New Oscillation Criteria for Advanced Differential Equations of Fourth Order
Abstract
:1. Introduction
2. Some Auxiliary Lemmas
3. Oscillation Criteria
The condition | (5) | (6) | (7) | our condition |
The criterion |
The condition | (5) | (6) | (7) | our condition |
The criterion |
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Bazighifan, O.; Postolache, M. Improved Conditions for Oscillation of Functional Nonlinear Differential Equations. Mathematics 2020, 8, 552. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y. Scaled consensus of switched multi-agent systems. IMA J. Math. Control Inf. 2019, 36, 639–657. [Google Scholar] [CrossRef]
- Xu, Z.; Xia, Y. Integral averaging technique and oscillation of certain even order delay differential equations. J. Math. Appl. Anal. 2004, 292, 238–246. [Google Scholar] [CrossRef]
- Agarwal, R.; Grace, S.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Baculikova, B.; Dzurina, J.; Graef, J.R. On the oscillation of higher-order delay differential equations. Math. Slovaca 2012, 187, 387–400. [Google Scholar] [CrossRef]
- Bazighifan, O.; Abdeljawad, T. Improved Approach for Studying Oscillatory Properties of Fourth-Order Advanced Differential Equations with p-Laplacian Like Operator. Mathematics 2020, 8, 656. [Google Scholar] [CrossRef]
- Bazighifan, O.; Elabbasy, E.M.; Moaaz, O. Oscillation of higher-order differential equations with distributed delay. J. Inequal. Appl. 2019, 55, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Dassios, I. Riccati Technique and Asymptotic Behavior of Fourth-Order Advanced Differential Equations. Mathematics 2020, 8, 590. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Ruggieri, M.; Scapellato, A. An Improved Criterion for the Oscillation of Fourth-Order Differential Equations. Mathematics 2020, 8, 610. [Google Scholar] [CrossRef]
- Cesarano, C.; Pinelas, S.; Al-Showaikh, F.; Bazighifan, O. Asymptotic Properties of Solutions of Fourth-Order Delay Differential Equations. Symmetry 2019, 11, 628. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Dassios, I. On the Asymptotic Behavior of Advanced Differential Equations with a Non-Canonical Operator. Appl. Sci. 2020, 10, 3130. [Google Scholar] [CrossRef]
- Grace, S.; Dzurina, J.; Jadlovska, I.; Li, T. On the oscillation of fourth order delay differential equations. Adv. Diff. Equ. 2019, 118, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Jadlovska, I. Iterative oscillation results for second-order differential equations with advanced argument. Electron. J. Diff. Equ. 2017, 162, 1–11. [Google Scholar]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Li, T.; Baculikova, B.; Dzurina, J.; Zhang, C. Oscillation of fourth order neutral differential equations with p-Laplacian like operators. Bound. Value Probl. 2014, 56, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Elabbasy, E.M.; Bazighifan, O. On the asymptotic behavior of fourth-order functional differential equations. Adv. Diff. Equ. 2017, 261, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Furuichi, S.; Muhib, A. New Comparison Theorems for the Nth Order Neutral Differential Equations with Delay Inequalities. Mathematics 2020, 8, 454. [Google Scholar] [CrossRef] [Green Version]
- Nehari, Z. Oscillation criteria for second order linear differential equations. Trans. Am. Math. Soc. 1957, 85, 428–445. [Google Scholar] [CrossRef]
- Philos, C. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay. Arch. Math. (Basel) 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ramos, H. On the asymptotic and oscillatory behavior of the solutions of a class of higher-order differential equations with middle term. Appl. Math. Lett. 2020, 106431. [Google Scholar] [CrossRef]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations. Appl. Math. Lett. 2013, 26, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Kumam, P.; Bazighifan, O. On the Oscillatory Behavior of a Class of Fourth-Order Nonlinear Differential Equation. Symmetry 2020, 12, 524. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Grace, S.R. Oscillation theorems for certain functional differential equations of higher order. Math. Comput. Model. 2004, 39, 1185–1194. [Google Scholar] [CrossRef]
- Agarwal, R.; Grace, S.R.; O’Regan, D. Oscillation criteria for certain n th order differential equations with deviating arguments. J. Math. Anal. Appl. 2001, 262, 601–622. [Google Scholar] [CrossRef] [Green Version]
- Grace, S.R.; Lalli, B.S. Oscillation theorems for nth-order differential equations with deviating arguments. Proc. Am. Math. Soc. 1984, 90, 65–70. [Google Scholar]
- Moaaz, O.; Dassios, I.; Bazighifan, O.; Muhib, A. Oscillation Theorems for Nonlinear Differential Equations of Fourth-Order. Mathematics 2020, 8, 520. [Google Scholar] [CrossRef] [Green Version]
- Grace, S.R.; Bohner, M.; Liu, A. Oscillation criteria for fourth-order functional differential equations. Math. Slovaca 2013, 63, 1303–1320. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Saker, S. Oscillation of fourth-order delay differential equations. J. Math. Sci. 2014, 201, 296–308. [Google Scholar] [CrossRef]
- Bazighifan, O.; Cesarano, C. A Philos-Type Oscillation Criteria for Fourth-Order Neutral Differential Equations. Symmetry 2020, 12, 379. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Shieh, S.L.; Yeh, C.C. Oscillation criteria for second order retarde ddifferential equations. Math. Comput. Model. 1997, 26, 1–11. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazighifan, O.; Ahmad, H.; Yao, S.-W. New Oscillation Criteria for Advanced Differential Equations of Fourth Order. Mathematics 2020, 8, 728. https://doi.org/10.3390/math8050728
Bazighifan O, Ahmad H, Yao S-W. New Oscillation Criteria for Advanced Differential Equations of Fourth Order. Mathematics. 2020; 8(5):728. https://doi.org/10.3390/math8050728
Chicago/Turabian StyleBazighifan, Omar, Hijaz Ahmad, and Shao-Wen Yao. 2020. "New Oscillation Criteria for Advanced Differential Equations of Fourth Order" Mathematics 8, no. 5: 728. https://doi.org/10.3390/math8050728
APA StyleBazighifan, O., Ahmad, H., & Yao, S. -W. (2020). New Oscillation Criteria for Advanced Differential Equations of Fourth Order. Mathematics, 8(5), 728. https://doi.org/10.3390/math8050728