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Abstract: The main aim of this paper is to study two temperature thermoelasticity in a generalization
form to solve the half-space problem of two dimensions under gravity, perturbed magnetic field,
and initial stress. The fundamental equations are solved considering a new mathematical technique
under Lord-Şhulman (LS), Green-Naghdi (GN type III) and three-phase-lag (3PHL) theories to
investigate displacement, stress components, and temperature distribution. The results obtained by
the three theories, i.e., (LS), (GN type III), and (3PHL), considering the absence and the presence of
gravity, initial stress, and magnetic field have been compared. The results were numerically calculated
and graphically displayed to exhibit the physical meaning of the phenomenon and the external
parameters’ effect. A comparison has been presented between the results obtained in the absence
and the presence of the external considered parameters and with the previously obtained results by
other researchers.

Keywords: thermoelasticity; magnetic field; initial stress; gravity; two temperature; Lord-Şhulman (LS);
Green-Naghdi (GN type III); three-phase-lag (3PHL)
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1. Introduction

Waves propagation in a thermoelastic and thermoplastic homogeneous or non-homogeneous
media has considerable importance in diverse topics, such as engineering, earthquakes, acoustics,
and seismology, due to the non-homogeneities presence in the different layers of the earth’s crust.
A lot of materials, e.g., polymers, composites of solids, metals, and rocks, nearly have the same media
properties as microstructures.

The strain and thermal fields coupling gave rise to the coupled thermoelasticity theory (CT theory).
Duhamel [1,2] was the first postulated the originator of the thermal stresses theory who introduced
the term of dilatation in equation of heat conduction. Biot [3] proposed the coupled thermoelasticity
theory by inserting the modified Fourier heat conduction equation strain-rate term (diffusion equation)
approaching the equation of heat conduction in a parabolic-type, which predicts a propagation with
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finite speed for the waves in elastic media, although the thermal disturbance has infinite speed. This is
physically unrealistic and conflicts with practical results. The theory of Lord-Shulman is the first
generalization of the coupled theory. The model basis proposed by Lord and Shulman [4] modified
the Fourier’s law of the equation of heat conduction, presenting a new physical concept (acceleration
needs a relaxation time for the heat flow) and denoted by (LS) theory. The heat equation that concerns
the LS theory of these types of waves ensures finite speeds of propagation of elastic and heat waves.
Lord and S, hulman [4] and Green and Lindsay [5] presented generalized thermoelasticity theories
advocating the finite wave speed due to the thermal signals in the solids. Chen and Gurtin [6] and
Chen et al. [7] presented the theory of heat conduction in an elastic body depending on two different
temperatures (conductivity temperature and thermodynamic temperature). Puri [8] pointed out the
magneto-thermoelasticity effect on the plane waves’ propagation.

Relaxation times during the process of generalized thermoelastic waves have been inserted
to develop these theories made by modifying the conduction heat equation of Fourier’s or
reconsidering the Neuman-Duhamel relation (energy equation). Many researchers considered the
electromagneto-thermoelastic wave propagation in a thermally conducting and electrically solid.
The plane wave propagation in a solid considering the effect of the electro-magnetic field explained
by Nayfeh and Nemat-Nasser [9]. Green and Naghdi [10–12] considered the concern (GN, types I, II,
and III) theories; the linearized model-I version approaches to the model of thermoelastic in a classical
form. Concerns (GN, type II) model, the production rate internal of entropy is identical to zero
and implying no thermal energy dissipation. Also, this theory admits that the thermoelastic waves
are undamped in a thermoelastic media and denoted by the thermoelasticity model with no energy
dissipation. Finally, the GN-III model includes the two previous models as special cases admitting,
in general, the dissipation of energy.

Chandrasekharaiah and Srinath [13] investigated the problem of thermoelastic waves without
dissipation of energy due to an external point heat source. The waves’ propagation phenomenon
in solids, as a globe of elastic, was first discussed by Bromwich [14] who considered the gravity
effect. Love [15] considered the effect of gravity parameter on Rayleigh waves and concluded that
the Rayleigh waves velocity increased considerably from the gravity field for the large values of
wavelengths. The gravity effect on propagation of waves in an elastic layer has been discussed [16].
Ezzat et al. [17] presented a magneto-thermoelasticity generalized model in a two-dimensional form.
The problem of generalized thermoelasticity considering three theories and the state-space approach
has been presented by Youssef and El-bary [18]. Youssef [19] formatted a new model of generalized
thermoelasticity under two temperature dependence.

