + g5 = 0 implies:

(E1)v − 2(F1)u − (G1)v = 0.

Remark 1. Suppose that b = 0. Then, the ELW metric σ is nothing but the induced metric inherited from that of
S3(1). Therefore, we focus on the problem with the ELW metric σ with b 6= 0.

Definition 1. We call an ELW surface M with b 6= 0 the proper ELW surface and the ELW metric the proper ELW
metric.

Theorem 1. Let M = (M, σ) be a closed and proper ELW surface in S3(1) with the pointwise one-type Gauss map
of the first kind relative to the proper ELW metric σ. Then, M is of the σ-one-type if and only if M is one of the
following:

(1) a sphere S2(r) with 0 < r ≤ 1.
(2) a torus S1(r1)× S1(r2) with r2

1 + r2
2 = 1 (r1 6= r2).

Proof. By making use of the Gauss and Weingarten formulas, we get:

∆σx = A1xu + A2xv −
1
λ
(E2 + G2)N +

1
λ
(E1 + G1)x,

where:
A1 =

1
2λ2 {G1((E1)u − (G1)u + 2(F1)v)− F1(−2(F1)u + (E1)v − (G1)v)},

A2 =
1

2λ2 {−F1((E1)u − (G1)u + 2(F1)v) + E1(−2(F1)u + (E1)v − (G1)v)}.

By Lemma 2, we have:

∆σx = − 1
λ
(E2 + G2)N +

1
λ
(E1 + G1)x. (12)

(⇒) Suppose that M is of the σ-one-type, i.e.,

∆σx = kx + C (13)

for some non-zero constant k and a constant vector C. Since M has the pointwise one-type Gauss map of
the first kind relative to the proper ELW metric σ, we have from Lemma 1 that fi + gi = 0 (i ≥ 2). Together
with (13) and Lemma 2, we get:

〈C, xu〉 = 0, 〈C, xv〉 = 0, (14)
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〈C, N〉 = − 1
λ
(E2 + G2), (15)

k + 〈C, x〉 = 1
λ
(E1 + G1). (16)

From Equation (14), we see that the right sides of (15) and (16) are constant. Thus, we may put:

∆σx = c1N + c2x

for constants c1 = − 1
(E2+G2)

and c2 = 1
(E1+G1)

. Together with the above equation and (13), we get:

C = c1N + (c2 − k)x.

Differentiating C with respect to u and v respectively and using (4), we obtain:

S11c1 = k− c2, S12c1 = S21c1 = 0, S22c1 = k− c2.

Case 1. If c1 6= 0, the surface M is totally umbilic in S3(1) and M is a sphere S2(r) with radius 0 < r ≤ 1.
Case 2. Suppose that c1 = 0. Then, we get:

k = c2 and E2 + G2 = 0

and consequently, (12) reduces to:
∆σx = c2x.

Since aF1 + bF2 = 0 and E2 + G2 = 0, Equation (11) gives:

(− a
b
(G1 − E1) + 2E2)F1 = 0.

Subcase 2.1. Suppose F1 6= 0. Then, E2 = a
2b (G1 − E1) and G2 = a

2b (E1 − G1).
We now compute the mean curvature H and the extrinsic Gaussian curvature KN . Straightforward

computation yields:

H =
a

4bλ2

(
(E1 − G1)

2 + 4F2
1
)
, KN = − a2

4λ2b2

(
(E1 − G1)

2 + 4F2
1
)
.

Since 2aH + bKN = c, we see that 1
λ2

(
(E1 − G1)

2 + 4F2
1
)

is constant, and hence, the mean curvature H and
the extrinsic Gaussian curvature KN are constant. Therefore, M is an isoparametric surface in E4. The
classification theorem of isoparametric surfaces of E4 gives us that M is either a sphere S2(r) (0 < r ≤ 1)
or a torus S1(r1)× S1(r2), where r2

1 + r2
2 = 1. Suppose that M is a torus S1(r1)× S1(r2) with r2

1 + r2
2 = 1.

If we choose the parametrization of M by:

x(s, t) = (r1 cos s, r1 sin s, r2 cos t, r2 sin t),

we may take a unit normal vector N as N = (r2 cos s, r2 sin s,−r1 cos t,−r1 sin t). Thus, we have the
ELW metric:

σ = aI + bI I =

(
ar2

1 − br1r2 0
0 ar2

2 + br1r2

)
.
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Since the Laplace operator ∆σ is independent of the choice of the coordinates, we get:

∆σx =
r1

(ar2
1 − br1r2)

(cos s, sin s, 0, 0) +
r2

(ar2
2 + br1r2)

(0, 0, cos t, sin t). (17)

It must satisfy ∆σx = kx + C for some k ∈ R and a constant vector C. Then, we get from (17) that the
constant vector C vanishes and:

k =
1

ar2
1 − br1r2

=
1

ar2
2 + br1r2

. (18)

If r1 = r2 = 1/
√

2, (18) implies b = 0, which is a contradiction. Hence, we have r1 6= r2.

Subcase 2.2. Suppose that F1 = 0. By Lemma 2, the function E1 − G1 is constant. If we differentiate
c2 = E1+G1

λ with respect to u and v, we get:

(E1 − G1)
2(E1)u = (E1 − G1)

2(E1)v = 0

with the help of (10). Suppose that the open set Mo = {p ∈ M|(E1)u 6= 0} ∪ {p ∈ M|(E1)v 6= 0} is not
empty. Let O be a connected component of Mo. Then, on O, we get λ = E1 = G1. This implies that the
mean curvature H and the extrinsic Gaussian curvature KN are constant on O. Thus, O is isoparametric,
and it is contained in either a sphere S2(r) ⊂ S3(1) (0 < r ≤ 1) or S1(r1)× S1(r2) with r2

1 + r2
2 = 1. By the

connectedness of M, M, M is a sphere S2(r) ⊂ S3(1) (0 < r ≤ 1) or S1(r1) × S1(r2) with r2
1 + r2

2 = 1
(r1 6= r2). Suppose that the interior U of M − Mo is not empty. Then, E1 and G1 are constant on each
component of U. Thus, U is flat and KN = −1 on U. The mean curvature H is also constant on U. Using
the continuity and connectedness of M, the surface M is flat, and thus, M is a torus S1(r1)× S1(r2) with
r2

1 + r2
2 = 1 (r1 6= r2) in S3(1).

Summing up the argument, M is either a sphere S2(r) ⊂ S3(1) or a torus S1(r1) × S1(r2) with
r2

1 + r2
2 = 1 (r1 6= r2).

(⇐) Suppose that M is a sphere S2(r) with 0 < r ≤ 1. If we choose a vector C = −2HN + 1
r2 x, then C is a

constant vector, and we easily see that M satisfies:

∆σx = kx + C,

where k = 2− 1/r2.
If M is a product of two plane circles S1(r1)× S1(r2) with r2

1 + r2
2 = 1, straightforward computation

gives that ∆σx = kx for some non-zero constant k. This completes the proof.

We now define the so-called orthogonal σ-k-type immersion of a Riemannian manifold into Euclidean
space similarly given in [12].

Definition 2. Let M be a closed and proper ELW surface of S3(1) with the proper ELW metric σ. M is said to
be of the orthogonal σ-k-type if the eigenvectors xi are orthogonal with ||xi|| = ||xj|| for i 6= j in the spectral
decomposition given in (9). M is also called σ-mass-symmetric if x0 is the center of the sphere.

Now, we consider the following characterization of the Clifford torus S1(1/
√

2)× S1(1/
√

2) with the
proper ELW metric σ.

Theorem 2. Let M be a closed surface in S3(1). Then, the following are equivalent:
(1) M is the Clifford torus S1(1/

√
2)× S1(1/

√
2).
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(2) M is a σ-mass symmetric and orthogonal σ-two-type proper ELW surface in E4, whose Gauss map is of the
pointwise one-type Gauss map of the first kind with respect to the metric σ.

Proof. (1)⇒ (2) Suppose that M is the Clifford torus parametrized by:

x(s, t) = 1/
√

2(cos s, sin s, cos t, sin t).

It is straightforward to show that:

x1 = 1/
√

2(cos s, sin s, 0, 0), x2 = 1/
√

2(0, 0, cos t, sin t)

are two eigenvectors corresponding to two different eigenvalues relative to ∆σ. They are orthogonal and
x(s, t) = x1 + x2 with ||x1|| = ||x2|| = 1/

√
2. It is easy to show that its Gauss map has the pointwise

one-type of the first kind. Therefore, M is σ-mass-symmetric and of the orthogonal σ-two-type.

(2)⇒ (1) Suppose that M is σ-mass symmetric and of the orthogonal σ-two-type in E4 with the pointwise
one-type Gauss map of the first kind relative to the ELW metric σ. Then, due to Lemma 2, E1−G1, E2−G2,
F1, and F2 are constant, and we have:

x = x1 + x2 (19)

with ∆σx1 = λ1x1 and ∆σx2 = λ2x2 with 〈x1, x2〉 = 0 and ||x1|| = ||x2|| for two different real numbers λ1

and λ2. Applying ∆σ to (19) and using (12), we get:

{λ1 −
(E1 + G1)

λ
}x1 + {λ2 −

(E1 + G1)

λ
)}x2 +

(E2 + G2)

λ
N = 0. (20)

Suppose that there exists a point p in M such that (E2 + G2)(p) = 0. It follows from (20) λ1 = λ2, which is
a contradiction. Thus, the unit normal vector field N of M in S3(1) is a linear combination of x1 and x2

such that:
N = ρ1x1 + ρ2x2

for some functions ρ1 and ρ2 with ρ1 6= ρ2. Since 〈N, x〉 = 0, we see that ρ1 = −ρ2. 〈N, N〉 = 1 and
〈x, x〉 = 1 imply ρ1 = ±1 and ||x1|| = ||x2|| = 1/

√
2. Thus, we have:

λ1 + λ2 = 2(E2 + G2)/λ

which is a constant, and in turn, so is (E1 + G1)/λ. Together with λ = aE1 + bG1 = aG1 + bG2 and
aF1 + bF2 = 0, we see that the mean curvature H and the extrinsic Gaussian curvature KN are constant, and
hence, M is isoparametric in E4. Since M is of the σ-two-type, M must be the Clifford torus S1(1/

√
2)×

S1(1/
√

2).

5. Conclusions

In this paper, spheres and the products of two plane circles immersed in the three-dimensional unit
sphere are studied and characterized by means of the Laplacian and the Gauss map. Especially we consider
the elliptic linear Weingarten metric on closed surfaces in the three-dimensional sphere and the Clifford
torus is characterized with the elliptic linear Weingarten metric.
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