The heat conduction model of three-phase-lag has attracted considerable interest. Roy Choudhuri [20]
considered the addition phase lag associated with the variable displacement of temperature to the two
relaxation times presented by Tzou (please, see Ref. [21] and the therein references) that was related to
the heat flux vector and the temperature gradient. The above-mentioned displacement variable of
thermal is attributable to Green and Naghdi [10–12]. Youssef and Al-Lehaibi [22] pointed out some
new problems with two temperature thermoelasticity considering relaxation time. The formulation
of the state space vibration in the femtoseconds scale of nano-beam gold was studied by Elsibai
and Youssef [23].

Abd-Alla and Abo-Dahab [24] pointed out the initial stress, diffusion, and rotation effect on
a magneto-thermoelastic generalized problem with a spherical cavity. Abouelregal and Abo-Dahab [25]
discussed the dual-phase-lag (DPL) model on non-homogeneous an infinite spherical cavity solid
with a magnetic field. The initial stress and gravitational effect on generalized microstretch-magneto-
thermoelastic solid medium for different models were presented by Othman et al. [26]. Lotfy [27]
investigated interactions in an elastic generalized magneto-thermoelastic medium under two
temperatures and three models. Lotfy and Hassan [28] explored thermal shock and two-temperature
problems on the generalized thermoelasticity using normal mode techniques. The theory of two-
temperature generalized thermoelasticity considering Youssef’s theory for solving the boundary value
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problems of two dimensional solid with different types of heating on its boundary was highlighted by
Lotfy and Abo-Dahab [29]. The interaction between the magnetic field, thermal field, and elasticity
considering heat transfer fractional derivative for a fibre-reinforced rotation thermoelastic has been
investigated by Lotfy and Abo-Dahab [30]. Abo-Dahab et al. [31] discussed a generalized two
dimensional thermoelasticity considering the magnetic field and rotation.

Recently, Lotfy et al. [32] have investigated the response of the thermomechanical model for
semiconductor medium on a reflection diffusion photothermal waves. Abo-Dahab et al. [33] discussed
the mechanical changes in a microstretch thermoelastic medium considering two-temperature due to
pulse heating. Said and Othman [34] investigated the generalized electro–magneto-thermoelasticity
considering three theories under the internal heat source and two temperatures in a finite conducting
medium. Othman and Abd-Elaziz [35] applied three thermoelastic theories considering the micro-
temperatures and gravity influence on the porous thermoelastic medium. Carini and Zampoli [36]
studied in detail the three-phase-lag theory in porous matrices assuming three delay times in linearity of
thermoelasticity. Marin et al. [37] discussed some results on the dipolar structure of bodies in the context
of Green–Lindsay thermoelasticity. Kumar et al. [38] discussed the interactions of thermomechanical
in magnetothermoelastic and isotropic transversely considering GN type II theory under rotation.

The Earth’s electromagnetic impact through seismic propagation, the machine design of different
elements, electromagnetic radiations emissions from plasma physics, nuclear devices, etc. has been
discussed by more researchers. Marin and Craciun [39] investigated the uniqueness concerns the
model composite materials boundary value problem in dipolar thermoelasticity.

In this paper, two-dimensional generalized thermoelasticity theory under two temperatures
is considered for solve the boundary value problems half-space under the initial stress, gravity,
and magnetic field. The governing equations have been solved using new mathematical methods
considering Lord-Şhulman (LS), Green-Naghdi theory of type III (GN type III), and three-phase-lag
(3PHL) theories to investigate displacement and stresses components and temperature distribution.
Comparisons have been made with the predicted results by the three theories; (LS), (GN III), and (3PHL)
with the absence and the presence of the magnetic field, initial stress, and gravity. The obtained results
were numerically calculated and presented graphically to figure out the physical meaning of the
phenomenon. A comparison has been made between the present results in the absence and the presence
of the external considered parameters and with the previously obtained results by other researchers.

2. Formulation of the Problem

Considering an isotropic semi-infinite elastic solid, Oxyz is a Cartesian orthogonal coordinate
system, any point O of the boundary of the plane, and Oy vertically downward to the medium,
as displayed in Figure 1.
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(i) The constitutive equation (stress–strain relation) considering initial stress takes the following form:

σi j = (λθ− γTP)δi j + 2µ ei j − P wi j, wi j =
1
2
(u j,i − ui, j) (1)

(ii) The equation of heat conduction assuming three thermoelastic theories forms is as follows
(Kar and Kanoria [40]):(

K∗ + τ∗v
∂
∂t

+ KτT
∂2

∂t2

)
∇

2ϕ =

1 + τq
∂
∂t

+
τ2

q

2
∂2

∂t2

[ρ Ce
..
T + γT0

..
e
]
, τ∗v = K + K∗τυ (2)

(iii) The motion equation with body force and heat source absent takes the following form:

σ ji, j + Fi = ρ
..
ui, (i, j = 1, 2, 3) (3)

(iv) The conductive and thermodynamic temperatures relation takes the form [19]

ϕ− T = a ∇2ϕ (4)

Consider that the displacement current is absent; the equations of linearized Maxwell’s that
govern the magnetic field for a moving solid slowly having perfect electrical conductivity in the
following form

curl h = J− ε0
.
E, (5a)

curl E = −µe
∂ h
∂t

, (5b)

div h = 0, (5c)

div E = 0, (5d)

E = −µe

(
∂u
∂t
×H0

)
, (5e)

E = curl(u×H0), (5f)

Fi = µe(J×H0)i (5g)

where we used
H = H0 + h(x, y, t), H0 = (0, 0, H).

Using Equation (5), we obtain
Fx = µeH2

0
∂e
∂x

Fz = µeH2
0
∂e
∂z

Fy = 0
(6)

The stress of Maxwell produced from the magnetic field can be formed as

τi j = µe

[
Hih j + H jhi − (

→

Hk.
→

hk)δi j

]
, i, j = 1, 2, 3 (7a)

which is reduced to

τxx = τzz = µeH2
0

(
∂u
∂x

+
∂v
∂z

)
, τxz = 0. (7b)

where all notations used have been defined in the “nomenclature” at the end of the paper.
Equation (2) is the generalized thermoelastic solid equation field, applicable to the following:

i. (LS) theory: K∗ = τv = τT = τ2
q = 0, τq > 0

ii. (GN type II) theory: τv = τT = τq = 0
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iii. (3PHL) theory: τv < τT < τq > 0

The non-dimensional variables take the following form

(x′, z′, u′, v′) = C0 η(x, z, u, v), (t′, τ′T, τ′υ, τ′q) = C2
0η(t, τT, τυ, τq), h′ = h

H0

(θ′,ϕ′) = (T,ϕ)−T0
T0

,
(
σ′i j, τ

′

i j

)
=

(σi j,τi j)
ρ C02 , g′ = g

C3
0 η

(8)

where η = ρCe
K , C2

2 =
µ
ρ and C2

0 =
λ+2µ
ρ .

When we substitute from Equation (8) into Equations (2)–(4), we get(
Ck + Cυ

∂
∂t

+ CT
∂2

∂t2

)
∇

2ϕ−

1 + Tq
∂
∂t

+
T2

q

2
∂2

∂t2

( ..
θ+

γ

ρ Ce

..
e) (9)

ϕ− θ = β ∇2ϕ (10)

where Ck =
K∗

ρCeC2
0
, Cv =

τ∗v
ρCeC2

0
, CT =

KτTη
ρCe

The equations of motion approach

a∗1∇
2u + a2

∂e
∂x
− a0

∂θ
∂x

+ g
∂w
∂x

= β
..
u (11)

a∗1∇
2w + a2

∂e
∂z
− a0

∂θ
∂z
− g

∂u
∂x

= β
..
w (12)

where ε = γ
ρ Ce

, a∗1 =
2µ−P
2ρ C2

0
, a2 =

2λ+2µ+P+2µeH2
0

2ρ C2
0

, a0 =
γT0

ρ C2
0

, β = 1 +
ε0µeH2

0
ρ .

Assuming the scalar potential and vector potential functions π and ψ

u =
∂Π
∂x
−
∂ψ

∂z
, w =

∂Π
∂z

+
∂ψ

∂x
(13)

Substituting from Equation (13) into Equations (11) and (12), we get(
∇

2
− β∗

∂2

∂t2

)
Π − a∗3

∂ψ

∂x
− a∗0 θ = 0 (14)

(
∇

2
− β∗∗

∂2

∂t2

)
ψ+ a4

∂Π
∂x

= 0 (15)

where

R2
H =

µeH2
0

ρ C2
0

, β∗ =
β

1 + R2
H

, a∗0 =
a0

1 + R2
H

, a∗3 =
g

1 + R2
H

, a4 =
g
a∗1

, β∗∗ =
β∗

a∗1

The temperature Equation (9) approaches(
Ck + Cυ

∂
∂t

+ CT
∂2

∂t2

)
∇

2ϕ−

1 + Tq
∂
∂t

+
T2

q

2
∂2

∂t2

 ∂2

∂t2 (θ+ ε∇2π) (16)

3. Solution of the Problem

To solve Equations (10), and (11)–(13), we assume the following normal mode method:

[Π,ψ, ϕ, θ, σi j] (x, z, t) = [Π∗,ψ∗, ϕ∗, θ∗, σ∗i j] (z) eiω(x−ct) (17)
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Substituting from Equation (17) into Equations (14) and (15) using D = d
dz , we get:

[D2
−A1]Π∗ − a∗∗3 ψ

∗
− a∗0θ

∗ = 0 (18)

[D2
−A2]ψ

∗ + a∗4 Π∗ = 0 (19)

Equation (10) tends to
[D2
−A3] ϕ

∗ + β−1θ∗ = 0 (20)

Also, Equation (16) tends to

(D2
−ω2)ϕ∗ + B(D2

−ω2)Π∗ + Aθ∗ = 0 (21)

where A1 = ω2(1− c2β∗), a∗∗3 = iωa∗3, A2 = ω2(1− c2β∗∗), a4∗ = iωa4, A3 =
βω2+1
β .

where, B = εA, A = ω2c2

 1−iωc(τq−
iωτ2

q
2 )

Ck−iω(Cv−iωcCT)

.

From Equations (18)–(21); eliminating Π∗, ψ∗, ϕ∗ and θ∗, we obtain∣∣∣∣∣∣∣∣∣∣∣∣
D2
−A1 −a∗∗3 0 −a∗0
a∗4 D2

−A2 0 0
0 0 D2

−A3 β−1

B(D2
−ω2) 0 D2

−ω2 A

∣∣∣∣∣∣∣∣∣∣∣∣ = 0

which tends to
[D6 + AD4 + BD2 + C]Π∗(x) = 0 (22)

where
A = −

(A−β−1)(A1+A2)−β
−1ω2+AA3+a∗0B(ω2+A2+A3)

(A−β−1+a∗0B) ,

B =
(A−β−1)[A1A2+a∗∗3 a∗4]−(A1+A2)(β

−1ω2
−AA3)+a∗0B[ω2(A2+A3)+A2A3]

(A−β−1+a∗0B) ,

C =
(β−1ω2

−AA3)[A1A2+a∗∗3 a∗4]−a∗0Bω2A2A3

(A−β−1+a∗0B) .

(23)

In a similar behavior, we obtain

[D6 + AD4 + BD2 + C](ψ∗, ϕ∗, θ∗, σ∗i j)(x) = 0 (24)

which can be factorized to the following form

(D2
− k1

2)(D2
− k2

2)(D2
− k3

2)(ψ∗, ϕ∗, θ∗, σ∗i j)(x) = 0 (25)

where k2
n(n = 1, 2, 3) represent the following characteristic equation roots

K6 + AK4 + BK2 + C = 0. (26)

The Equation (25) solution, as z→∞ , takes the form

Π∗(z) =
3∑

n=1

Mn exp(−knz), (27)

θ∗(z) =
3∑

n=1

M′n exp(−knz), (28)
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ψ∗(z) =
3∑

n=1

M′′

n exp(−knz), (29)

ϕ∗(z) =
3∑

n=1

M′′′

n exp(−knz), (30)

since
u∗(z) = iω Π∗ −D ψ∗, (31)

v∗(z) = D Π∗ + iω ψ∗, (32)

e∗(z) = iω u∗ + D v∗. (33)

Using Equations (31) and (32) to obtain the displacements amplitudes u and v taking into account
that they are bounded as x→∞ , we get

u∗(z) = iω
3∑

n=1

(Mn + knM′′

n exp(−knz)), (34)

v∗(z) = −iω
3∑

n=1

(knMn + iωM′′

n ) exp(−knz) (35)

where the parameters Mn, M′n, M′′

n , and M′′′

n depend on c, β , and ω.
Using Equations (27)–(30) into Equations (18)–(21), we obtain

M′ =
(k2

n −A1)(k2
n −A2) + a∗∗3 a∗4

a∗0(k
2
n −A2)

Mn = H1nMn, (36)

M′′

n = −
a∗4

K2
n −A2

Mn = H2nMn, (37)

M′′′

n = −β−1

 (k2
n −A1)(k2

n −A2) + a∗∗3 a∗4
a∗0(k

2
n −A2)(k2

n −A3)

Mn = H3nMn (38)

where
H1n =

(k2
n−A1)(k2

n−A2)+a∗∗3 a∗4
a∗0(k

2
n−A2)

, H2n = −
a∗4

K2
n−A2

,

H3n = −β−1
(
(k2

n−A1)(k2
n−A2)+a∗∗3 a∗4

a∗0(k
2
n−A2)(k2

n−A3)

)
where n = 1, 2, 3.

Thus, we have

θ∗(z) =
3∑

n=1

H1nMn exp(−knz), (39)

ψ∗(z) =
3∑

n=1

H2nMn exp(−knz), (40)

ϕ∗(z) =
3∑

n=1

H3nMn exp(−knz). (41)

From Equations (5), (14), and (33)–(35) into Equation (1), we can obtain

σ∗xx =
3∑

n=1

hnMn exp(−knz) −
P

λ+ 2µ
, (42)
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σ∗zz =
3∑

n=1

h′nMn exp(−knz) −
P

λ+ 2µ
, (43)

σ∗xz =
3∑

n=1

h′′n Mn exp(−knz), (44)

τ∗zz =
µeH2

0

λ+ 2µ
[kn(kn − iωH2n) − iω(iω+ knH2n)], (45)

hn = iω(iω+ knH2n) +
λ

λ+ 2µ
kn(kn − iωH2n) −

γT0

λ+ 2µ
H1n, (46)

h′n = kn(kn − iωH2n) +
iωλ(iω+ knH2n)

λ+ 2µ
−

γT0

λ+ 2µ
H1n , (47)

h′′n = −

 µ+ P
2

λ+ 2µ

kn(iω+ knH2n) −

 µ− P
2

λ+ 2µ

iω(−kn + iωH2n). (48)

4. Boundary Conditions (Application)

We will take the following application considering the thermal shock
(i) θ(x, 0, t) = f (x, 0, t)
which tends to

3∑
n=1

H1nMn = f ∗ (49)

(ii) σzz + τzz =
−P
ρC02

With the help of Equation (7b), it tends to the following form

3∑
n=1

h
′

nMn = 0 (50)

where

h
′

n =

[
kn(kn − iωH2n)(1 + µeH2

0) − iω(iω+ knH2n)

(
λ

λ+ 2µ
+ µeH2

0

)
−

γT0

λ+ 2µ
H1n

]
Finally,
(iii) σxz + τxz = 0
which tends to

3∑
n=1

h′′n Mn = 0 (51)

Equations (49)–(51) can be rewritten in the form of matrices, as the form:


M1

M2

M3

 =


H11 H12 H13

h
′

1 h
′

2 h
′

3
h′′1 h′′2 h′′3


−1

f ∗

0
0

. (52)

5. Numerical Results

To display the figure out for the physical meaning of the obtained thee earlier analytical procedure,
we assume a numerical example for obtaining computational results in Table 1. The graphs show the
influence of thermoelastic theories, initial stress, electro-magnetic field, and gravity with respect to
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distance z on the displacement components u and w, components of stress σxx, σzz, σxz, τzz and σzz + τzz,
as well as temperature T.

Table 1. Physical constants for chosen material [41].

Parameter Value Parameter Value

λ 7.76 × 109 N m−2 K 150 W m−1 K−1

µ 3.86× 109 N m−2 Ce 383.1 J Kg−1 K−1

ρ 8954 Kg m−3 α −1.28 × 109 N m−2

αt 1.78 × 10−4 K−1 K∗ 386 W m−1 K−1 s−1

T0 293 K η 8886.73 m s−2

Additionally, we used the constant values ω = ω0 + iξ, ω0 = 2, ξ = 1, a = 1, f ∗ = 1,τ0 = 0.02 s ,
and ε = 0.0168 F m−1.

Considering these physical constants, the MATLAB package is used for calculating the
numerical results.

From all the analytical results and numerical calculations via graphs obtained, we obvious that all
physical quantities satisfy the boundary conditions at the origin point considered at the starting of the
movement of the waves and approach to zero as the axial x approaches to infinity. This indicates that if
these quantities vanish, the waves far from the origin point at the wall or the boundary agree with the
practical results, and the previous results obtained by others.

First, from Figures 2–25, we can discuss the influence of initial stress P on the procedure calculated
in the previous obtained results. Figures 2 and 3 show that the components of displacement components
u and w have a strong effect on neglecting initial stress at the interval (0, 1.15). However, they have
a strong effect on the presence of initial stress at the interval (1.15, 1.7). The decrease or increase
approaches to zero as the distance z approaches to infinity. It is shown that the normal stresses
displayed in Figures 4 and 5 σxx and σzz behave in the same manner during the intervals (0, 0.3).
While they have a strong impact with the initial stress, with the absence of P at (0.3, 0.8) they have
a strong effect. After that, the increase or decrease periodically approaches zero as the distance
approaches to infinity. While the absence of P has a strong effect on the shear stress σxz at the interval
(0, 0.65) that schematics in Figure 6, it has a strong effect on (0.65, 1.4) and periodically decreases or
increases approach zero as z approaches infinity. Figure 7 illustrates that Maxwell’s normal stress τzz

has a strong effect on the interval z ∈ (0, 0.35) in the absence of initial stress, taking an inverse behavior
for (0.35, 1). After that, it periodically decreases or increases as large values of the distance z approaches
zero. The total normal mechanical and Maxwell stresses have a strong behavior in the presence of P for
z ∈ (0, 0.3). In the absence of P, it decreases in (0.3, 0.65) and it is interrupted periodically tending to
zero as z approaches to infinity (see, Figure 8). Finally, Figure 9 displays the temperature distribution
concerns to z considering the absence and presence of P.
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Figures 2–9 illustrate the influence of theories with respect to distance z on the displacement
components u and w; the components of stress σxx, σzz, σxz, τzz and σzz + τzz; as well as the
temperature T. From these figures, we noticed the strong effect of Green–Naghdi theory (G–N)
compared with the slight effect of Lord–Shulman (L-S), and the three-phase-lag model (3PHL) on u;
w; σxx, σzz, σxz, τzz , σzz + τzz; and T. We display this effect in detail. In Figure 2, for z ∈ (0, 1.25),
the displacement component u decreases for z in (1.25, 1.7). Then, u periodically decreases or increases
because the large values of z approach zero. The displacement component w behaves the same as
u but in a different interval of the distance z, as shown in Figure 3. Figures 4 and 5 show that the
components of stress σxx and σzz have the same manner concerning z, since they increase for z ∈ (0, 0.3)
and decrease for z ∈ (0.3, 0.7). After that, they periodically increase or decrease because the large
values of z approach zero. However, σxz, as shown in Figure 6, decreases when z increases in (0, 0.65),
increases in (0.65, 1.4), and periodically decreases or increases approaching zero as z approaches infinity.
Likewise, τzz decreases for z ∈ (0, 0.3) and increases for z ∈ (0.3, 0.8). Then, τzz decreases or increases
periodically approaching zero as z approaches infinity (see, Figure 7). Figure 8 illustrates that σzz + τzz

have an inverse behavior when compared with τzz. The temperature distribution T decreases for
z ∈ (0, 0.7) and increases for z ∈ (0.7, 1.4). After that, T decreases or increases periodically approaching
zero as z approaches infinity (see Figure 9).

The influence of the electric field on the displacement components u and w, the components
of stress σxx, σzz, σxz, τzz and σzz + τzz; and the temperature T concerning distance z appears in
Figures 10–17. In Figure 10, the displacement component u increases with respect to z as the increased
of electric field and approaches to zero as z approaches to infinity. On the contrary, w decreases with
respect to z as the electric field increases and approaches to zero as z approaches to infinity, as shown
in Figure 11. Moreover, Figure 12 illustrates that the stress component σxx decreases with respect to z
as the electric field increases and approaches zero as z approaches infinity. However, σzz decreases
for z ∈ (0, 0.4) and increases for z ∈ (0.4, 0.7) as the electric field increases and approaches zero as z
approaches infinity, as seen in Figure 13. While the electric field increases in Figure 14, it decreases when
σxz z takes the interval (0, 0.65) and approaches zero as z approaches infinity. However, τzz decreases
for z ∈ (0, 0.5) and increases for z ∈ (0.5, 1) as the electric field increases and approaches zero as z
approaches infinity, as shown in Figure 15. Likewise, σzz + τzz decreases for z ∈ (0, 0.4) and increases
for z ∈ (0.4, 0.7) as the electric field increases to zero as z approaches infinity, as shown in Figure 16.
The temperature distribution T, on the contrary to σzz + τzz, increases for z ∈ (0, 0.4) and decreases for
z ∈ (0.4, 0.7) as the electric field increases and approaches zero as z approaches infinity as shown in
Figure 17.

The Figures 18–25 show the impact of the magnetic field concerning distance z on the components
u, w, σxx, σzz, σxz, τzz, σzz + τzz, and T. In Figure 18, the component of displacement u increases with
respect to z as the magnetic field increases and approaches zero as z approaches infinity. On the contrary,
w decreases concerning z as the magnetic field increases and approaches zero as z approaches infinity,
as shown in Figure 19. Figure 20 illustrates that the stress component σxx decreases with respect to z as
the magnetic field increases and approaches zero as z approaches infinity. However, σzz decreases for
z ∈ (0, 0.45) and increases for z ∈ (0.45, 0.7) as the magnetic field increases and approaches to zero as
z approaches to infinity, see Figure 21. As the magnetic field increases in Figure 22, σxz decreases with
respect to z and approaches to zero as z approaches infinity. However, τzz increases for z ∈ (0, 0.5) and
decreases for z ∈ (0.5, 1.7) as the magnetic field increases and approaches zero as z approaches infinity
(see, Figure 23). Figure 24 shows that σzz + τzz decreases for z ∈ (0, 0.4) but increases for z ∈ (0.4, 0.7)
as the magnetic field increases and approaches zero as z approaches infinity. As shown in Figure 25,
the temperature distribution T, on the contrary to σzz + τzz, increases for z ∈ (0, 0.45) and decreases for
z ∈ (0.45, 0.7) as the magnetic field increases and approaches to zero as z approaches infinity.

Figures 26–33 highlight the influence of the gravity with respect to distance z on the components
of displacement u and w; the components of stress σxx, σzz, σxz, τzz and σzz + τzz; and the temperature
T. In Figure 26, the displacement component u increases for z as the gravity increases and approaches
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zero as z approaches infinity. Figure 27 shows that as the gravity increases, w decreases for z ∈ (0, 0.45),
increases for z ∈ (0.45, 0.7), and approaches zero as z approaches infinity. Additionally, Figure 28
shows that the component of stress σxx increases concerning z as the gravity increases and approaches
zero as z approaches to infinity. However,σzz increases for z ∈ (0, 0.35) and decreases for z ∈ (0.35, 1.7)
because the gravity increases and approaches zero as z approaches infinity, see Figure 29. As gravity
increases in Figure 30, σxz increases for z ∈ (0, 0.3), decreases for z ∈ (0.3, 0.7), and approaches zero as
z approaches infinity. Likewise, τzz increases for z ∈ (0, 0.6) and decreases for z ∈ (0.6, 0.8) because
the gravity increases and approaches zero as z approaches infinity, as displayed in Figure 31. As the
gravity increases, σzz + τzz decrease for z ∈ (0, 0.4) and increase for z ∈ (0.4, 0.7) and approach zero
as z approaches infinity, as shown in Figure 32. The gravity effect on the temperature distribution T
concerning z is shown in Figure 33. Physically, it is obvious that all dependent components approach zero
as the distance approaches infinity. This agrees with the physical meaning of the waves phenomenon
if it is far from the origin point of propagation.
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Finally, when the initial stress and gravity parameters are vanishes, the obtained results are
deduced to the study of Said and Othman [34] which considered GN (type II) theory and internal heat
source as special case from the present study.

6. Conclusions

In this work, we presented an analytical solution based upon the Lame potentials and the
normal mode technique for the problem of thermoelastic in a solid medium has been developed,
utilized, and compared via graphs. The strong effect of Green-Naghdi theory (GN) compared with the
slight effect between Lord–Shulman (LS) and three-phase-lag model (3PHL). The physical quantities
converge to zero with an increasing of the distance z and continuously satisfying the assumed boundary
conditions. The body deformation depends on the nature of external forces applied (electromagnetic
field, two-temperature, initial stress, and gravity), also, the type of thermoelastic theories and boundary
conditions. The time parameter, as well as relaxation time, gravity, and electromagnetic field have
a strong effect and play a significant strong role in all the physical quantities obtained for the components
of stresses, components of displacement, and temperature decreasingly or increasingly. Therefore,
the presence of the field of electro-magnetic, gravity, two-temperature, initial stress, and relaxation times
in the present model is of significance. The considered method is interesting and applicable to a wide
range of phenomena in thermodynamics, thermoelasticity, and magneto-thermoelasticity. The transient
behaviors of field variables are studied in detail, and the influences of variations in field variables on
each other are discussed. Thus, they provide useful information for practical scientists/ technologists/
researchers/ seismologists/ engineers work in this experimental field on propagation of waves. This paper
introduced the effect of gravity, initial stress, electromagnetic field, and two temperatures dependence on
the components of displacement, temperature, and components of stress that indicate to their significant
effects. Finally, the results provide a significant motivation to study the magneto-thermoelectric
conducting materials as a new applicable class of electro-magneto-thermoelectric solids and should
prove the useful for the researchers in the material science, designers of new materials, physicists,
engineers, and those working on the electro-magneto-thermoelasticity development and in practical
situations, especially in optics, geomagnetic, geophysics, acoustics, and oil prospecting.
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Nomenclature

a Two-temperature parameter
B The vector of induced magnetic field
Ce Specific heat per unit mass
E Vector of induced electric field
e Strain
eij Tensor of strain
F Vector of body forces of Lorentz’s
h Perturbed magnetic field
Ho Vector of primary magnetic field
J Vector of electric current density
K Thermal conductivity characteristic the medium
K∗ Thermal conductivity
P Initial stress
T Absolute temperature
T0 Medium natural temperature;

∣∣∣(T − T0)/T0
∣∣∣ < 1

ui Vector of displacement
αt Linear thermal expansion coefficient
δij Kronecker delta
ε0 Electric permittivity

η =
ρCe
K Entropy per unit mass

θ = T− T0 Thermodynamical temperature
λ, µ Lame’s parameters
µe Magnetic permeability
ρ Density
σij Stress tensor
τij Maxwell’s stress tensor
τq, τT, τv Relaxation times
ϕ = ϕ0 − T Conductive temperature
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